Exercise 3c: Small-Strain Plasticity in a Test Coupon

The purpose of this exercise is to illustrate the setup of a small-strain plasticity enforced displacement loading on a test coupon bar. The model is a solid bar composed of first order hexagonal elements which will be fixed at one end and subjected to an enforced displacement in-plane.

Problem Setup

You should copy the file: tension_sm_str.fem

Step 1: Import the model: tension_sm_str.fem into HyperMesh Desktop

Step 2: Import the table with the plasticity curve and add a new MAT1 material with plastic material behavior

- 1. Enable the **Utility** tab by checking the menu drop-down *View > Browsers > HyperMesh > Utility*.
- 2. Click on the **Utility** tab in the Browser area.
- 3. Ensure that the **FEA** button option at the bottom of the Browser area is selected.
- 4. In the Utility tab, select the TABLE Create utility. This opens the Create Table dialog box.
- 5. Select *Import Table* as the option and click on the table type TABLES1.

🛆 Create Table		23		
Options:				
Import Table				
C Create/Edit Table				
Tables:				
C TABDMP1	C TABLED3	C TABLEM3		
C TABFAT	C TABLED4	C TABLEM4		
C TABLED1	C TABLEM1	TABLES1		
C TABLED2	C TABLEM2	C TABRND1		
	Next	Cancel		

- 6. Click Next.
- 7. Browse for and select the plasticity.csv file in the model directory. Name the new table MATS1TS1 and click *Apply* to import the table.
- 8. Close the Import TABLES1 window.
- 9. In the **Model** tab, click on the existing **MAT1** material named MAT1 to load it into the **Entity Editor**.
- 10. Activate the **MATS1** option to put in plasticity parameters and set the card values as shown below:

Name	Value
Solver Keyword	MAT1
Name	MAT1
ID	1
Color	
Include File	[Master Model]
Defined	
Card Image	MAT1
User Comments	Do Not Export
E	210000.0
G	
NU	0.33
RHO	7.85e-009
A	
TREF	
GE	
ST	
SC	
SS	
MATS1	
TID	MATS1TS1 (1)
TYPE	PLASTIC
Н	
YF	
HR_REAL	
HR	
LIMIT1	350.0
TYPSTRN	1
MATT1	
MAT4	
MAT5	
MATFAT	
MATF1	
MATX	

Step 3: Create a solid property card and apply it to the solid elements

- 1. Create a new **PSOLID** property named **PSOLID** that references the material card MAT1.
- 2. Assign this property to all of the elements in the **TENSIONTEST** component.

Step 4: Create the boundary conditions and loading conditions

- 1. Create a new load collector named SPCs.
- 2. In the constraints panel, select node 14598 by id and constrain DOFs 1-6.

This node is the independent node of the RBE2 and will constrain all nodes connected to that rigid element.

3. Using a window selection, select all of the nodes shown in the image below. Constrain them in DOFs 1-3.

- 4. Create a new load collector named LOAD_20.
- 5. In the constraints panel, set the *load type* to SPCD and create a constraint in DOF 1 on node 14598 of *magnitude* 20.0.

€ create	• •	nodes	K	🔽 do	f1 _=	20.000	create
C update				🖂 do	f2 =	0.000	create/edit
		relative size =		10.000 🔽 label constraint do	13 =	0.000	reject
	\$	constant ∨alue		🔽 fixed 🔲 do	f4 =	0.000	review
				🖵 do	f5 =	0.000	
				🖵 do	f6 =	0.000	
				load type	es =	SPCD	return

6. Create a new NLPARM load collector named NLPARM with *NINC* of 20.

Step 5: Create the output requests for the measurement set

- 1. In the control cards panel, enter the GLOBAL_OUTPUT_REQUEST section.
- 2. Ensure that the following outputs are requested:

Output Type	Format	Option
DISPLACEMENT	H3D	ALL
SPCF	H3D	ALL
ELFORCE	H3D	SID (2)

Step 6: Add an NLOUT load collector to enable 100 increments of intermediate step results and set the NLOUT option to the load collector in GLOBAL_CASE_CONTROL

Step 7: Create a new Non-linear quasi-static analysis load step named Load_20. Set the SPC to SPCs, the LOAD to LOAD_20, and the NLPARM to NLPARM.

Step 8: Run the analysis with 4 CPUs

- 1. In the *OptiStruct* panel under the **Analysis** page, ensure that the *export options:* is set to all, the *run options:* is set to analysis. Name the file tensile_sm_str.fem and enter the *options* -optskip -out -cpu 4.
- 2. Click **OptiStruct** to run the nonlinear analysis.

Step 9: Review the results in HyperView

- 1. When the run has completed, from the *OptiStruct* panel, click on the *HyperView* button to launch the post-processing report tensile_sm_str.mvw which was automatically created from the analysis.
- 2. Set the animation type to *Transient* and click the *Play* button to view the displacement results. Overlay the contours of various results onto the load case animation to view how they change as the enforced displacement scales.

A contour of element stresses of the model at its last enforced displacement (20 units)

Chapter 3: Nonlinear Materials Exercises