

개요

▶ 비선형 정적해석

- 단위:N,mm
- 기하모델: Clip.x_t

▶ 접촉조건 설정

- 일반접촉

▶ 경계조건과 하중조건

- 핀구속, 자유도 구속
- 강제변위

≻ 결과확인

- 전체 변위
- 애니메이션

Clip (접촉, 기하 비선형)

따라하기 목적

> 경사진 면에서 접촉이 발생하고, 이동변위가 큰 비선형 해석

- 경사진 부분을 타고 올라가면서 접촉이 발생합니다.
- 경사진 부분에서의 움직임이 원활하도록 수직, 수평 강성 계수를 조절해 줍니다.
- 접촉이 발생하는 종속 접촉면에 시드를 이용하여 조밀한 요소망을 생성합니다.

*

작업순서

- 1. [🗋] (새로 만들기) 클릭..
- 2. [3차원/일반모델] 선택.
- 3. 단위계 [N-mm-J-sec] 선택.
- 4. [확인] 버튼 클릭.
- 5. 작업윈도우에서 마우스 오른쪽 버튼
- 클릭 후, [모든 가이더 감추기] 선택.

▓ 프로그램을 실행시킨 후 [새로 만들기] 를 클릭하면 모든 메뉴가 활성화 됩니 다.

해석조건설정 대화상자는 시작과 함께 자동으로 보여집니다.

	8 🖬 🖬 🐂 😐 🌧 🗉					
· · · · · · · · · · · · · · · · · · ·	요소망 정적/열 해석	동적 / 과	노열 해석 유	유동해석 해석	결과분석 도	구
불러오기 내보내기	+ ☐ Ø ◈ ᡟ ✓ ີ \$ \$ # ≠ � ⊙ ♀ X	C3 ⁄∕ ≛ & ┌ Ს		· 27 년 솔리드 면	솔리드 면	[유 회전 직선 중 스윕
CAD파일	점과 선		면과 솔리드	교차연산	나누기	추출형상

작업순서

- 1. 모델 선택: Clip.x_t 선택.
- **2. [열기]** 버튼 클릭.

※ 프로그램이 설치된 하위 폴더의 Manuals₩Tutorials₩Files 폴더 안에 따라하기의 모델들이 있습니다.

[접촉면찾기] 옵션은 기본 설정이며, 자동으로 접촉면을 찾아줍니다. 이번 따라하기에서는 접촉 설정방법 을 습득하기 위해 자동 옵션을 사용 하지 않습니다.

() CAD파일 불러오기<							
찾는 위치(I):	길 02_Nonlinear Static Analysis 👻	G 🤌 📂 🛄 -					
C	이름	수정한 날짜	유형				
친근 위치	Bending Spring	2012-03-09 오전 9:	파일 폴더				
	Leaf Spring	2012-03-09 오전 9: 2012-03-09 오전 9:	파일 폴너 파잌 폴더				
	Spring	2012-03-09 오전 9:	파일 폴더				
바탕 화면	Bending Spring.x t	2010-09-09 오후 8:	X_T 파일				
<u> </u>	Clip.x_t	2010-09-10 오후 7:	X_T 파일				
	Leaf Spring.x_t	2010-09-28 오전 10	X_I 파일 X T 파이				
다이르더니	spring.x_t	2010-09-08 오루 12	~_1 - 41 =				
i 🔍							
컴퓨터	•		2 ,				
	파일 이름(N): Clip	-	열기(0)				
	파일 형식(T): Parasolid (10 to 22) Files (*,x_t)*,	.xmt_txt2+,x_b 👻	취소				
네느쿼크	📄 읽기 천용으로 열기(R) 🔹 🖬	인 혀시 화이!!					
		20740					
- 접촉면찾기	□ 현재모델의 해석정보 유지하기						
☑ 오차자동계산 0.0001 ☑ 경계 ☑ 하중 ☑ 접촉 ☑ 해석조건							
☑ 형상 고침							
대상모델의 길이단위 mm 🔻 불러오기옵션 모두초기화							

작업순서

[수동접촉] 탭 선택. 수동접촉조건 입력

이름	Contact
접촉종류	일반접촉
주 접촉면 대상 종류	면
주 접촉면 대상 선택	3개 선택
종속 접촉면 대상 종류	면
종속 접촉면 대상 종류	2개 선택

3. [확인] 버튼 클릭.

🗋 🍉 🥵 🔚 🖆 🖆 🐂 😐 🄶 🗉 🔵 🔻 형상 요소망 결과분석 정적/열 해석 동적/과도열 해석 유동해석 도구 해석 🔏 파라미터 🔀 자체접촉 *<u>1</u>* ۵ ? ≺ 좌표계 🔩 세트정의 🔀 자동접촉 🎽 접촉관리 ٢ 🎰 구속조건 溢 \$...\$ _∰ 특성 🖓 함수 🔻 압력 🛍 세트조합 중력 집중 강제변위 재료 🔏 수동접촉 🚔 핀/볼트 . Ba 🖽 구속조건방정식 접촉/연결 경계조건 정적하중 물성/좌표계/함수

정적/열 해석 >> 경계조건 >> 구속조건

작업순서

이름	Fix_2
대상종류	면
대상선택	4개 선택
조건	Tz 구속 🛛 🛉

ϔ XY평면에 대한 대칭조건을 부여합니

건이 만족됩니다.

3. [확인] 버튼 클릭.

정적/열 해석 >> 정적하중 >> **강제변위**

<u>작업순서</u>

이름	Displacement
대상종류	면
대상선택	1개 선택
조건	Tx : 48 (mm)

3. [확인] 버튼 클릭.

<u>작업순서</u>

1. [엣지시드] 탭 선택.

2. 요소망 제어

대상종류	선
대상선택	4개 선택
방법	분할개수 : 20개
이름	Edge Size Control

3. [확인] 버튼 클릭.

반원 형태에서 2개의 선분을 선택하고, 반대편도 2개의 선분을 선택합니다. (총 4개의 선분 선택) 에지시드는 요소망 생성 시에 우선적용되기 때문에 파트의 특정 부위에조밀한 요소망을 작성하는 경우에 사용합니다.

	🗅 🕞	🖉 🖯 🖬 🖬 🖛 🖷) Ŧ						
	형상	요소망 정적/열해	넉	동적 / 과5	E열 해석	유동해석	학 해석	결과분	분석 도구	
[[재료	특 성	→ ◆ 기본크기 → ▲ ▲	1D	2D	3D	<mark>∰</mark> 2D->3D ∰ 재생성	1월 직선 8월 회전 1월 채우기	🕼 스윕 11 투영 31 옵셋	1988 평행 1993 회전 1993 대칭 1994 대칭	일
⊼H ŝ	료/특성	제어			생성		추	 奎	이동/복사	

작업순서

1. [🕟] (전체 선택) 클릭.

2. 하이브리드 요소망(육면체 중심) 선택.

3. 요소 크기설정: 자동 설정값 사용.

(3.93으로 조절) 🙀

4. [확인] 버튼 클릭.

	🤌 🖯 🖆 📬 🖷 🖷	★ =			
형상 형상	요소망 정적/열 해	석 동적/과도열 해석	유동해석	해석 결과분	석 도구
제료 특성	♣ <	1D 2D 3D	2D->3D 재생성	직선 🚧 스윕 회전 🚺 투영 채우기 젊 옵셋	1988 명행 1989 회전 1988 대칭 ¹⁹⁸³ 스케일
재료/특성	제어	생성		추출	이동/복사

도구

해석 및 결과 작업트리 >> Nonlinear : 비선형 정적해석 >> 비선형 정적해석 (필수)

>> INCR=31 (LOAD=1.000)

