

개요

▶ 비선형 정적해석

- 단위:N,mm
- 기하모델: Spring.x_t

≻ 재질

- 응력-변형률 곡선

경계조건과 하중조건

- 핀구속
- 집중하중

≻ 결과확인

- 전체 변위
- 등가응력
- 애니메이션

Spring (재료, 기하비선형)

따라하기 목적

▶ midas NFX를 이용한 재료비선형 해석의 수행 및 기능 이해

- 응력-변형률 곡선을 이용하여 비선형 재료를 정의합니다.
- 증분 개수와 수렴 기준 등의 비선형해석 옵션을 설정하는 방법을 습득합니다.
- 해석 결과를 애니메이션을 기능을 사용하여 확인합니다.

*

작업순서

- 1. [🗋] (새로 만들기) 클릭..
- 2. [3차원/일반모델] 선택.
- 3. 단위계 [N-mm-J-sec] 선택.
- 4. [확인] 버튼 클릭.
- 5. 작업윈도우에서 마우스 오른쪽 버튼
- 클릭 후, [모든 가이더 감추기] 선택.

▓ 프로그램을 실행시킨 후 [새로 만들기] 를 클릭하면 모든 메뉴가 활성화 됩니 다.

해석조건설정 대화상자는 시작과 함께 자동으로 보여집니다.

	8 🖆 📬 🐂 📼 🌧	₽ 7					
· · · · · · · · · · · · · · · · · · ·	요소망 정적/열 해석	동적/고	바도열 해석	유동해석	해석	결과분석 도	구
불러오기 내보내기	+ ☐ Ø ◈ ♥ ✓ ີ \$ \$ # ≠ � ⊙ \$ X	© ∱ ≛ & Γ h		 20 20	ੇ ਹਿ = ਦ	승리드 면	[유명 회전 지선 (유명 고프트) (유 소입
CAD파일	점과 선		면과 솔리드		차연산 👘	나누기	추출형상

<u>작업순서</u>

1. 모델 선택: Spring.x_t 선택

2. [열기] 버튼 클릭.

※ 프로그램이 설치된 하위 폴더의 Manuals\Tutorials\Files 폴더 안에 따라하기의 모델들이 있습니다.

♥ CAD파일 불러오기									
찾는 위치(I):	🕕 02_Nonlinear S	tatic Analysis	•	G 🤌 📂					
æ	이름	*		수정한 날짜		유형			
친구 위치	Bending Spring			2012-03-09 9	2후 1:	파일 폴더			
	Leaf Spring			2012-03-09 5	2후 1: 2후 1:	파일 졸더 파잌 폭더			
	Spring			2012-03-09 \$	2후 1:	파일 폴더			
바탕 화면	Bending Spring	.x_t		2010-09-09 9	2후 8:	X_T 파일			
	Clip.x_t			2010-09-10 9	2후 7: 2 전 10	X_T 파일 X T 파이			
라이브러리	Spring.x_t	1		2010-09-28 5	2후 12	X_T 파일			
					_	6			
컴퓨터	•		m		- 4	\mathbf{O}			
	파일 이름(N):	Spring				열기(0)			
네트워크	파일 형식(T):	Parasolid (10 to	22) Files (*,x_t*,	xmt_txt;∗,x_b →	- (취소			
		🔲 읽기 전용으로	^{열기(R)} • 파	일 형식 혹	<u> </u> 안!!				
- 🗖 접촉면찾기		현재모델의 하	석정보 유지하기						
☑ 오차자동계신	난 0.0001	☑ 경계	☑ 하중	✓접촉	☑ 해석3	조건			
교형산고치		☑ 기본재료				유형 파일 롤더 파일 롤더 파일 롤더 X.T 파일 X.T 파일 X.T 파일 Q2 · gg기(0) 취소			
·····································	LOI	1							
대응포펄의 털이는	1 mm ▼	J	물러.	포기곱견	느 보두	-조기화			

1. [자동-솔리드] 탭 선택

2. 요소망 생성 입력

대상선택	솔리드 1개 선택
요소크기	3
특성번호	1 🔆
이름	Spring

🖗 요소 특성의 ID 번호만을 입력하여 요

정의할 수 있습니다.

소망을 생성한 후에 해당 ID의 특성을

3. [확인] 버튼 클릭.

작업순서

1. 이름: **"Nonlinear"** 입력.

2. 응력-변형률 함수 입력

변형률ㅊ	응력
0	0
0.0001357	95 (N/mm²) 🤺
0.0025	100 (N/mm²)
0.01	110 (N/mm²)
0.1	120 (N/mm²)
1	130 (N/mm²)

3. [확인] 버튼 클릭.

4. 응력-변형률 함수: "Nonlinear" 선택.

5. [확인] 버튼 클릭.

6. [닫기] 버튼 클릭.

✤ 첫 기울기는 앞서 입력한 탄성계수와 동일한 값이어야 합니다.

작업순서

1. 1번 선택 후 수정 클릭

2. [솔리드] 탭 확인.

3. 특성 수정

번호	1
이름	Solid
재질	2: Alu

4. [확인] 버튼 클릭.

5. [닫기] 버튼 클릭

정적/열 해석 >> 경계조건 >> 구속조건

작업순서

<mark>1.</mark> 구속조건 입력	
이름	Fix
대상종류	면
대상선택	2개 선택
조건	핀구속 🔆

✤ 고정구속: X, Y, Z 병진자유도 및 회전 자유도 구속 핀구속: X, Y, Z 병진자유도만 구속

※솔리드 모델에서는 회전자유도가 없기 때문에 **핀구속** 조건으로도 모든 자유도가 구속됩니다.

	🗅 🕞	· 🤌 🔒 📫	📑 🖛 🖦 🏓 🗉											
	형상	요소망	정적/열 해석	동적 / 과	도열 해석	유동해석	학 하	석	결과분	석 도	7			
[4] 재료	도 특성	+⊰ 좌표계 ┍❷ 함수 *	🔄 파라미터 🗶 🔀 자동접촉 😤 🌋 수동접촉 🚔	자체접촉 접촉관리 핀/볼트	※ 세트정의 ▲ 구속조건 田구속조건	방정식	र्ह व	<u>_</u> ਹੁਣ	<u>↓↓↓</u> 압력	고 강제변위	 	11 11 11	:‡‡: :⇒‡: :∰:	✤세트정의 웹 세트조합
=	률성/좌표	/좌표계/함수 접촉/연결 경계조건 정적하중												

Step

해석 및 결과 작업트리 >> Nonlinear : 비선형 정적해석 >> 비선형 정적해석 (필수)

>> INCR=20 (LOAD=1.000)

>> INCR=20 (LOAD=1.000)

Step

해석 및 결과 작업트리 >> Nonlinear : 비선형 정적해석 >> 비선형 정적해석 (필수)

>> INCR=20 (LOAD=1.000)

Step

6

