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§11.2 DEFINITION OF BAR MEMBER

§11.1. A New Beginning

This Chapter begins Part II of the course. This Part focuses on the construction of structural and
continuum finite elements using a variational formulation based on the Total Potential Energy. Why
only elements? Because the other synthesis steps of the DSM: globalization, merge, BC application
and solution, remain the same as in Part I. Those operations are not element dependent.

Individual elements are constructed in this Part beginning with the simplest ones and progressing
to more complicated ones. The formulation of 2D finite elements from a variational standpoint is
discussed in Chapters 14 and following. Although the scope of that formulation is broad, exceeding
structural mechanics, it is better understood by going through specific elements first.

From a geometrical standpoint the simplest finite elements are one-dimensional or line elements.
This means that the intrinsic dimensionality is one, although these elements may be used in one,
two or three space dimensions upon transformation to global coordinates as appropriate. The
simplest one-dimensional structural element is the two-node bar element, which we have already
encountered in Chapters 2, 3 and 5 as the truss member.

In this Chapter the bar stiffness equations are rederived using the variational formulation. For
uniform properties the resulting equations are the same as those found previously using the physical
or Mechanics of Materials approach. The variational method has the advantage of being readily
extendible to more complicated situations, such as variable cross section or more than two nodes.
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Figure 11.1. A fixed-free bar member: (a) 3D view showing reference frame; (b) 2D view on {x, y} plane
highlighting some quantities that are important in bar analysis.

§11.2. Definition of Bar Member

In structural mechanics a bar is a structural component characterized by two properties:

(1) One preferred dimension: the longitudinal dimension or axial dimension is much larger that the
other two dimensions, which are collectively known as transverse dimensions. The intersection
of a plane normal to the longitudinal dimension and the bar defines the cross sections. The
longitudinal dimension defines the longitudinal axis. See Figure 11.1(a).

(2) The bar resists an internal axial force along its longitudinal dimension.
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Chapter 11: VARIATIONAL FORMULATION OF BAR ELEMENT

Table 11.1 Nomenclature for Mathematical Model of Axially Loaded Bar

Quantity Meaning

x Longitudinal bar axis∗

(.)′ d(.)/dx
u(x) Axial displacement
q(x) Distributed axial force, given per unit of bar length

L Total bar length
E Elastic modulus
A Cross section area; may vary with x

E A Axial rigidity
e = du/dx = u′ Infinitesimal axial strain
σ = Ee = Eu′ Axial stress

F = Aσ = E A e = E Au′ Internal axial force
P Prescribed end load

∗ x is used in this Chapter instead of x̄ (as in Chapters 2–3) to simplify the notation.

In addition to trusses, bar elements are used to model cables, chains and ropes. They are also used
as fictitious elements in penalty function methods, as discussed in Chapter 9.

We will consider here only straight bars, although their cross section may vary. Our one-dimensional
mathematical model assumes that the bar material is linearly elastic obeying Hooke’s law, and that
displacements and strains are infinitesimal. Figure 11.1(b) pictures some relevant quantities for a
fixed-free bar. Table 11.1 collects the necessary terminology for the governing equations.

Figure 11.2 displays the governing equations of the bar in a graphic format called a Tonti diagram.
The formal similarity with the diagrams used in Chapter 5 to explain MoM elements should be
noted, although the diagram of Figure 11.2 pertains to the continuum bar model rather than to the
discrete one. (The qualifier “strong form” is explained in the next Chapter.)

§11.3. Variational Formulation

To illustrate the variational formulation, the finite element equations of the bar will be derived from
the Minimum Potential Energy principle.

§11.3.1. The Total Potential Energy Functional

In Mechanics of Materials it is shown that the internal energy density at a point of a linear-elastic
material subjected to a one-dimensional state of stress σ and strain e is U = 1

2σ(x)e(x), where
σ is to be regarded as linked to the displacement u through Hooke’s law σ = Ee and the strain-
displacement relation e = u′ = du/dx . This U is also called the strain energy density. Integration
over the volume of the bar gives the total internal energy

U = 1
2

∫
V

σ e dV = 1
2

∫ L

0
Fe dx = 1

2

∫ L

0
(E Au′)u′ dx = 1

2

∫ L

0
u′E A u′ dx . (11.1)

11–4



§11.3 VARIATIONAL FORMULATION
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Figure 11.2. Strong-form Tonti diagram for the continuum model of a bar member. Field equations and BCs
are represented as lines connecting the boxes. Yellow (brown) boxes contain unknown (given) quantities.

All integrand quantities in (11.1) may depend on x .

The external work potential is the work performed by applied mechanical loads working on the
bar displacements. This potential is denoted by W . (The external energy V is the negative of the
work potential: V = −W . In the ensuing derivations W will be used instead of V .) It collects
contributions from two sources:

1. The distributed load q(x). This contributes a cross-section density of q(x)u(x) because q is
assumed to be already integrated over the section.

2. Any specified axial point load(s). For the fixed-free example of Figure 11.1 the end load P
would contribute P u(L).

The second source may be folded into the first by conventionally writing any point load P acting at
a cross section x = a as a contribution P δ(a) to q(x), in which δ(a) denotes the one-dimensional
Dirac delta function at x = a. If this is done the external energy can be concisely expressed as

W =
∫ L

0
q u dx . (11.2)

The total potential energy of the bar is given by

	 = U − W (11.3)

Mathematically 	 is a functional, called the Total Potential Energy functional or TPE. It depends
only on the axial displacement u(x). In Variational Calculus u(x) is called the primary variable
of the functional. When the dependence of 	 on u needs to be emphasized we shall write 	[u] =
U [u]−W [u], with brackets enclosing the primary variable. To display both primary and independent
variables we write, for example, 	[u(x)] = U [u(x)] − W [u(x)].

Remark 11.1. According to the rules of Variational Calculus, the Euler-Lagrange equation for 	 is

E = ∂	

∂u
− d

dx

∂	

∂u′ = −q − (E A u′)′ (11.4)
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Chapter 11: VARIATIONAL FORMULATION OF BAR ELEMENT
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u
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Figure 11.3. Concept of admissible variation of the axial displacement function u(x). For convenience u(x) is
plotted normal to the longitudinal axis. Both u(x) and u(x) + δu(x) shown above are kinematically admissible,

and so is the variation δu(x). Note that the variation δu(L) is not zero because the BC at x = L is natural.

The stationary condition for 	 is E = 0, or

(E A u′)′ + q = 0 (11.5)

This is the strong (pointwise) equation of equilibrium in terms of the axial displacement, which reduces to
E A u′′ + q = 0 if E A is constant. This equation is not explicitly used in the FEM development. It is instead
replaced by δ	 = 0, with the variation restricted over the class of finite element interpolation functions.

§11.3.2. Admissible Variations

The concept of admissible variation is fundamental in both variational calculus and the variationally
formulated FEM. Only the primary variable(s) of a functional may be varied. For the TPE functional
(11.3) this is the axial displacement u(x). Suppose that u(x) is changed to u(x) + δ u(x).1 This is
illustrated in Figure 11.3, where for convenience u(x) is plotted normal to x . The TPE functional
changes accordingly as

	 = 	[u] ⇒ 	 + δ	 = 	[u + δu]. (11.6)

The function δ u(x) and the scalar δ	 are called the variations of u(x) and 	, respectively. The
variation δ u(x) should not be confused with the ordinary differential du(x) = u′(x) dx since on
taking the variation the independent variable x is frozen; that is, δx = 0.

A displacement variation δu(x) is said to be admissible when both u(x) and u(x) + δ u(x) are
kinematically admissible in the sense of the Principle of Virtual Work (PVW). This agrees with the
conditions of classical variational calculus, and are restated next.

A kinematically admissible axial displacement u(x) obeys two conditions:

(i) It is continuous over the bar length, that is, u(x) ∈ C0 in x ∈ [0, L].

(ii) It satisfies exactly any displacement boundary condition, such as the fixed-end specification
u(0) = 0 of Figure 11.1. See of Figure 11.3.

The variation δ u(x) pictured in Figure 11.3 is kinematically admissible because both u(x) and
u(x) + δ u(x) satisfy the foregoing conditions. Note that the variation δu(L) at the free end x = L
is not necessarily zero because that boundary condition is natural; that is, not specified directly in
terms of the displacement u(L). On the other hand, δ(0) = 0.

The physical meaning of conditions (i)–(ii) is the subject of Exercise 11.1.

1 The symbol δ not immediately followed by a parenthesis is not a delta function but instead denotes variation with respect
to the variable that follows.
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§11.3 VARIATIONAL FORMULATION
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x

u(x)u

Figure 11.4. FEM discretization of bar member. A piecewise- linear admissible displacement trial
function u(x) is drawn underneath the mesh. It is assumed that the left end is fixed; thus u1 = 0.

§11.3.3. The Minimum Total Potential Energy Principle

The Minimum Total Potential Energy (MTPE) principle states that the actual displacement solution
u∗(x) that satisfies the governing equations is that which renders 	 stationary:2

δ	 = δU − δW = 0 iff u = u∗ (11.7)

with respect to admissible variations u = u∗ + δu of the exact displacement field u∗(x).

Remark 11.2. Using standard techniques of variational calculus3 it can be shown that if E A > 0 and kinematic
boundary conditions weed out any rigid motions, the solution u∗(x) of (11.7) exists, is unique, and renders
	[u] a minimum over the class of kinematically admissible displacements. The last attribute explains the
“minimum” in the name of the principle.

§11.3.4. TPE Discretization

To apply the TPE functional (11.3) to the derivation of FEM equations we replace the contin-
uum mathematical model by a discrete one consisting of a union of bar elements. For example,
Figure 11.4 illustrates the subdivision of a fixed-free bar member into four two-node elements.

Functionals are scalars. Therefore, for a discretization such as that shown in Figure 11.4, the TPE
functional (11.3) may be decomposed into a sum of contributions of individual elements:

	 = 	(1) + 	(2) + . . . + 	(Ne) (11.8)

in which Ne denotes the number of elements. The same decomposition applies to both its internal
energy and external work potential components:

δU = δU (1) + . . . + δU (Ne) = 0, δW = δW (1) + . . . + δW (Ne) = 0, (11.9)

as well as to the stationarity condition (11.7):

δ	 = δ	(1) + δ	(2) + . . . + δ	(Ne) = 0. (11.10)

2 The symbol “iff” in (11.7) is an abbreviation for “if and only if”.
3 See references in Notes and Bibliography at the end of Chapter.
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Figure 11.5. A two-node, TPE-based bar element: (a) element configuration and axial displacement
variation (plotted normal to element axis for better visibility); (b1,b2,b3) displacement interpolation

expressed in terms of linear shape functions; (c) element shape functions.

Using the fundamental lemma of variational calculus,4 it can be shown that (11.10) implies that for
a generic element e we may write

δ	e = δU e − δW e = 0. (11.11)

This variational equation is the basis for the derivation of element stiffness equations once the
displacement field has been discretized over the element, as described next.

Remark 11.3. In mathematics (11.11) is called a first variation form. It is a special case of a more general
expression called a weak form, which is covered in more detail later. In mechanics it states the Principle of
Virtual Work or PVW for each element: δU e = δW e, which says that the virtual work of internal and external
forces on admissible displacement variations is equal if the element is in equilibrium [588].

§11.3.5. Bar Element Discretization

Figure 11.5(a) depicts a generic bar element e. It has two nodes, which are labeled 1 and 2. These
are called the local node numbers.5 The element is referred to its local axis x̄ = x − x1, which
measures the distance from its left end. The two degrees of freedom are ue

1 and ue
2. (Bars are not

necessary since the directions of x̄ and x are the same.) The element length is 
 = Le.

The mathematical concept of bar finite elements is based on approximating axial displacement u(x)

over the element. The exact displacement u∗ is replaced by an approximate displacement

u∗(x) ≈ ue(x) (11.12)

4 See, e.g., Chapter II of Gelfand and Fomin [297].
5 Note the notational change from the labels i and j of Part I. This will facilitate transition to multidimensional elements

in Chapters 14ff.
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§11.3 VARIATIONAL FORMULATION

over the finite element mesh. This approximate displacement, ue(x), taken over all elements e =
1, 2, . . . N e, is called the finite element trial expansion or simply trial expansion. See Figure 11.4.
This FE trial expansion must belong to the class of kinematically admissible displacements defined
in ?. Consequently, it must be C0 continuous over and between elements. The most common
choices fpr ue are polynomials in x , as in the development that follows.

§11.3.6. Interpolation by Shape Functions

In a two-node bar element the only possible polynomial choice of the displacement ue that satisfies
the interelement continuity requirement is linear. It can be expressed by the following interpolation
formula, which is graphically developed in Figure 11.5(b1,b2,b3):

ue(x) = N e
1 ue

1 + N e
2 ue

2 = [ N e
1 N e

2 ]

[
ue

1
ue

2

]
= Ne ue. (11.13)

The functions N e
1 and N e

2 that multiply the node displacements u1 and u2 are called shape functions,
while N is called the shape function matrix. In this case Ne reduces to a row vector.

The shape functions interpolate the internal displacement ue directly from the node values. They
are pictured in Figure 11.5(c). For this element, with x̄ = x − x1 measuring the axial distance from
the left node i , the shape functions are

N e
1 = 1 − x̄



= 1 − ζ, N e

2 = x̄



= ζ. (11.14)

Here

ζ = x − x1



= x̄



, (11.15)

is a dimensionless coordinate, also known as a natural coordinate, that varies from 0 through 1
over the element. Note that dx = 
 dζ and dζ = dx/
. The shape function N e

1 has the value 1 at
node 1 and 0 at node 2. Conversely, shape function N e

2 has the value 0 at node 1 and 1 at node 2.
This is a general property of shape functions. It follows from the fact that element displacement
interpolations such as (11.13) are based on physical node values.

§11.3.7. The Strain-Displacement Matrix

The axial strain associated with the trial function ue is

e = due

dx
= (ue)′ =

[ d N e
1

dx

d N e
2

dx

] [
ue

1
ue

2

]
= 1



[ −1 1 ]

[
ue

1
ue

2

]
= B ue, (11.16)

in which

B = 1



[ −1 1 ] , (11.17)

is called the strain-displacement matrix. Note that B is constant over the element.
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Figure 11.6. Trial basis function (a.k.a. hat function) for node 3 of a four-element bar discretization.

§11.3.8. *Trial Basis Functions
Shape functions are associated with elements. A trial basis function, or simply basis function, is associated
with a node. Suppose node i of a bar discretization connects elements (e1) and (e2). The trial basis function
Ni is defined as

Ni (x) =
{

N (e1)

i if x ∈ element (e1)

N (e2)

i if x ∈ element (e2)

0 otherwise

(11.18)

For a piecewise linear discretization, such as that used in the two-node bar, this function has the shape of a
hat. Thus it is also called a hat function or chapeau function. See Figure 11.6, in which i = 3, e1 = 2, and
e2 = 3. The concept is important in the variational interpretation of FEM as a Rayleigh-Ritz method.

Remark 11.4. In addition to continuity, shape and trial functions must satisfy a completeness requirement
with respect to the governing variational principle. This condition is stated and discussed in later Chapters.
Suffices for now to say that the shape functions (11.14), as well as the associated trial functions, do satisfy this
requirement.

§11.4. The Finite Element Equations

In linear FEM the discretization process based on the TPE functional leads to the following algebraic
form in the node displacements

	e = U e − W e, in which U e def= 1
2 (ue)T Ke ue and W e def= (ue)T fe. (11.19)

Here Ke and fe are called the element stiffness matrix and the element consistent nodal force vector,
respectively. The three scalars 	e, U e and W e are only function of the node displacements ue. (This
is a consequence of displacements being the only primary variable of the TPE functional.) Note
that U e and W e depend quadratically and linearly, respectively, on those displacements. Taking
the variation of 	e with respect to the node displacements gives6

δ	e = (
δue

)T ∂	e

∂ue
= (

δue
)T [

Ke ue − fe
] = 0. (11.20)

Because the variations δue can be arbitrary, the bracketed expression must vanish, which yields

Ke ue = fe. (11.21)

These are the familiar element stiffness equations. Hence the foregoing names given to Ke and fe

are justified a posteriori.

6 The 1
2 factor disappears on taking the variation because U e is quadratic in the node displacements. For a review on the

calculus of discrete quadratic forms, see Appendix D.
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§11.4 THE FINITE ELEMENT EQUATIONS

§11.4.1. The Stiffness Matrix

We now apply the foregoing expressions to the two-node bar element. Its internal energy U e is

U e = 1
2

∫ x2

x1

e E A e dx = 1
2

∫ 1

0
e E A e 
 dζ. (11.22)

Note that the integration variable x has been changed to the natural coordinate ζ defined in (11.15)
that varies from 0 through 1, whence dx = 
 dζ . This form is symmetrically expanded using the
strain-displacement matrix relation (11.16), by inserting e = eT = (ue)T BT and e = B ue into the
first and second e of (11.22), respectively, to get

U e = 1
2

∫ 1

0
(ue)T BT E A B ue 
 dζ = 1

2

∫ 1

0
[ ue

1 ue
2 ]

1




[ −1
1

]
E A

1



[ −1 1 ]

[
ue

1
ue

2

]

 dζ.

(11.23)

The nodal displacements do not depend on position and can be moved out of the integral. Also
BT E A B = E A BT B since E A is a scalar:

U e = 1
2 (ue)T

∫ 1

0
E A BT B 
 dζ ue = 1

2 [ ue
1 ue

2 ]
∫ 1

0

E A


2

[
1 −1

−1 1

]

 dζ

[
ue

1
ue

2

]
. (11.24)

By (11.19) this is expressible as 1
2

(
ue

)T
Ke ue. Since ue is arbitrary, Ke is extracted as

Ke =
∫ 1

0
E A BT B 
 dζ =

∫ 1

0

E A


2

[
1 −1

−1 1

]

 dζ = 1




[
1 −1

−1 1

] ∫ 1

0
E A dζ.

(11.25)

This is the bar element stiffness matrix. For a homogeneous and prismatic bar of constant rigidity,
E A can be moved outside the integral,

∫ 1
0 dζ = 1 and (11.25) collapses to

Ke = E A




[
1 −1

−1 1

]
. (11.26)

This is the same element stiffness matrix of the prismatic truss member derived in Chapters 2 and
5 by a Mechanics of Materials approach, but now obtained through a variational argument.

§11.4.2. The Consistent Node Force Vector

The consistent node force vector fe defined in (11.19) comes from the element contribution to the
external work potential W :

W e =
∫ x2

x1

q u dx =
∫ 1

0
q NT ue 
 dζ = (

ue
)T

∫ 1

0
q

[
1 − ζ

ζ

]

 dζ

def= (
ue

)T
fe, (11.27)

Since ue is arbitrary,

fe =
∫ x2

x1

q

[
1 − ζ

ζ

]
dx =

∫ 1

0
q

[
1 − ζ

ζ

]

 dζ. (11.28)
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Figure 11.7. Fixed-free, prismatic bar example: (a) configuration; (b,c,d) FEM discretization and load cases.

in which ζ is defined by (11.15). If q is constant over the element, it may be taken out of the
integral:

fe = q
∫ 1

0

[
1 − ζ

ζ

]

 dζ. (11.29)

This gives the same results as with the EbE lumping method of Chapter 7. See Exercise 11.3.

Example 11.1. The two-node bar element is tested on the benchmark problem defined in Figure 11.7. A fixed-
free, homogeneous, prismatic bar of length L , elastic modulus E and cross section area A has the configuration
illustrated in Figure 11.7(a). It is discretized with a single element as shown in Figure 11.7(b,c,d), and subjected
to the three load cases pictured there. Case I involves a point load P at the free end, which may be formally
represented as

q I (x) = P δ(L) (11.30)

where δ() denotes the delta function with argument x .

Case II involves a distributed axial load that varies linearly from q1 = q(0) at the fixed end through q2 = q(L)

at the free end:
q I I (x) = q1(1 − ζ ) + q2ζ, (11.31)

in which ζ = 1 − x/L . Case III involves a “box” distributed load q(x) that is constant and equal to q0 from
the fixed end x = 0 through midspan x = L/2, and zero otherwise:

q I I I (x) = q0

(
H(x) − H(x − 1

2 L)
)
, (11.32)

in which H() denotes the Heaviside unit step function with argument x . The master stiffness equations
constructed using the prismatic stiffness matrix (11.26) with 
 = L and x̄ → x are

E A

L

[
1 −1

−1 1

] [
um

1
um

2

]
=

[
f m
1

f m
2

]
= fm . (11.33)

Here supercript m identifies the load case. The consistent node forces computed from (11.28) with 
 = L and
x̄ → x are

fI =
[

0
P

]
, fI I = L

6

[
2q1 + q2

q1 + 2q2

]
, fI I I = q0 L

8

[
3
1

]
. (11.34)
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§11.5 WEAK FORMS

On applying the fixed end support condition um
1 = 0 and solving for um

2 , the free end deflections are

uI
2 = P L

E A
, uI I

2 = (q1 + 2q2)L2

6E A
, uI I I

2 = q0 L2

8E A
. (11.35)

The analytical solutions for u(x), obtained on integrating the ODE E Au′′ + q = 0 with boundary conditions
u(0) = 0, F(L) = E A u′(L) = P for case I and F(L) = E A u′(L) = 0 for cases II and III, are

uI (x) = Px

E A
, uI I (x) = x [3(q1+q2)L2−3q1 Lx+(q1−q2)x2]

6E A
, uI I I (x) = q0

2E A

(
Lx−x2+〈x− 1

2 L〉2
)
.

(11.36)

In the expression of uI I I (x), 〈x − 1
2 L〉2 means (x − 1

2 L)2 if x ≥ 1
2 L , else zero (Macauley’s bracket notation

for discontinuity functions). Evaluating (11.36) at x = L and comparing to (11.35), one finds that the three
computed end deflections are exact.

For case I this agreement is no surprise: the exact uI (x) is linear in x , which is contained in the span of
the linear shape functions. But for II and III this is far from obvious since the exact solutions are cubic and
piecewise quadratic, respectively, in x . The fact that the exact solution is verified at the free end node is an
instance of the nodal exactness property discussed in §11.6.1.

Note that in cases II and III the FEM displacement solutions inside the element, which vary linearly, will
not agree pointwise with the exact solutions, which do not. For example the exact midspan displacement is
uI I I ( 1

2 L) = q0 L2/(8E A) = uI I I (L), whereas the FEM interpolation would give q0 L2/(16E A) there, in error
by 100%. To reduce such internal discrepancies the member may be divided into more elements.

§11.5. Weak Forms

Weak forms are expressions notoriously difficult to explain to newcomers. They occupy an inter-
mediate position between differential equations and functionals. There are so many variants and
procedural kinks, however, that their position in the mathematical food chain is fuzzy. Confusion
is compounded by the use of disparate terminology, some generic, some application oriented. To
shed some sunlight into this murky swamp, we go through a specific example: the bar member.

§11.5.1. From Strong to Weak

The governing differential equation for a bar member in terms of axial displacements is(
E A u′(x)

)′ + q(x) = 0, or E A u′′(x) + q(x) = 0 if the rigidity E A is constant. Replace the
zero by r(x), which stands for residual, and move it to the left-hand side:

r(x) = (
E A u′(x)

)′ + q(x), or if E A is constant: r(x) = E A u′′(x) + q. (11.37)

The governing ODE may be compactly stated as r(x) = 0. This must hold at each point over the
member span, say x ∈ [0, L]. Hence the term strong form (SF) used for this kind of mathematical
model. No ambiguity so far. But suppose that insisting on r(x) = 0 everywhere is too demanding.
We would like to relax that condition so it is satisfied only in an average sense. To accomplish that,
multiply the residual by a function v(x), integrate over the problem domain, and set the result to
zero:

J =
∫ L

0
r(x) v(x) dx = 0. (11.38)

Here v(x) is supposed to be sufficiently well behaved for the integral to exist. Ignoring boundary
conditions for now, (11.38) is called a weak form, which is often abbreviated to WF in the sequel.

11–13



Chapter 11: VARIATIONAL FORMULATION OF BAR ELEMENT

Function v(x) receives two names in the literature: test function in a general mathematical context,
and weight function (also weighting function) in the context of approximation methods based on
weak forms. In what follows both terms will be used within the appropriate context.

§11.5.2. Weak Form Based Approximation Example

To show how weak forms can be used to generate approximate solutions, consider again a fixed-free,
prismatic, homogeneous bar member (that is, E A is constant), under uniform load q(x) = q0 along
its length and zero load at the free end. The WF (11.38) becomes

J =
∫ L

0

(
E A u′′(x) + q0

)
v(x) dx = 0. (11.39)

subject to the end conditions

u(0) = 0, F(L) = E A u′(L) = 0. (11.40)

We will restrict both u(x) and v(x) to be quadratic polynomials:

u(x) = a0 + a1 x + a2 x2, v(x) = b0 + b1 x + b2 x2. (11.41)

in which ai and bi are numerical coefficients, real in this case. Once assumptions such as those
in (11.41) are made, more terminology kicks in. The assumed u(x) is now called a trial function,
which is spanned by the linear-space basis {1, x, x2} of dimension 3. The assumed v(x) is called
a weight function, which is spanned by exactly the same basis. There is a special name for the
scenario when the trial and weight function bases coalesce: the Galerkin method.7. We will call
the end result a Galerkin solution. Replacing (11.41) into (11.39) we get

J = L

6
(6b0 + 3b1 L + 2b2 L2) (2E A a2 + q0). (11.42)

Now J must vanish for any arbitrary value of {b0, b1, b2}. On extracting the expressions that multiply
those coefficients we obtain the same equation thrice: 2E A a2 + q0 = 0. Thus a2 = −q0/(2E A),
whereas a0 and a1 remain arbitrary. Consequently the Galerkin solution before BC is

u(x) = a0 + a1 x − q0

2E A
x2. (11.43)

ODE aficionados would recognize this as the general solution of E Au′′ + q0 = 0 so Uncle Boris
has done the job. Applying the end conditions (11.40) gives a0 = 0 and a1 = q0/(E A) whence the
final solution is

u(x) = q0

2E A
x(2L − x). (11.44)

Replacing into (11.37) and (11.40) it may be verified that this is the exact analytical solution.

Instead of applying the end conditions a posteriori we may try to incorporate them a priori into
the trial function assumption. On enforcing (11.40) into the assumed u(x) of (11.41) we find that
a0 = 0 and a1 = −2a2 L . The trial function becomes

u(x) = a2 x (x − 2L), (11.45)

7 Introduced by Boris Galerkin in 1912. For a brief account of the general methodology, see Notes and Bibliography
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and only one free coefficient remains. Accordingly only one weight basis function is needed: either
1, x or x2 does the job, and the exact solution (11.44) is obtained again.8

What happens if the load q(x) varies, say, linearly and the same quadratic polynomial assumptions
(11.41) are used? Then Galerkin goes gaga. See Exercise 11.8.

Even for this trivial example, several procedural choices are apparent. If we allow the trial and
weight function spaces to differ, volatility zooms up. Furthermore, we can apply transformations
to the residual integral as done in the next subsection. Compared to the well ordered world of
variational-based FEM, confusion reigns supreme.

§11.5.3. Balanced Weak Forms

Some method in the madness can be injected by balancing. A look at (11.39) reveals an unpleasant
asymmetry. Second derivatives of u(x) appear, but none of v(x). This places unequal restrictions
on smoothness of the trial and test function spaces. Integration by parts restores derivative order
balance. Replacing

∫ L
0 E A u′′ v dx = − ∫ L

0 E A u′ v′ dx + (E Au′)v
∣∣L

0 and rearranging terms yields

J =
∫ L

0
E A u′(x) v′(x) dx −

∫ L

0
q(x) v(x) dx − (

E A u′(x)
)
v(x)

∣∣L

0 . (11.46)

This will be called a balanced-derivative weak form, or simply a balanced weak form (BWF). It
displays obvious advantages: (i) same smoothness requirements for assumed u and v, and (ii) end
BC appear explicitly in the non-integral term, neatly factored into essential and natural. A minor
flaw is that the original residual is no longer clearly visible.

For a bar with variable axial rigidity replace E A u′′ by (E A u′)′ in the first integrand.

On repeating the Galerkin procedure of the previous subsection with the assumptions (11.41) one
finds an identical J , as may be expected, and the same final solution. Again one has the choice of
pre- or post-imposing the end conditions (11.40). Generally the latter choice is far more convenient
in a computer implementation.

§11.5.4. Principle of Virtual Work as Balanced Weak Form

There is a close relationship between the BWF (11.46) and one of the fundamental tools of Analytical
Mechanics: the Principle of Virtual Work (PVW). To exhibit it, set the test function to be an
admissible variation of u(x): v(x) = δ u(x), in which δu(x) strongly satisfies all essential BC.
Then assume that J is the first variation of a functional 	:

J =
∫ L

0
E A u′(x) δu′(x) dx −

∫ L

0
q(x) δu(x) dx − (

E A u′(x)
)
δu(x)

∣∣L

0
def= δ	. (11.47)

Indeed this is the first variation of the TPE functional:

	 = U − W = 1
2

∫ L

0
u′(x) E A u′(x) dx −

∫ L

0
q(x) u(x) dx (11.48)

8 Some early works covering weighted residual methods, for example Crandall [159], proclaim that the trial function must
satisfy all BC ab initio. Later ones, e.g., [260,261], relax that rule to BC of essential type (in Galerkin methods, this rule
applies to both trial and test functions since the spaces coalesce). In practice this rule can be often relaxed further, as in
the example of §11.5.2, applying essential BCs at the last moment.
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Chapter 11: VARIATIONAL FORMULATION OF BAR ELEMENT

Hence J = 0 is the same as δ	 = 0 or δU = δW , which is the PVW for an elastic bar member.
This relationship can be used to prove an important property: Galerkin method is equivalent to a
variational formulation if the residual is the Euler-Lagrange equation of a functional.

Remark 11.5. Where does the boundary term
(

E A u′(x)
)
δu(x)

∣∣L

0
in (11.47) go? Actually, into δW . This

immersion is a bit tricky, and depends on redefining q(x) to include prescribed end point forces such as
N (L) = E A u′(L) = P through delta functions. This is the subject of Exercise 11.9.

§11.5.5. *Weighted Residual Methods

Galerkin method is widely used in computational mechanics, but does not exhaust all possibilities of using a
weak form as source for obtaining numerical solutions. The main generalization consist of allowing trial and
test (weight) functions to be different. This leads to a rich class of approximation methods unified under the
name Method of Weighted Residuals or MWR.

The key idea is as follows. Both u(x) and v(x) are restricted to belong to linear function spaces of finite
dimension Nu and Nv . These are the trial function space and the test function space, respectively. which are
spanned by basis functions φi (x) and ψ(x), respectively:

u(x) = span
{
φi (x), 1 ≤ i ≤ Nu

}
, v(x) = span

{
ψi (x), 1 ≤ i ≤ Nv

}
(11.49)

in which usually Nu = Nv . Since the spaces are linear, any u(x) and v(x) can be represented as linear
combination of the basis functions:

u(x) =
Nu∑

i=1

ai φi (x), v(x) =
Nv∑

i=1

bi ψi (x). (11.50)

Here ai and bi are scalar coefficients, which may be real or complex depending on the nature of the problem.
Insert these into the weak form, perform the necessary integrations, and extract the Nv expressions that are
coefficients of the bi . Solve these equations for the coefficients ai , and replace in the first of (11.50) to get the
approximate solution u(x).

The MWR methodology is of course not restricted to one space dimension. It also extends to time-dependent
problems. It can be merged smoothly with the FEM concept of piecewise approximation using shape functions.
Some references are provided under Notes and Bibliography.

§11.6. *Accuracy Analysis

Low order 1D elements may give surprisingly high accuracy. In particular the lowly two-node bar element
can display infinite accuracy under some conditions. This phenomenon is studied in this advanced section as
it provides an introduction to modified equation methods and Fourier analysis along the way.

§11.6.1. *Nodal Exactness and Superconvergence

Suppose that the following two conditions are satisfied:

1. The bar properties are constant along the length (prismatic member).

2. The distributed load q(x) is zero between nodes. The only applied loads are point forces at the nodes.

If so, a linear axial displacement u(x) as defined by (11.13) and (11.14) is the exact solution over each element
since constant strain and stress satisfy, element by element, all of the governing equations listed in Figure 11.2.9

9 The internal equilibrium equation p′ + q = E A u′′ + q = 0 is trivially verified because q = 0 from the second
assumption, and u′′ = 0 because of shape function linearity.
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i j

j

k

i k

q(x)

x  = x  − 
i j
x j
k jx  = x  + 


j1 − (x −x)/
 = 1−ψ j1 + (x −x)/
 = 1+ψ
1

jTrial basis function N
for node j

Two-element
patch ijk

L

EA = const

(a) (b)

Figure 11.8. Superconvergence patch analysis: (a) lattice of bar elements; (b) two element patch.

It follows that if the foregoing conditions are verified the FEM solution is exact; that is, it agrees with the
analytical solution of the mathematical model.10 Adding extra elements and nodes would not change the
solution. That is the reason behind the truss discretizations used in Chapters 2–3: one element per member is
enough if they are prismatic and loads are applied to joints. Such models are called nodally exact.

What happens if the foregoing assumptions are not met? Exactness is then generally lost, and several elements
per member may be beneficial if spurious mechanisms are avoided.11 For a 1D lattice of equal-length, prismatic
two-node bar elements, an interesting and more difficult result is: the solution is nodally exact for any loading
if consistent node forces are used. This is proven in the subsection below. This result underlies the importance
of computing node forces correctly.

If conditions such as equal-length are relaxed, the solution is no longer nodally exact but convergence at the
nodes is extremely rapid (faster than could be expected by standard error analysis) as long as consistent node
forces are used. This phenomenon is called superconvergence in the FEM literature.

§11.6.2. *Fourier Patch Analysis

The following analysis is based on the modified differential equation (MoDE) method of Warming and Hyett
[?] combined with the Fourier patch analysis approach of Park and Flaggs [553,554]. Consider a lattice of
two-node prismatic bar elements of constant rigidity E A and equal length 
, as illustrated in Figure 11.8. The
total length of the lattice is L . The system is subject to an arbitrary axial load q(x). The only requirement on
q(x) is that it has a convergent Fourier series in the space direction.

From the lattice extract a patch12 of two elements connecting nodes xi , x j and xk as shown in Figure 11.8. The
FEM patch equations at node j are

E A



[ −1 2 −1 ]

[
ui

u j

uk

]
= f j , (11.51)

in which the node force f j is obtained by consistent lumping:

f j =
∫ xk

xi

q(x)N j (x) dx =
∫ 0

−1

q(x j + ψ
)(1 + ψ) 
 dψ +
∫ 1

0

q(x j + ψ
)(1 − ψ) 
 dψ. (11.52)

Here N j (x) is the “hat” trial basis function for node j , depicted in Figure 11.8, and ψ = (x − x j )/
 is a
dimensionless coordinate that takes the values −1, 0 and 1 at nodes i , j and k, respectively. If q(x) is expanded

10 In variational language: the Green function of the u′′ = 0 problem is included in the FEM trial space.
11 These can happen when transforming such elements for 2D and 3D trusses. See Exercise E11.7.
12 A patch is the set of all elements connected to a node; in this case j .
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in Fourier series

q(x) =
M∑

m=1

qmeiβm x , βm = mπ/L , (11.53)

(the term m = 0 requires special handling) the exact solution of the continuum equation E A u′′ + q = 0 is

u∗(x) =
M∑

m=1

u∗
meiβm x , u∗

m = qmeiβm x

E Aβ2
m

. (11.54)

Evaluation of the consistent force using (11.52) gives

f j =
M∑

m=1

f jm, f jm = qm

sin2( 1

2 βm
)

1
4 β2

m
2
eiβm x2 . (11.55)

To construct a modified differential equation (MoDE), expand the displacement by Taylor series centered at
node j . Evaluate at i and k: ui = u j − 
u′

j + 
2u′′
j/2! − 
3u′′′

j /3! + 
4uiv
j /4! + . . . and uk = u j + 
u′

j +

2u′′

j/2 + 
3u′′′
j /3! + 
4uiv

j /4! + . . .. Replace these series into (11.51) to get

−2E A


(
1

2!
u′′

j + 
2

4!
uiv

j + 
4

6!
uvi

j + . . .

)
= f j . (11.56)

This is an ODE of infinite order. It can be reduced to an algebraic equation by assuming that the response of
(11.56) to qm eiβm x is harmonic: u jmeiβm x . If so u′′

jm = −β2
mu jm , uiv

jm = β4
mu jm , etc, and the MoDE becomes

2E A
β2
m

(
1

2!
− β2

m
2

4!
+ β4

m
4

6!
− . . .

)
u jm = 4E A
 sin2( 1

2 βm
) u jm = f jm = qm

sin2( 1

2 βm
)

1
4 β2

m
2
eiβm x j .

(11.57)

Solving gives u jm = qmeiβm x j /(E Aβ2
m), which compared with (11.54) shows that u jm = u∗

m for any m > 0.
Consequently u j = u∗

j . In other words, the MoDE (11.56) and the original ODE: E Au′′ + q = 0 have the
same value at x = x j for any load q(x) developable as (11.53). This proves nodal exactness. In between
nodes the two solutions will not agree.13

The case m = 0 has to be treated separately since the foregoing expressions become 0/0. The response to a
uniform q = q0 is a quadratic in x , and it is not difficult to prove nodal exactness.

§11.6.3. *Robin Boundary Conditions

Suppose that for a bar of length L one has the following end conditions: u′(0) = au(0) + b at x = 0 and
u′(L) = au(L) + b at x = L , in which a and b are given coefficients. Those are called Robin BCs in the
literature. Adjoining them as Courant penalty terms gives the functional

F(u) =
∫ L

0

[ 1
2 E A (u′)2 − q u] dx + 1

2 [u′(0) − au(0) − b]2 + 1
2 [u′(L) + au(L) + b]2. (11.58)

Divide [0,L] into Ne elements and N = Ne + 1 nodes. Do C0 linear interpolation over each element, insert
into F(u) to get Fd(u) = 1

2 uT Ku − fT v, in which u is the vector of node values, K the master stiffness matrix
and f the master force vector. Coefficients a and b will affect both K and f.

13 The FEM solution varies linearly between nodes whereas the exact one is generally trigonometric.
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§11. Notes and Bibliography

Vanishing of the first variation: δFd = 0 yields the FEM equations Ku = f to be solved for u. The Robin BCs
at x = 0 and x = L will affect the stiffness and force contributions of the first and last elements, but not those
of interior elements.

This kind of boundary value problem (i.e., with Robin BCs) is common in heat conduction and heat transfer
with convection given over cooling surfaces. In that case the heat flux is proportional to the difference of the
(unknown) surface temperature and that of the cooling fluid. Elements that ”touch” the convention boundary
are affected.

Notes and Bibliography

The foregoing account pertains to the simplest structural finite element: the two-node bar element. For bar
members these developments may be generalized in several directions, three of which are mentioned next.

Refined bar models. Adding internal nodes we can pass from linear to quadratic and cubic shape functions.
These elements are rarely useful on their own right, but as accessories to 2D and 3D high order continuum
elements (for example, to model edge reinforcements.) For that reason they are not considered here. The
3-node bar element is developed in exercises assigned in Chapter 16.

Use in 2D and 3D truss structures. The only additional ingredients are the local-to-global transformations
discussed in Chapters 3 and 6.

Curved bar elements. These can be derived using isoparametric mapping, a device introduced later.

Matrices for straight bar elements are available in any finite element book; for example Przemieniecki [596].

Tonti diagrams were introduced in the 1970s in papers now difficult to access, for example [749]. Scanned
images are available, howewer, from http://www.dic.units.it/perspage/discretephysics

The fundamentals of Variational Calculus may be studied in the excellent textbook [297], which is now
available in an inexpensive Dover edition. The proof of the MPE principle can be found in texts on variational
methods in mechanics. For example: Langhaar [435], which is the most readable “old fashioned” treatment
of the energy principles of structural mechanics, with a clear treatment of virtual work. (Out of print but
used copies may be found via the web engines cited in §1.5.2.) The elegant treatment by Lanczos [434] is
recommended as reading material although it is more oriented to physics than structural mechanics.

It was noted that weak forms occupy an intermediate position between two older classical areas: differential
equations (introduced in the XVII Century by the Calculus founders) and variational forms (introduced by
Euler in the XVIII Century). Some weak forms in disguise are also ancient; e.g., the PVW was placed on
firm mathematical grounds by Lagrange in the late XVIII Century [430]. But their rapid development as tools
for producing approximate solutions of ODEs and PDEs took place in the early XIX Century. Five important
variants are: Galerkin (1915), subdomain (1923), least squares (1928), moments (1932), and collocation
(1937). These, as well as a few others of less importance, were unified in 1956 under the label Method of
Weighted Residuals or MWR, by Crandall [159]. Other attempts at unification during this period may be found
in [19,147]. The use of MWR methods, especially Galerkin’s, as enabling devices to generate finite element
equations developed rapidly following the pioneer paper [820]. The chief motivation was to accommodate
application problems where a classical variational formulation does not exist, or is inconvenient to use.

The first accuracy study of FEM discretizations using modified equation methods is by Waltz et. al. [780];
however their procedures were faulty, which led to incorrect conclusions. The first correct derivation of
modified equations appeared in [783]. The topic has recently attracted interest from applied mathematicians
because modified equations provide a systematic tool for backward error analysis of differential equations: the
discrete solution is the exact solution of the modified problem. This is particularly important for the study of
long term behavior of discrete dynamical systems, whether deterministic or chaotic. Recommended references
along these lines are [318,327,709].

Nodal exactness of bar models for point node loads is a particular case of a theorem by Tong [746]. For
arbitrary loads it was proven by Park and Flaggs [553,554], who followed a variant of the scheme of §11.6.2.
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A different technique is used in Exercise 11.10. The budding concept of superconvergence, which emerged
in the late 1960s, is outlined in the book of Strang and Fix [698]. There is a monograph [781] devoted to the
subject; it covers only Poisson problems but provides a comprehensive reference list until 1995.

References

Referenced items moved to Appendix R.
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Exercises

Homework Exercises for Chapter 11

Variational Formulation of Bar Element

EXERCISE 11.1 [D:10] Explain the kinematic admissibility requirements stated in ? in terms of physics,
namely ruling out the possibility of gaps or interpenetration as the bar material deforms.

EXERCISE 11.2 [A/C:15] Using (11.25), derive the stiffness matrix for a tapered bar element in which the
cross section area varies linearly along the element length:

A = Ai (1 − ζ ) + A j ζ, (E11.1)

where Ai and A j are the areas at the end nodes, and ζ = xe/
 is the dimensionless coordinate defined in
§11.3.6. Show that this yields the same answer as that of a stiffness of a constant-area bar with cross section
1
2 (Ai + A j ). Note: the following Mathematica script may be used to solve this exercise:14

ClearAll[Le,x,Em,A,Ai,Aj];
Be={{-1,1}}/Le; ζ=x/Le; A=Ai*(1-ζ)+Aj*ζ; 
Ke=Integrate[Em*A*Transpose[Be].Be,{x,0,Le}];
Ke=Simplify[Ke]; 
Print["Ke for varying cross section bar: ",Ke//MatrixForm];

In this and following scripts Le stands for 
.

EXERCISE 11.3 [A:10] Find the consistent load vector fe for a bar of constant area A subject to a uniform
axial force q = ρg A per unit length along the element. Show that this vector is the same as that obtained with
the element-by-element (EbE) “lumping” method of §8.4, which simply assigns half of the total load: 1

2 ρg A
,

to each node. Hint: use (11.29) and
∫ 1

0
ζ dζ = /.

EXERCISE 11.4 [A/C:15] Repeat the previous calculation for the tapered bar element subject to a force
q = ρg A per unit length, in which A varies according to (E11.1) whereas ρ and g are constant. Check that if
Ai = A j one recovers fi = f j = 1

2 ρg A
. Note: the following Mathematica script may be used to solve this
exercise:15

ClearAll[q,A,Ai,Aj,ρ,g,Le,x];
ζ=x/Le; Ne={{1-ζ,ζ}}; A=Ai*(1-ζ)+Aj*ζ; q=ρ*g*A; 
fe=Integrate[q*Ne,{x,0,Le}]; 
fe=Simplify[fe]; 
Print["fe for uniform load q: ",fe//MatrixForm];
ClearAll[A];
Print["fe check: ",Simplify[fe/.{Ai->A,Aj->A}]//MatrixForm];

EXERCISE 11.5 [A/C:20] A tapered bar element of length 
, end areas Ai and A j with A interpolated as
per (E11.1), and constant density ρ, rotates on a plane at uniform angular velocity ω (rad/sec) about node i .
Taking axis x along the rotating bar with origin at node i , the centrifugal axial force is q(x) = ρ Aω2x along
the length, in which x ≡ xe. Find the consistent node forces as functions of ρ, Ai , A j , ω and 
, and specialize
the result to the prismatic bar A = Ai = A j . Partial result check: f j = 1

3 ρω2 A
2 for A = Ai = A j .

14 The ClearAll[...] at the start of the script is recommended programming practice to initialize variables and avoid
“cell crosstalk.” In a Module this is done by listing the local variables after the Module keyword.

15 The ClearAll[A] before the last statement is essential; else A would retain the previous assignation.
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EXERCISE 11.6 [A:15] (Requires knowledge of Dirac’s delta function properties.) Find the consistent load
vector fe if the bar is subjected to a concentrated axial force Q at a distance x = a from its left end. Use
(11.28), with q(x) = Q δ(a), in which δ(a) is the one-dimensional Dirac’s delta function at x = a. Note: the
following script does it by Mathematica, but it is overkill:

ClearAll[Le,q,Q,a,x]; 
ζ=x/Le; Ne={{1-ζ,ζ}}; q=Q*DiracDelta[x-a]; 
fe=Simplify[ Integrate[q*Ne,{x,-Infinity,Infinity}] ];  
Print["fe for point load Q at x=a: ",fe//MatrixForm];

EXERCISE 11.7 [C+D:20] In a learned paper, Dr. I. M. Clueless proposes “improving” the result for the
example truss by putting three extra nodes, 4, 5 and 6, at the midpoint of members 1–2, 2–3 and 1–3, respectively.
His “reasoning” is that more is better. Try Dr. C.’s suggestion using the Mathematica implementation of Chapter
4 and verify that the solution “blows up” because the modified master stiffness is singular. Explain physically
what happens.

EXERCISE 11.8 [C+D:15] This exercise illustrates “Galerkin surprises.” Take up again the example of
§11.5.2, but suppose now that the axial load varies linearly, as in (11.31). The trial and weight function
assumptions are the quadratic polynomials (11.41). Show that the integral (11.39) is given by

12 J/L = b0

(
24E A a2 + 6(q1+q2)

) + b1

(
12E A a2 + 2(q1+2q2)

) + b2

(
8E A a2 + (q1+3q2)

)
, (E11.2)

and that the resulting 3 equations for a2 are inconsistent unless q1 = q2. Only one weight function gives
the correct solution at x = L; which one? Note that the Galerkin method is generally viewed as the “most
reliable” member of the MWR tribe. But unforeseen surprises have a silver lining: more papers can be written
to explain them. Here is a partial fix: make the test function satisfy the essential BC a priori.

EXERCISE 11.9 [A:20]. Prove that (11.47) is the first variation of (11.48), thus linking the PVW with the
TPE functional. See Remark 11.5 for a hint on how to treat the boundary term in (11.47).

EXERCISE 11.10 [A:35, close to research paper level]. Prove nodal exactness of the two-node bar element
for arbitrary but Taylor expandable loading without using the Fourier series approach. Hints: expand q(x) =
q(x j ) + (
ψ)q ′(x j ) + (
ψ)2q ′′(x j )/2! + . . ., where 
ψ = x − x j is the distance to node j , compute the
consistent force f j (x) from (11.52), and differentiate the MoDE (11.56) repeatedly in x while truncating all
derivatives to a maximum order n ≥ 2. Show that the original ODE: E Au′′ + q = 0, emerges as an identity
regardless of how many derivatives are kept.
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§12.2 WHAT IS A BEAM?

§12.1. Introduction

The previous Chapter introduced the TPE-based variational formulation of finite elements, which
was illustrated for the bar element. This Chapter applies that technique to a more complicated
one-dimensional element: the plane beam described by engineering beam theory.

Mathematically, the main difference of beams with respect to bars is the increased order of conti-
nuity required for the assumed transverse-displacement functions to be admissible. Not only must
these functions be continuous but they must possess continuous x first derivatives. To meet this
requirement both deflections and slopes are matched at nodal points. Slopes may be viewed as
rotational degrees of freedom in the small-displacement assumptions used here.

§12.2. What is a Beam?

Beams are the most common type of structural component, particularly in Civil and Mechanical
Engineering. A beam is a bar-like structural member whose primary function is to support transverse
loading and carry it to the supports. See Figure 12.1.

By “bar-like” it is meant that one of the dimen-
sions is considerably larger than the other two.
This dimension is called the longitudinal dimen-
sion or beam axis. The intersection of planes nor-
mal to the longitudinal dimension with the beam
member are called cross sections. A longitudinal
plane is one that passes through the beam axis.

Figure 12.1. A beam is a structural member
designed to resist transverse loads.

A beam resists transverse loads mainly through bending action, Bending produces compressive
longitudinal stresses in one side of the beam and tensile stresses in the other.

The two regions are separated by a neutral
surface of zero stress. The combination of
tensile and compressive stresses produces
an internal bending moment. This moment
is the primary mechanism that transports
loads to the supports. The mechanism is
illustrated in Figure 12.2.

§12.2.1. Terminology

Neutral surface Compressive stress

Tensile stress

Figure 12.2. Beam transverse loads are
primarily resisted by bending action.

A general beam is a bar-like member designed to resist a combination of loading actions such as
biaxial bending, transverse shears, axial stretching or compression, and possibly torsion. If the
internal axial force is compressive, the beam has also to be designed to resist buckling. If the
beam is subject primarily to bending and axial forces, it is called a beam-column. If it is subjected
primarily to bending forces, it is called simply a beam. A beam is straight if its longitudinal axis
is straight. It is prismatic if its cross section is constant.

A spatial beam supports transverse loads that can act on arbitrary directions along the cross section.
A plane beam resists primarily transverse loading on a preferred longitudinal plane. This Chapter
considers only plane beams.
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Chapter 12: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT

§12.2.2. Mathematical Models

One-dimensional mathematical models of structural beams are constructed on the basis of beam
theories. Because beams are actually three-dimensional bodies, all models necessarily involve some
form of approximation to the underlying physics. The simplest and best known models for straight,
prismatic beams are based on the Bernoulli-Euler beam theory (also called classical beam theory
and engineering beam theory), and the Timoshenko beam theory. The Bernoulli-Euler theory is that
taught in introductory Mechanics of Materials courses, and is the one emphasized in this Chapter.
The Timoshenko beam model is presented in Chapter 13, which collects advanced material.

Both models can be used to formulate beam finite elements. The Bernoulli-Euler beam theory leads
to the so-called Hermitian beam elements.1 These are also known as C1 elements for the reason
explained in §12.5.1. This model neglects the effect of transverse shear deformations on the internal
energy. Elements based on Timoshenko beam theory, also known as C0 elements, incorporate a
first order correction for transverse shear effects. This model assumes additional importance in
dynamics and vibration.

§12.2.3. Assumptions of Classical Beam Theory

The Bernoulli-Euler or classical beam theory for plane beams rests on the following assumptions:

1. Planar symmetry. The longitudinal axis is straight and the cross section of the beam has a
longitudinal plane of symmetry. The resultant of the transverse loads acting on each section
lies on that plane. The support conditions are also symmetric about this plane.

2. Cross section variation. The cross section is either constant or varies smoothly.

3. Normality. Plane sections originally normal to the longitudinal axis of the beam remain plane
and normal to the deformed longitudinal axis upon bending.

4. Strain energy. The internal strain energy of the member accounts only for bending moment
deformations. All other contributions, notably transverse shear and axial force, are ignored.

5. Linearization. Transverse deflections, rotations and deformations are considered so small that
the assumptions of infinitesimal deformations apply.

6. Material model. The material is assumed to be elastic and isotropic. Heterogeneous beams
fabricated with several isotropic materials, such as reinforced concrete, are not excluded.

§12.3. The Bernoulli-Euler Beam Theory

§12.3.1. Element Coordinate Systems

Under transverse loading one of the top surfaces shortens while the other elongates; see Figure 12.2.
Therefore a neutral surface that undergoes no axial strain exists between the top and the bottom.
The intersection of this surface with each cross section defines the neutral axis of that cross section.2

1 The qualifier “Hermitian” relates to the use of a transverse-displacement interpolation formula studied by the French
mathematician Hermite. The term has nothing to do with the mathematical model used.

2 If the beam is homogenous, the neutral axis passes through the centroid of the cross section. If the beam is fabricated
of different materials — for example, a reinforced concrete beam — the neutral axes passes through the centroid of an
“equivalent” cross section. This topic is covered in Mechanics of Materials textbooks; for example Popov [595].
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§12.3 THE BERNOULLI-EULER BEAM THEORY

z
Beam
 cross

 sectionNeutral surface

x, u

y, v

y,v
q(x)

L Symmetry plane

Centroid

Neutral axis
c

_
z

Figure 12.3. Terminology and choice of axes for Bernoulli-Euler model of plane beam.

The Cartesian axes for plane beam analysis are chosen as shown in Figure 12.3. Axis x lies along
the longitudinal beam axis, at neutral axis height. Axis y lies in the symmetry plane and points
upwards. Axis z is directed along the neutral axis, forming a RHS system with x and y. The origin
is placed at the leftmost section. The total length (or span) of the beam member is called L .

§12.3.2. Kinematics

The motion under loading of a plane beam member in the x, y plane is described by the two
dimensional displacement field [

u(x, y)

v(x, y)

]
, (12.1)

where u and v are the axial and transverse displacement components, respectively, of an arbitrary
beam material point. The motion in the z direction, which is primarity due to Poisson’s ratio
effects, is of no interest. The normality assumption of the Bernoulli-Euler model can be represented
mathematically as

u(x, y) = −y
∂v(x)

∂x
= −yv′ = −yθ, v(x, y) = v(x). (12.2)

Note that the slope v′ = ∂v/∂x = dv/dx of the deflection curve has been identified with the
rotation symbol θ . This is permissible because θ represents to first order, according to the kinematic
assumptions of this model, the rotation of a cross section about z positive CCW.

§12.3.3. Loading

The transverse force per unit length that acts on the beam in the +y direction is denoted by q(x), as
illustrated in Figure 12.3. Concentrated loads and moments acting on isolated beam sections can
be represented by the delta function and its derivative. For example, if a transverse point load F
acts at x = a, it contributes Fδ(a) to q(x). If the concentrated moment C acts at x = b, positive
CCW, it contributes Cδ′(b) to q(x), where δ′ denotes a doublet acting at x = b.

§12.3.4. Support Conditions

Support conditions for beams exhibit far more variety than for bar members. Two canonical cases
are often encountered in engineering practice: simple support and cantilever support. These are
illustrated in Figures 12.4 and 12.5, respectively. Beams often appear as components of skeletal
structures called frameworks, in which case the support conditions are of more complex type.
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Figure 12.4. A simply supported beam has end
supports that preclude transverse displacements but

permit end rotations.

Figure 12.5. A cantilever beam is clamped at one end
and free at the other. Airplane wings and stabilizers are

examples of this configuration.

§12.3.5. Strains, Stresses and Bending Moments

The Bernoulli-Euler or classical model assumes that the internal energy of beam member is entirely
due to bending strains and stresses. Bending produces axial stresses σxx , which will be abbreviated
to σ , and axial strains exx , which will be abbreviated to e. The strains can be linked to the
displacements by differentiating the axial displacement u(x) of (12.2):

e = ∂u

∂x
= −y

∂2v

∂x2
= −y

d2v

dx2
= −yv′′ = −yκ. (12.3)

Here κ denotes the deformed beam axis curvature, which to first order is κ ≈ d2v/dx2 = v′′. The
bending stress σ = σxx is linked to e through the one-dimensional Hooke’s law

σ = Ee = −Ey
d2v

dx2
= −Eyκ, (12.4)

where E is the longitudinal elastic modulus. The most important stress resultant in classical beam
theory is the bending moment M , which is defined as the cross section integral

M =
∫

A
−yσ d A = E

d2v

dx2

∫
A

y2 d A = E I κ. (12.5)

Here I ≡ Izz denotes the moment of inertia
∫

A y2 d A of
the cross section with respect to the z (neutral) axis. The
bending moment M is considered positive if it compresses
the upper portion: y > 0, of the beam cross section, as illus-
trated in Figure 12.6. This convention explains the negative
sign of y in the integral (12.5). The product E I is called the
bending rigidity of the beam with respect to flexure about
the z axis.

xz

y

V

M

Figure 12.6. Positive sign
convention for M and V .

The governing equations of the Bernoulli-Euler beam model are summarized in the Tonti diagram
of Figure 12.7.
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§12.5 BEAM FINITE ELEMENTS

Transverse
displacements

Distributed
 transverse load

Prescribed 
end

displacements

Curvature
Bending
moment Prescribed

end loads

v(x) q(x)

κ(x) M(x)

κ = v''

M = EI κ

M''=qKinematic

Constitutive

Displacement
        BCs

Force BCs

Equilibrium

Figure 12.7. The Tonti diagram for the governing equations of the Bernoulli-Euler beam model.

§12.4. Total Potential Energy Functional

The total potential energy of the beam is

� = U − W (12.6)

where as usual U and W denote the internal and external energies, respectively. As previously
explained, in the Bernoulli-Euler model U includes only the bending energy:

U = 1
2

∫
V

σe dV = 1
2

∫ L

0
Mκ dx = 1

2

∫ L

0
E Iκ2 dx = 1

2

∫ L

0
E I

(
v′′)2

dx = 1
2

∫ L

0
v′′E Iv′′ dx .

(12.7)

The external work W accounts for the applied transverse force:

W =
∫ L

0
qv dx . (12.8)

The three functionals �, U and W must be regarded as depending on the transverse displacement
v(x). When this dependence needs to be emphasized we write �[v], U [v] and W [v].

Note that �[v] includes up to second derivatives in v, because v′′ = κ appears in U . This number
is called the variational index. Variational calculus tells us that since the index is 2, admissible
displacements v(x) must be continuous, have continuous first derivatives (slopes or rotations), and
satisfy the displacement BCs exactly. This continuity requirement can be succintly stated by saying
that admissible displacements must be C1 continuous. This condition guides the construction of
beam finite elements described below.

Remark 12.1. If there is an applied distributed moment m(x) per unit of beam length, the external energy
(12.8) must be augmented with a

∫ L

0
m(x)θ(x) dx term. This is further elaborated in Exercises 12.4 and 12.5.

Such kind of distributed loading is uncommon in practice although in framework analysis occasionally the
need arises for treating a concentrated moment between nodes.
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Chapter 12: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT

§12.5. Beam Finite Elements

Beam finite elements are obtained by subdivid-
ing beam members longitudinally. The simplest
Bernoulli-Euler plane beam element has two end
nodes: 1 and 2, and four degrees of freedom (DOF).
These are collected in the node displacement vector

ue = [ v1 θ1 v2 θ2 ]T . (12.9)

The element is shown in Figure 12.8, which pictures
the undeformed and deformed configurations.

1
x, u

2

v1

v2
θ1

θ2
y, v

P'(x+u,y+v)

P(x,y)
x

�

E,  I

Figure 12.8. The two-node Bernoulli-Euler
plane beam element with four DOFs.

§12.5.1. Finite Element Trial Functions

The freedoms (12.9) are used to define uniquely the variation of the transverse displacement ve(x)

over the element. The C1 continuity requirement says that both v(x) and the slope θ = v′(x) =
dv(x)/dx must be continuous over the entire member, and in particular between beam elements.

C1 continuity can be trivially met within each element by choosing polynomial interpolation shape
functions as shown below, because polynomials are C∞ continuous. Matching nodal displacements
and rotations with adjacent elements enforces the necessary interelement continuity.

v(x) v(x)

interpenetration gap

(a) (b)

Figure 12.9. Deflection of a clamped-SS beam discretized with four elements, grossly
exaggerated for visibility. (a) Cubic deflection elements; (b) linear deflection elements. The
latter maintains only C0 continuity, leading to unacceptable material gap and interpenetration at

nodes.

Remark 12.2. The physical reason for C1 continuity is illustrated in Figure 12.9, in which the lateral deflection
curve v(x) is grossly exaggerated for visibility. The left figure shows the approximation of v(x) by four cubic
functions, which maintain the required continuity. The right figure shows an attempt to approximate v(x) by
four piecewise linear functions that maintain only C0 continuity. In this case material gap and interpenetration
occur at the nodes, as well as at the clamped left end, because section rotations jump between elements.
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§12.6 THE FINITE ELEMENT EQUATIONS

§12.5.2. Shape Functions

The simplest shape functions that meet the C1 continuity requirement for the nodal DOF configu-
ration (12.9) are called the Hermitian cubic shape functions. The interpolation formula based on
these functions is

ve = [ N e
v1 N e

θ1 N e
v2 N e

θ2 ]




v1

θ1

v2

θ2


 = Ne ue. (12.10)

These shape functions are conveniently expressed in terms of the dimensionless “natural” coordinate

ξ = 2x

�
− 1, (12.11)

where � is the element length. Coordinate ξ varies
from ξ = −1 at node 1 (x = 0) to ξ = +1
at node 2 (x = �). Note that dx/dξ = 1

2� and
dξ/dx = 2/�. The shape functions in terms of ξ

are

N e
v1 = 1

4 (1 − ξ)2(2 + ξ),

N e
θ1 = 1

8�(1 − ξ)2(1 + ξ),

N e
v2 = 1

4 (1 + ξ)2(2 − ξ),

N e
θ2 = − 1

8�(1 + ξ)2(1 − ξ).

(12.12)

These four functions are depicted in Figure 12.10. ξ = −1 ξ = 1

N  (ξ)v1
e

N  (ξ)v2
e

N  (ξ)θ1
e

N  (ξ)θ2
e

v  = 11

v  = 12

θ  = 11

θ  = 12

Figure 12.10. Cubic shape functions of
plane beam element.

The curvature κ that appears in U can be expressed in terms of the nodal displacements by differ-
entiating twice with respect to x :

κ = d2ve(x)

dx2
= 4

�2

d2ve(ξ)

dξ 2
= 4

�2

dNe

dξ 2
ue = B ue = N′′ ue. (12.13)

Here B = N′′ is the 1 × 4 curvature-displacement matrix

B = 1

�

[
6ξ
�

3ξ − 1 −6ξ
�

3ξ + 1
]
. (12.14)

Remark 12.3. The 4/�2 factor in (12.13) comes from the differentiation chain rule. If f (x) is a function of x ,
and ξ = 2x/� − 1, noting that d(2/�)/dx = 0 one gets

d f (x)

dx
= d f (ξ)

dξ

dξ

dx
= 2

�

d f (ξ)

dξ
,

d2 f (x)

dx2
= d(2/�)

dx

d f (ξ)

dξ
+ 2

�

d

dx

(
d f (ξ)

dξ

)
= 4

�2

d2 f (ξ)

dξ 2
↗0

. (12.15)

12–9



Chapter 12: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT

Ke for prismatic beam:
12 EI       6 EI       12 EI       6 EI
    l              l              l              l
 6 EI        4 EI        6 EI        2 EI
    l              l             l              l
 12 EI       6 EI      12 EI       6 EI
    l              l              l              l
 6 EI        2 EI         6 EI       4 EI
    l              l              l              l

_
__

_

_
_

3

33

3

2

2

2

2

2

2

2

ClearAll[EI,l,ξ];
Be={{6*ξ,(3*ξ-1)*l,-6*ξ,(3*ξ+1)*l}}/l^2;
Ke=(EI*l/2)*Integrate[Transpose[Be].Be,{ξ,-1,1}];
Ke=Simplify[Ke]; Print["Ke for prismatic beam:"];
Print[Ke//MatrixForm];
Print[Simplify[Ke*l^2/EI]//MatrixForm];

Figure 12.11. Using Mathematica to form Ke for a
prismatic beam element.

ClearAll[q,l,ξ];
Ne={{2*(1-ξ)^2*(2+ξ), (1-ξ)^2*(1+ξ)*l,
     2*(1+ξ)^2*(2-ξ),−(1+ξ)^2*(1-ξ)*l}}/8;
fe=(q*l/2)*Integrate[Ne,{ξ,-1,1}]; fe=Simplify[fe];
Print["fe^T for uniform load q:\n",fe//MatrixForm];

fe^T for uniform load q:
l q        l  q         l q           l  q

 2         12           2             12

22 _

Figure 12.12. Using Mathematica to form fe for
uniform transverse load q.

§12.6. The Finite Element Equations

Insertion of (12.12) and (12.14) into the TPE functional specialized to this element, yields the
quadratic form in the nodal displacements

�e = 1
2 (ue)T Keue − (ue)T fe, (12.16)

where

Ke =
∫ �

0
E I BT B dx =

∫ 1

−1
E I BT B 1

2� dξ, (12.17)

is the element stiffness matrix and

fe =
∫ �

0
NT q dx =

∫ 1

−1
NT q 1

2� dξ, (12.18)

is the consistent element node force vector. The calculation of the entries of Ke and fe for prismatic
beams and uniform load q is studied next. More complex cases are treated in the Exercises.

§12.6.1. The Stiffness Matrix of a Prismatic Beam

If the bending rigidity E I is constant over the element it can be moved out of the ξ -integral in
(12.17):

Ke = 1
2 E I �

∫ 1

−1
BT B dξ = E I

2�

∫ 1

−1




6ξ
�

3ξ − 1
−6ξ

�
3ξ + 1


 [ 6ξ

�
3ξ − 1 −6ξ

�
3ξ + 1

]
dξ. (12.19)

Expanding and integrating over the element yields

Ke = E I

2�3

∫ 1

−1




36ξ 2 6ξ(3ξ−1)� −36ξ 2 6ξ(3ξ+1)�

(3ξ−1)2�2 −6ξ(3ξ−1)� (9ξ 2−1)�2

36ξ 2 −6ξ(3ξ+1)�

symm (3ξ+1)2�2


 dξ = E I

�3




12 6� −12 6�

4�2 −6� 2�2

12 −6�

symm 4�2




(12.20)
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§12.6 THE FINITE ELEMENT EQUATIONS

Although the foregoing integrals can be easily carried out by hand, it is equally expedient to use a
CAS such as Mathematica or Maple. For example the Mathematica script listed in the top box of
Figure 12.11 processes (12.20) using the Integrate function. The output, shown in the bottom
box, corroborates the hand integration result.

§12.6.2. Consistent Nodal Force Vector for Uniform Load

If q does not depend on x it can be moved out of (12.18), giving

fe = 1
2 q�

∫ 1

−1
NT dξ = 1

2 q�

∫ 1

−1




1
4 (1 − ξ)2(2 + ξ)

1
8�(1 − ξ)2(1 + ξ)

1
4 (1 + ξ)2(2 − ξ)

− 1
8�(1 + ξ)2(1 − ξ)


 dξ = 1

2 q �




1
1
6�

1

− 1
6�


 . (12.21)

This shows that a uniform load q over the beam element maps to two transverse node loads q�/2, as
may be expected, plus two nodal moments ±q�2/12. The latter are called the fixed-end moments in
the structural mechanics literature.3 The hand result (12.21) can be verified with the Mathematica
script of Figure 12.12, in which fe is printed as a row vector to save space.

�
�

M

P

(b)  Load case I

(c)  Load case II

(d)  Load case III

x

y,v
(a)

L

�
�
�
� 21

�
�

�
� 21

�
�

�
� 21

EI constant

x

x

x

q uniform

A B

1

1

1

Figure 12.13. Cantilever beam problem for Example 12.1: (a) structure,
(b-c): one-element FEM idealizations for three load cases.

Example 12.1. To see the beam element in action consider the cantilever illustrated in Figure 12.13(a). The
beam is prismatic with constant rigidity E I and span L . It is discretized with a single element as shown
in Figure 12.13(b,c,d), and subjected to the three load cases pictured there. Case I involves an applied end
moment M , case II a transverse end force P , and case III a uniformly distributed load q over the entire beam.
The FEM equations are constructed using the stiffness matrix (12.20) with � = L .

For the first two load cases, forces at end node 2 are directly set up from the given loads since no lumping is
needed. Applying the support conditions v1 = θ1 = 0 gives the reduced stiffness equations

E I

L3

[
12 −6L

−6L 4L2

] [
v I

2
θ I

2

]
=

[
0
M

]
,

E I

L3

[
12 −6L

−6L 4L2

] [
v I I

2
θ I I

2

]
=

[
P
0

]
, (12.22)

3 Introduced by Hardy Cross in 1930 (long before FEM) as a key ingredient for his moment distribution method. Indeed
the title of his famous paper [174] is “Analysis of continuous frames by distributing fixed-end moments.”
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Chapter 12: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT
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Figure 12.14. FEM versus analytical solutions for load case III of Example 12.1.

for load cases I and II, respectively. Solving gives the tip deflections v I
2 = M L2/(2E I ) and v I I

2 = P L3/(3E I ),
and the tip rotations θ I

2 = M L/E I and θ I I
2 = P L2/(2E I ). These agree with the analytical values provided

by Bernoulli-Euler beam theory. Thus a one-element idealization is sufficient for exactness. The reason is that
the analytical deflection profiles v(x) are quadratic and cubic polynomials in x for cases I and II, respectively.
Both are included in the span of the element shape functions. Displacements v(x), rotations θ(x) and moments
M(x) expressed as functions of x also agree with the analytical solution, as may be expected.

The results for load case III are more interesting since now the exact deflection is a quartic polynomial, which
lies beyond the span of the FEM shape functions. A dimensionless parameter 0 ≤ β ≤ 1 is introduced in the
reduced stiffness equations to study the effect of load lumping method on the solution:

E I

L3

[
12 −6L

−6L 4L2

] [
v I I I

2
θ I I I

2

]
= 1

2 q L
[

1
− 1

6 β L

]
. (12.23)

Setting β = 1 gives the energy consistent load lumping (12.21) whereas β = 0 gives the EbE (here same
as NbN) load lumping f I I I

2 = 1
2 q L with zero fixed-end moments. The solution of (12.23) is v I I I

2 =
q L4(4 − β)/(24 E I ) and θ I I I

2 = q L3(3 − β)/(12 E I ). From this one recovers the displacement, rotation
and bending moment over the beam as

v I I I (x) = q L2 x2 L(6−β) − 2x

24 E I
, θ I I I (x) = q L x

L(6−β) − 3x

12 E I
, M I I I (x) = q L

12

(
L(6−β) − 6x

)
.

(12.24)

The analytical (exact) solution is

v I I I
ex (x) = q x2(3L2−3Lx+x2)

24 E I
, θ I I I

ex (x) = q x (6L2−4Lx+x2)

6 E I
, M I I I

ex (x) = 1
2 q(L − x)2. (12.25)

The FEM and analytical solutions (12.24)-(12.25) are graphically compared in Figure 12.14. Deflections and
rotations obtained with the consistent load lumping β = 1 agree better with the analytical solution. In addition
the nodal values are exact (a superconvergence result further commented upon in the next Example). For the
bending moment the values provided by the EbE lumping β = 0 are nodally exact but over the entire beam
the β = 1 solution gives a better linear fit to the parabolic function M I I I

ex (x).

Example 12.2. The second example involves a simply supported beam under uniform line load q, depicted in
Figure 12.15(a). It is prismatic with constant rigidity E I , span L , and discretized with two elements of length
L1 = L(/ + α) and L2 = L − L1 = L(/ − α), respectively. (Ordinarily two elements of the same length
/L would be used; the scalar α ∈ (−/,/) is introduced to study the effect of unequal element sizes.)
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§12.6 THE FINITE ELEMENT EQUATIONS

x

y,v q  (uniform)
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1 2 3
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1L =L(  +α)1
2 2L =L(  −α)1
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1 2

EI  constant

A B

Figure 12.15. SS beam problem for Example 12.2: (a) structure,
(b) two-element FEM idealization.

Using (12.20) and (12.21) to form the stiffness and consistent forces for both elements, assembling and applying
the support conditions v1 = v3 = 0, provides the reduced stiffness equations

E I

L3




8L2

1+2α
−24L

(1+2α)2
4L2

1+2α
0

−24L
(1+2α)2

192(1+12α2)

(1−4α2)3
192Lα

(1−4α2)2
24L

(1−2α)2

4L2

1+2α
192Lα

(1−4α2)2
16L2

1−4α2
4L2

1−2α

0 24L
(1−2α)2

4L2

1−2α
8L2

1−2α







θ1

v2

θ2

θ3


 = q L

2




L(1+2α)2

24
1

− Lα
3

− L(1−2α)2

24


 . (12.26)

Solving for the lateral displacement of node 2 gives v2 = q L4(5 − 24α2 + 16α4)/(384E I ). The exact
deflection is v(x) = q L4(ζ − 2ζ 3 + ζ 4)/(24E I ) with ζ = x/L . Replacing x = L1 = L(/ + α) yields
vexact

2 = q L4(5 − 24α2 + 16α4)/(384E I ), which is the same as the FEM result. Likewise θ2 is exact.

The result seems prima facie surprising. First, since the analytical solution is a quartic polynomial in x we
have no reason to think that a cubic element will be exact. Second, one would expect accuracy deterioration
as the element sizes differ more and more with increasing α. The fact that the solution at nodes is exact for
any combination of element lengths is an illustration of superconvergence, a phenomenon already discussed in
§11.5. A general proof of nodal exactness is given in §13.7, but it does require advanced mathematical tools.
Note that displacements and rotations inside elements will not agree with the exact one; this can be observed
in Figure 12.14(a,b) for load case III of the previous example.

y,v

y,v

1

�
�

�
�

��

2 3

q(x)=−w  constant

w 

(a)

(b) (c)

EI  constant

���

1
1
2L =  Lα

α

2
1
2L =  L(1−α) 4

1
2L =  Lα3

1
2L =  L(1−α)

L
L/2 L/2

1
1
2L =  Lα 2

1
2L =  L(1−α)

L/2

A B C D E

�
�

�
�

1 2x

x

0.1 0.2 0.3 0.4 0.5

0.25
0.5

0.75
1

1.25
1.5 W

_

Figure 12.16. Continuum beam problem for Example 12.3,
(a): structure, (b) two-element FEM model of half beam, (c)

scaled external energy of FEM model as function of α.
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Chapter 12: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT

Example 12.3. (Adapted from a driven-tank experiment by Patrick Weidman). This example displays the
advantages of symbolic computation for solving a problem in geometric design: optimal location of supports.
The prismatic continuous beam shown in Figure 12.16(a) is free at ends A and E, and simply supported at B,
C and D. The beam has total span L and constant bending rigidity E I . It is loaded by a uniform distributed
load q(x) = −w. Support C is at midspan whereas B and D are at distances L1 = L4 = 1

2 Lα from the left
and right free ends, respectively. Here 0 ≤ α < 1 is a design parameter to be determined as discussed later.

Since the problem is symmetric about midspan C only one half of the structure, say AC, need to be discretized.
The finite element model of this portion is shown in Figure 12.16(b). It has two beam elements and three nodes
placed at A, B and C, respectively. Element lengths depend on the design parameter α, which is carried along
as a variable. The six degrees of freedom are collected in u = [ v1 θ1 v2 θ2 v3 θ3 ]T . The master stiffness
equations are

4E I

L3




24
α3

6L
α2 −24

α3
6L
α2 0 0

6L
α2

2L2

α −6L
α2

L2

α 0 0

−24
α3 −6L

α2

24
(
1−3αα̂

)
α3α̂3 −6L(1−2α)

α2α̂2 −24
α̂3

6L
α̂2

6L
α2

L2

α −6L(1−2α)

α2α̂2
2L2

αα̂
−6L

α̂2
L2

α̂

0 0 −24
α̂3 −6L

α̂2
24
α̂3 −6L

α̂2

0 0 6L
α̂2

L2

α̂
−6L

α̂2
2L2

α̂







v1

θ1

v2

θ2

v3

θ3




= wL

4




−α

−Lα2

12
−1

L(2α−1)
12
−α̂

Lα̂2

12




+




0

0

f r
2

0

f r
3

mr
3




(12.27)

in which α̂ = 1 − α. Note that reaction forces are carefully segregated in (12.27) to simplify application of
the general recovery technique discussed in §3.4.3. The support BCs are v2 = v3 = θ3 = 0, where the latter
comes from the symmetry condition at C. Removing those freedoms provides the reduced stiffness equations

4E I

L3




24
α3

6L
α2

6L
α2

6L
α2

2L2

α
L2

α

6L
α2

L2

α
2L2

αα̂





 v1

θ1

θ2


 = wL

4




−α

−Lα2

12
L(2α−1)

12


 . (12.28)

Solving yields

v1 = − wL4

768 E I
α

(
(1+α)3 −2

)
, θ1 = wL3

384 E I

(
(1+α)3 −2

)
, θ2 = wL3

384 E I
α̂ (1−2α−5α2). (12.29)

The complete solution is u = [ v1 θ1 0 θ2 0 0 ]T . Inserting into (12.27) and solving for reactions gives

fr2 = wL

16

3 + 2α + α2

α̂
, fr3 = wL

16

5 − 10α − α2

α̂
, mr3 = −wL2

32
(1 − 2α − α2). (12.30)

whence the support reactions follow as RB = fr2 and RC = 2 fr3. It remains to find the best α. Of course
“best” depends on the optimality criterion. Four choices are examined below.

Minimum External Energy. The external energy at equilibrium is W (α) = fT u = w2 L5 W̄ (α)/(18432 E I ),
in which W̄ (α) = 1 − 5α − 2α2 + 26α3 + 5α4 + 3α5. Minimizing W with respect to α may be interpreted
as finding the stiffest structure (in the energy sense) under the given load vector f. A plot of W̄ (α) over
0 ≤ α ≤ 1

2 clearly displays a minimum at α ≈ 0.27 as shown in Figure 12.16(c). Solving the quartic equation
dW̄/dα = 0 gives one positive real root in the range α ∈ [0, 1), which to 5 places is αbest = 0.26817.
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§12. Notes and Bibliography

Equal Reactions. A second choice is to require that supports at B and C take the same load: RB = RC (note
that, because of symmetry, RD = RB). Setting fr2 = 2 fr3 with their expressions taken from (12.30), yields
3 + 2α + α2 = 10 − 20α − 2α2, or 7 − 22α − 3α2 = 0. This quadratic has the roots α = 1

3 (−11 ± √
142).

The positive real root αbest = 0.30546 makes RB = RC = RD = wL/3, as may be expected.

Minimum Relative Deflection. Consider two sections located at xi and x j , in which {xi , x j } ∈ [0, 1
2 L], with

lateral displacements vi = v(xi ) and v j = v(x j ), respectively. The maximum relative deflection is defined as
vmax

ji (α) = max |v j − vi | for a fixed α. We seek the α ∈ [0, 1) that minimizes vmax
ji (α). The computations are

far more complex than for the previous two criteria and are the subject of Exercise 12.11. Result: the best α

is the positive real root of 4 + 11α − 81α2 − 49α3 − 47α4 = 0, which to 5 places is αbest = 0.26681. If this
value is adopted, the relative deflection does not exceed vmax

i j < wL4/(67674E I ).

Minimum Absolute Moment. Let M(x, α) denote the bending moment function recovered from the FEM
solution for a fixed α. The maximum absolute moment is Mmax (α) = max |M(x, α)| for x ∈ [0, 1

2 L]. We
seek an α ∈ [0, 1) that minimizes it. This is the topic of Exercise 12.12. This problem is less well posed than
the previous one because M(x, α) varies linearly over each element, is nonzero at node 1 and discontinous at
node 2. On the other hand, the exact bending moment varies parabolically, is zero at node 1 and continuous
at node 2. Result: using the FEM-recovered M(x, α) and taking the average M at node 2, one finds that the
best α is the positive root of 2 − 4α − 15α2 = 0, or αbest = 0.25540, for which Mmax < wL2/589. The
optimal solution using the exact moment distribution, however, is quite different. This is an intrinsic weakness
of displacement-based FEM since internal forces are obtained by differentiation, which boosts errors. To get
a better result a finer mesh would be needed.

In summary, the optimal α from the foregoing criteria varies between 0.255 to 0.306. As a reasonable
compromise an engineer could pick αbest ≈ 0.28.

Notes and Bibliography

The Bernoulli-Euler (BE) beam model synthesizes pioneer work by Jacob and Daniel Bernoulli as well as that
of Leonhard Euler in the XVIII Century. Although the model was first enunciated by 1750, it was not applied
in structural design and analysis until the second half of the XIX Century. While Galileo Galilei is credited
with first attempts at a theory, recent studies [43] argue that Leonardo da Vinci made crucial observations a
century before Galileo. However, da Vinci lacked Hooke’s law and calculus to complete the theory.

A comprehensive source of stiffness and mass matrices of plane and spatial beams is the book by Przemieniecki
[603]. The derivation of stiffness matrices is carried out there using differential equilibrium equations rather
than energy methods. This was in fact the common practice before 1962, as influenced by the use of transfer
matrix methods [578] on the limited memory computers of the time. Results for prismatic elements, however,
are identical.

Energy derivations were popularized by Archer [35,36], Martin [473] and Melosh [490,491].

References

Referenced items have been moved to Appendix R.
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Chapter 12: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT

Homework Exercises for Chapter 12

Variational Formulation of Plane Beam Element

EXERCISE 12.1 [A/C:20] Use (12.17) to derive the element stiffness matrix Ke of a Hermitian beam element
of variable bending rigidity given by the inertia law

I (x) = I1(1 − x

�
) + I2

x

�
= I1

1
2 (1 − ξ) + I2

1
2 (1 + ξ). (E12.1)

Use of Mathematica or similar CAS tool is recommended since the integrals are time consuming and error
prone. Mathematica hint: write

EI = EI1*(1-ξ)/2 + EI2*(1+ξ)/2; (E12.2)

and keep EI inside the argument of Integrate. Check whether you get back (12.20) if EI=EI1=EI2. If you
use Mathematica, this check can be simply done after you got and printed the tapered beam Ke, by writing
ClearAll[EI]; Ke=Simplify[ Ke/.{EI1->EI,EI2->EI}]; and printing this matrix.4

EXERCISE 12.2 [A/C:20] Use (12.18) to derive the consistent node force vector fe for a Hermitian beam
element under linearly varying transverse load q defined by

q(x) = q1(1 − x

�
) + q2

x

�
= q1

1
2 (1 − ξ) + q2

1
2 (1 + ξ). (E12.3)

Again use of a CAS is recommended, particularly since the polynomials to be integrated are quartic in ξ , and
hand computations are error prone. Mathematica hint: write

q = q1*(1-ξ)/2 + q2*(1+ξ)/2; (E12.4)

and keep q inside the argument of Integrate. Check whether you get back (12.21) if q1 = q2 = q (See
previous Exercise for Mathematica procedural hints).

EXERCISE 12.3 [A:20] Obtain the consistent node force vector fe of a Hermitian beam element subject to
a transverse point load P at abscissa x = a where 0 ≤ a ≤ �. Use the Dirac’s delta function expression
q(x) = P δ(a) and the fact that for any continuous function f (x),

∫ �

0
f (x) δ(a) dx = f (a) if 0 ≤ a ≤ �.

Check the special cases a = 0 and a = �.

EXERCISE 12.4 [A:25] Derive the consistent node force vector fe of a Hermitian beam element subject to a
linearly varying z-moment m per unit length, positive CCW, defined by the law m(x) = m1(1−ξ)/2+m2(1+
ξ)/2. Use the fact that the external work per unit length is m(x)θ(x) = m(x) v′(x) = (ue)T (dN/dx)T m(x).
For arbitrary m(x) show that this gives

fe =
∫ �

0

∂NT

∂x
m dx =

∫ 1

−1

∂NT

∂ξ

2

�
m 1

2 � dξ =
∫ 1

−1

NT
ξ m dξ, (E12.5)

where NT
ξ denote the column vectors of beam shape function derivatives with respect to ξ . Can you see a

shortcut that avoids the integral altogether if m is constant?

EXERCISE 12.5 [A:20] Obtain the consistent node force vector fe of a Hermitian beam element subject to
a concentrated moment (“point moment”, positive CCW) C applied at x = a. Use the Concentrated moment
load on beam element expression (E12.5) in which m(x) = C δ(a), where δ(a) denotes the Dirac’s delta
function at x = a. Check the special cases a = 0, a = � and a = �/2.

4 ClearAll[EI] discards the previous definition (E12.2) of EI; the same effect can be achieved by writing EI=. (dot).
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Exercises

EXERCISE 12.6 [A/C:25] Consider the one-dimensional Gauss integration rules.5

One point :

∫ 1

−1

f (ξ) dξ
.= 2 f (0). (E12.6)

Two points:

∫ 1

−1

f (ξ) dξ
.= f (−1/

√
3) + f (1/

√
3). (E12.7)

Three points:

∫ 1

−1

f (ξ) dξ
.= 5

9
f (−

√
3/5) + 8

9
f (0) + 5

9
f (

√
3/5). (E12.8)

Try each rule on the monomial integrals∫ 1

−1

dξ,

∫ 1

−1

ξ dξ,

∫ 1

−1

ξ 2 dξ, . . . (E12.9)

until the rule fails. In this way verify that rules (E12.6), (E12.7) and (E12.8) are exact for polynomials of
degree up to 1, 3 and 5, respectively. (Labor-saving hint: for odd monomial degree no computations need to
be done; why?).

EXERCISE 12.7 [A/C:25] Repeat the derivation of Exercise 12.1 using the two-point Gauss rule (E12.7) to
evaluate integrals in ξ . A CAS is recommended. If using Mathematica you may use a function definition to
save typing. For example to evaluate

∫ 1

−1
f (ξ) dξ in which f (ξ) = 6ξ 4 − 3ξ 2 + 7, by the 3-point Gauss rule

(E12.8), say

f[ξ ]:=6ξ^4-3ξ^2+7; int=Simplify[(5/9)*(f[-Sqrt[3/5]]+f[Sqrt[3/5]])+(8/9)*f[0]];

and print int. To form an element by Gauss integration define matrix functions in terms of ξ , for example
Be[ξ ], or use the substitution operator /., whatever you prefer. Check whether one obtains the same answers
as with analytical integration, and explain why there is agreement or disagreement. Hint for the explanation:
consider the order of the ξ polynomials you are integrating over the element.

EXERCISE 12.8 [A/C:25] As above but for Exercise 12.2.

EXERCISE 12.9 [A/C:30] Derive the Bernoulli-Euler beam stiffness matrix (12.20) using the method of
differential equations. To do this integrate the homogeneous differential equation E Iv′′′′ = 0 four times over a
cantilever beam clamped at node 1 over x ∈ [0, �] to get v(x). The process yields four constants of integration
C1 through C4, which are determined by matching the two zero-displacement BCs at node 1 and the two force
BCs at node 2. This provides a 2 × 2 flexibility matrix relating forces and displacements at node j . Invert to
get a deformational stiffness, and expand to 4 × 4 by letting node 1 translate and rotate.

EXERCISE 12.10 [C:20] Using Mathematica, repeat Example 12.2 but using EbE lumping of the distributed
force q. (It is sufficient to set the nodal moments on the RHS of (12.26) to zero.) Is v2 the same as the exact
analytical solution? If not, study the ratio v2/v

exact
2 as function of α, and draw conclusions.

EXERCISE 12.11 [C:25] For the continuous beam of Example 12.3, verify the results given there for the
optimal α that minimizes the maximum relative deflection. Plot the deflection profile when α = αbest .

EXERCISE 12.12 [C:25] For the continuous beam of Example 12.3, verify the results given there for the
optimal α that minimizes the absolute bending moment. Plot the moment diagram when α = αbest .

5 Gauss integration is studied further in Chapter 17.
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Chapter 14: THE PLANE STRESS PROBLEM
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§14.2 PLATE IN PLANE STRESS

§14.1. Introduction

We now pass to the variational formulation of two-dimensional continuum finite elements. The
problem of plane stress will serve as the vehicle for illustrating such formulations. As narrated
in Appendix O, continuum-based structural finite elements were invented in the aircraft industry
(at Boeing during the early 1950s) to solve this kind of problem when it arose in the design and
analysis of delta wing panels [765].

The problem is presented here within the framework of the linear theory of elasticity.

§14.2. Plate in Plane Stress

In structural mechanics, a flat thin sheet of material is called a plate.1 The distance between the
plate faces is the thickness, denoted by h. The midplane lies halfway between the two faces.

The direction normal to the midplane is the transverse direction. Directions parallel to the midplane
are called in-plane directions. The global axis z is oriented along the transverse direction. Axes x
and y are placed in the midplane, forming a right-handed Rectangular Cartesian Coordinate (RCC)
system. Thus the equation of the midplane is z = 0. The +z axis conventionally defines the top
surface of the plate as the one that it intersects, whereas the opposite surface is called the bottom
surface. See Figure 14.1(a).

x
y

z
Top surface

Ω

Γ x

y
Mathematical
idealization

Referral to
midplane

Plate

(b) (c)(a)
Midplane

Figure 14.1. A plate structure in plane stress: (a) configuration; (b) referral to its midplane;
(c) 2D mathematical idealization as boundary value problem.

§14.2.1. Behavioral Assumptions

A plate loaded in its midplane is said to be in a state of plane stress, or a membrane state, if the
following assumptions hold:

1. All loads applied to the plate act in the midplane direction, and are symmetric with respect to
the midplane.

2. All support conditions are symmetric about the midplane.

3. In-plane displacements, strains and stresses can be taken to be uniform through the thickness.

4. The normal and shear stress components in the z direction are zero or negligible.

1 If it is relatively thick, as in concrete pavements or Argentinian beefsteaks, the term slab is also used but not usually for
plane stress conditions.
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Figure 14.2. Notational conventions for in-plane stresses, strains,
displacements and internal forces of a thin plate in plane stress.

The last two assumptions are not necessarily consequences of the first two. For the latter to hold,
the thickness h should be small, typically 10% or less, than the shortest in-plane dimension. If the
plate thickness varies it should do so gradually. Finally, the plate fabrication must exhibit symmetry
with respect to the midplane.

To these four assumptions we add the following restriction:

5. The plate is fabricated of the same material through the thickness. Such plates are called
transversely homogeneous or (in aerospace) monocoque plates.

The last assumption excludes wall constructions of importance in aerospace, in particular composite
and honeycomb sandwich plates. The development of mathematical models for such configurations
requires a more complicated integration over the thickness as well as the ability to handle coupled
bending and stretching effects, and will not be considered here.

Remark 14.1. Selective relaxation from assumption 4 leads to the so-called generalized plane stress state, in
which z stresses are accepted. The plane strain state is obtained if strains in the z direction are precluded.
Although the construction of finite element models for those states has many common points with plane stress,
we shall not consider those models here. For isotropic materials the plane stress and plane strain problems
can be mapped into each other through a fictitious-property technique; see Exercise 14.1.

Remark 14.2. Transverse loading on a plate produces plate bending, which is associated with a more complex
configuration of internal forces and deformations. This subject is studied in [255].

§14.2.2. Mathematical Model

The mathematical model of the plate in plane stress is set up as a two-dimensional boundary value
problem (BVP), in which the plate is projected onto its midplane; see Figure 14.1(b). This allows
to formulate the BVP over a plane domain � with a boundary �, as illustrated in Figure 14.1(c).
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§14.2 PLATE IN PLANE STRESS

In this idealization the third dimension is represented as functions of x and y that are integrated
through the plate thickness. Engineers often work with internal plate forces, which result from
integrating the in-plane stresses through the thickness. See Figure 14.2.

§14.2.3. Problem Data

The following summarizes the givens in the plate stress problem.

Domain geometry. This is defined by the boundary � illustrated in Figure 14.1(c).

Thickness. Most plates used as structural components have constant thickness. If the thickness
does vary, in which case h = h(x, y), it should do so gradually to maintain the plane stress state.
Sudden changes in thickness may lead to stress concentrations.

Material data. This is defined by the constitutive equations. Here we shall assume that the plate
material is linearly elastic but not necessarily isotropic.

Specified Interior Forces. These are known forces that act in the interior � of the plate. There
are of two types. Body forces or volume forces are forces specified per unit of plate volume; for
example the plate weight. Face forces act tangentially to the plate faces and are transported to the
midplane. For example, the friction or drag force on an airplane skin is of this type if the skin is
modeled to be in plane stress.

Specified Surface Forces. These are known forces that act on the boundary � of the plate. In
elasticity they are called surface tractions. In actual applications it is important to know whether
these forces are specified per unit of surface area or per unit length. The former may be converted
to the latter by multiplying through the appropriate thickness value.

Displacement Boundary Conditions. These specify how the plate is supported. Points subject
to support conditions may be fixed, allowed to move in one direction, or subject to multipoint
constraints. Also symmetry and antisymmetry lines may be identified as discussed in Chapter 8 of
IFEM [257].

If no displacement boundary conditions are imposed, the plate is said to be free-free or floating.

§14.2.4. Problem Unknowns

The unknown fields are displacements, strains and stresses. Because of the assumed wall fabrication
homogeneity the in-plane components are assumed to be uniform through the plate thickness. Thus
the dependence on z disappears and all such components become functions of x and y only.

Displacements. The in-plane displacement field is defined by two components:

u(x, y) =
[

ux (x, y)

uy(x, y)

]
(14.1)

The transverse displacement component uz(x, y, z) component is generally nonzero because of
Poisson’s ratio effects, and depends on z. However, this displacement does not appear in the
governing equations.

Strains. The in-plane strain field forms a tensor defined by three independent components: exx ,
eyy and exy . To allow stating the FE equations in matrix form, these components are cast to form a
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Figure 14.3. The Strong Form of the plane stress equations of linear elastostatics displayed as a
Tonti diagram. Yellow boxes identify prescribed fields whereas orange boxes denote unknown fields.

The distinction between Strong and Weak Forms is explained in §14.3.3.

3-component “strain vector”

e(x, y) =
[ exx (x, y)

eyy(x, y)

2exy(x, y)

]
(14.2)

The factor of 2 in exy shortens strain energy expressions. The shear strain components exz and eyz

vanish. The transverse normal strain ezz is generally nonzero because of Poisson’s ratio effects.
This strain does not enter the governing equations as unknown, however, because the associated
stress σzz is zero. This eliminates the contribution of σzzezz to the internal energy.

Stresses. The in-plane stress field forms a tensor defined by three independent components: σxx ,
σyy and σxy . As in the case of strains, to allow stating the FE equations in matrix form, these
components are cast to form a 3-component “stress vector”

σ(x, y) =
[

σxx (x, y)

σyy(x, y)

σxy(x, y)

]
(14.3)

The remaining three stress components: σzz , σxz and σyz , are assumed to vanish.

The plate internal forces are obtained on integrating the stresses through the thickness. Under the
assumption of uniform stress distribution,

pxx = σxx h, pyy = σyyh, pxy = σxyh. (14.4)

These p’s also form a tensor. They are called membrane forces in the literature. See Figure 14.2.

§14.3. Plane Stress Governing Equations

We shall develop plane stress finite elements in the framework of classical linear elasticity. The
necessary governing equations are presented below. They are graphically represented in the Strong
Form Tonti diagram of Figure 14.3.
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§14.3 PLANE STRESS GOVERNING EQUATIONS

§14.3.1. Governing Equations

The three internal fields: displacements, strains and stresses (14.1)–(14.3) are connected by three
field equations: kinematic, constitutive and internal-equilibrium equations. If initial strain effects
are ignored, these equations read[ exx

eyy

2exy

]
=

[
∂/∂x 0

0 ∂/∂y
∂/∂y ∂/∂x

] [
ux

uy

]
,

[
σxx

σyy

σxy

]
=

[ E11 E12 E13

E12 E22 E23

E13 E23 E33

] [ exx

eyy

2exy

]
,

[
∂/∂x 0 ∂/∂y

0 ∂/∂y ∂/∂x

] [
σxx

σyy

σxy

]
+

[
bx

by

]
=

[
0
0

]
.

(14.5)

The compact matrix version of (14.5) is

e = D u, σ = E e, DT σ + b = 0, (14.6)

Here E = ET is the 3 × 3 stress-strain matrix of plane stress elastic moduli, D is the 3 × 2
symmetric-gradient operator and its transpose the 2 × 3 tensor-divergence operator.2

If the plate material is isotropic with elastic modulus E and Poisson’s ratio ν, the moduli in the
constitutive matrix E reduce to E11 = E22 = E/(1 − ν2), E33 = 1

2 E/(1 + ν) = G, E12 = νE11

and E13 = E23 = 0. See also Exercise 14.1.

§14.3.2. Boundary Conditions

Boundary conditions prescribed on � may be of two types: displacement BC or force BC (the
latter is also called stress BC or traction BC). To write down those conditions it is conceptually
convenient to break up � into two subsets: �u and �t , over which displacements and force or
stresses, respectively, are specified. See Figure 14.4.

Displacement boundary conditions are prescribed on �u in the form

u = û. (14.7)

Here û are prescribed displacements. Often û = 0. This happens in fixed portions of the boundary,
as the ones illustrated in Figure 14.4.

Force boundary conditions (also called stress BCs and traction BCs in the literature) are specified
on �t . They take the form

σn = t̂. (14.8)

Here t̂ are prescribed surface tractions specified as a force per unit area (that is, not integrated
through the thickness), and σn is the stress vector shown in Figure 14.4.

2 The dependence on (x, y) has been omitted to reduce clutter.
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Figure 14.4. Displacement and force (stress, traction) boundary conditions for the plane stress problem.

An alternative form of (14.8) uses the internal plate forces:

pn = q̂. (14.9)

Here pn = σnh and q̂ = t̂ h. This form is used more often than (14.8) in structural design,
particularly when the plate wall construction is inhomogeneous.

The components of σn in Cartesian coordinates follow from Cauchy’s stress transformation formula

σn =
[

σxx nx + σxyny

σxynx + σyyny

]
=

[
nx 0 ny

0 ny nx

] [
σxx

σyy

σxy

]
, (14.10)

in which nx and ny denote the Cartesian components of the unit normal vector ne (also called
the direction cosines of the normal). Thus (14.8) splits into two scalar conditions: t̂x = σnx and
t̂y = σny . The derivation of (14.10) is the subject of Exercise 14.4.

It is sometimes convenient to write the condition (14.8) in terms of normal n and tangential t
directions:

σnn = t̂n, σnt = t̂t (14.11)

in which σnn = σnx nx + σnyny and σnt = −σnx ny + σnynx . See Figure 14.4.

Remark 14.3. The separation of � into �u and �t is useful for conciseness in the mathematical formulation,
such as the energy integrals presented below. It does not exhaust, however, all BC possibilities. Frequently
at points of � one specifies a displacement in one direction and a force (or stress) in the other. An example
of these are roller and sliding conditions as well as lines of symmetry and antisymmetry. These are called
mixed displaceent-traction BC. To cover these situations one needs either a generalization of the boundary
split, in which �u and �t are permitted to overlap, or to define another portion �m for‘mixed conditions. Such
generalizations will not be presented here, as they become unimportant once the FE discretization is done.

14–8



§14.3 PLANE STRESS GOVERNING EQUATIONS

δΠ= 0  
  in Ω

t

δΠ = 0 
  on Γ

u = u^

on Γu Ω
Γ

σ = E e
e = Cσ
   in Ω

or

e = D u
in Ω Kinematic

Constitutive

Displacement
BCs

Force BCs
(weak)

Equilibrium
(weak)

Prescribed
displacements

u
Body forces

b

Prescribed
tractions t or

forces q

Displacements
u

 Strains
e

^

^
^ Stresses

σ

Figure 14.5. The TPE-based Weak Form of the plane stress equations of linear elastostatics.
Weak links are marked with grey lines.

§14.3.3. Weak versus Strong Form

We introduce now some further terminology from variational calculus. The Tonti diagram of Figure
14.3 is said to display the Strong Form of the governing equations because all relations are verified
point by point. These relations, called strong links, are shown in the diagram with black lines.

A Weak Form is obtained by relaxing one or more strong links, as brifley described in Chapter 11.
Those are replaced by weak links, which enforce relations in an average or integral sense rather
than point by point. The weak links are then provided by the variational formulation chosen for the
problem. Because in general many variational forms of the same problem are possible, there are
many possible Weak Forms. On the other hand the Strong Form is unique.

The Weak Form associated with the Total Potential Energy (TPE) variational form is illustrated
in Figure 14.5. The internal equilibrium equations and stress BC become weak links, which are
drawn by gray lines. These equations are given by the variational statement δ
 = 0, where the
TPE functional 
 is given in the next subsection. The FEM displacement formulation discussed
below is based on this particular Weak Form.

§14.3.4. Total Potential Energy

The Total Potential Energy functional for the plane stress problem is given by


 = U − W. (14.12)

The internal energy can be expressed in terms of the strains only as

U = 1
2

∫
�

h σT e d� = 1
2

∫
�

h eT E e d�. (14.13)

in which 1
2 eT Ee is the strain energy density. The derivation details are relegated to Exercise 14.5,

The external energy (potential of the applied forces) is the sum of contributions from the given

14–9



Chapter 14: THE PLANE STRESS PROBLEM
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Figure 14.6. Finite element discretization and extraction of generic element.

interior (body) and exterior (boundary) forces:

W =
∫

�

h uT b d� +
∫

�t

h uT t̂ d�. (14.14)

Note that the boundary integral over � is taken only over �t . That is, the portion of the boundary
over which tractions or forces are specified.

§14.4. Finite Element Equations

The necessary equations to apply the finite element method to the plane stress problem are collected
here and expressed in matrix form. The domain of Figure 14.6(a) is discretized by a finite element
mesh as illustrated in Figure 14.6(b). From this mesh we extract a generic element labeled e with
n ≥ 3 node points. In subsequent derivations the number n is kept arbitrary. Therefore, the
formulation is applicable to arbitrary two-dimensional elements, for example those sketched in
Figure 14.7.

To comfortably accommodate general element types, the node points will be labeled 1 through n.
These are called local node numbers. Numbering will always start with corners.

The element domain and boundary are denoted by �e and �e, respectively. The element has 2n
degrees of freedom. These are collected in the element node displacement vector in a node by node
arrangement:

ue = [ ux1 uy1 ux2 . . . uxn uyn ]T . (14.15)

§14.4.1. Displacement Interpolation

The displacement field ue(x, y) over the element is interpolated from the node displacements. We
shall assume that the same interpolation functions are used for both displacement components.3

Thus

ux (x, y) =
n∑

i=1

N e
i (x, y) uxi , uy(x, y) =

n∑
i=1

N e
i (x, y) uyi , (14.16)

3 This is the so called element isotropy condition, which is studied and justified in advanced FEM courses.
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Figure 14.7. Example plane stress finite elements, characterized by their number of nodes
n.

in which N e
i (x, y) are the element shape functions. In matrix form:

u(x, y) =
[

ux (x, y)

uy(x, y)

]
=

[
N e

1 0 N e
2 0 . . . N e

n 0
0 N e

1 0 N e
2 . . . 0 N e

n

]
ue = N ue. (14.17)

This N (with superscript e omitted to reduce clutter) is called the shape function matrix. It has
dimensions 2 × 2n. For example, if the element has 4 nodes, N is 2 × 8.

The interpolation condition on the element shape function N e
i (x, y) states that it must take the value

one at the i th node and zero at all others. This ensures that the interpolation (14.17) is correct at
the nodes. Additional requirements on the shape functions are stated in later Chapters.

Differentiating the finite element displacement field yields the strain-displacement relations:

e(x, y) =




∂ N e
1

∂x 0
∂ N e

2
∂x 0 . . .

∂ N e
n

∂x 0

0
∂ N e

1
∂y 0

∂ N e
2

∂y . . . 0
∂ N e

n
∂y

∂ N e
1

∂y
∂ N e

1
∂x

∂ N e
2

∂y
∂ N e

2
∂x . . .

∂ N e
n

∂y
∂ N e

n
∂x


 ue = B ue. (14.18)

This B = D N is called the strain-displacement matrix. It is dimensioned 3 × 2n. For example, if
the element has 6 nodes, B is 3 × 12. The stresses are given in terms of strains and displacements
by σ = E e = EBue, which is assumed to hold at all points of the element.

§14.4.2. Element Energy

To obtain finite element stiffness equations, the variation of the TPE functional is decomposed into
contributions from individual elements:

δ
e = δU e − δW e = 0. (14.19)

in which

U e = 1
2

∫
�e

h σT e d�e = 1
2

∫
�e

h eT Ee d�e (14.20)

and

W e =
∫

�e

h uT b d�e +
∫

�e

h uT t̂ d�e (14.21)
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Note that in (14.21) �e
t has been taken equal to the complete boundary �e of the element. This is

a consequence of the fact that displacement boundary conditions are applied after assembly, to a
free-free structure. Consequently it does not harm to assume that all boundary conditions are of
stress type insofar as forming the element equations.

§14.4.3. Element Stiffness Equations

Inserting the relations u = Nue, e = Bue and σ = Ee into 
e yields the quadratic form in the
nodal displacements


e = 1
2 ueT Keue − ueT fe. (14.22)

Here the element stiffness matrix is

Ke =
∫

�e

h BT EB d�e, (14.23)

and the consistent element nodal force vector is

fe =
∫

�e

h NT b d�e +
∫

�e

h NT t̂ d�e. (14.24)

In the second integral of (14.24) the matrix N is evaluated on the element boundary only.

The calculation of the entries of Ke and fe for several elements of historical or practical interest is
described in subsequent Chapters.

Notes and Bibliography

The plane stress problem is well suited for introducing continuum finite elements, from both historical and
technical standpoints. Some books use the Poisson equation for this purpose, but problems such as heat
conduction cannot illustrate features such as vector-mixed boundary conditions and shear effects.

The first continuum structural finite elements were developed at Boeing in the early 1950s to model delta-wing
skin panels [146,765]. A plane stress model was naturally chosen for the panels. The paper that gave the
method its name [137] used the plane stress problem as application driver.

The technical aspects of plane stress can be found in any book on elasticity. A particularly readable one is the
excellent textbook by Fung [289], which is unfortunately out of print.

References

Referenced items have been moved to Appendix R.
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Exercises

Homework Exercises for Chapter 14

The Plane Stress Problem

EXERCISE 14.1 [A+C:15] Suppose that the structural material is isotropic, with elastic modulus E and
Poisson’s ratio ν. The in-plane stress-strain relations for plane stress (σzz = σxz = σyz = 0) and plane strain
(ezz = exz = eyz = 0) as given in any textbook on elasticity, are

plane stress:

[
σxx

σyy

σxy

]
= E

1 − ν2

[
1 ν 0
ν 1 0
0 0 1 − ν

2

][
exx

eyy

2exy

]
,

plane strain:

[
σxx

σyy

σxy

]
= E

(1 + ν)(1 − 2ν)

[
1 − ν ν 0

ν 1 − ν 0
0 0 1

2 (1 − 2ν)

][
exx

eyy

2exy

]
.

(E14.1)

Show that the constitutive matrix of plane strain can be formally obtained by replacing E by a fictitious
modulus E∗ and ν by a fictitious Poisson’s ratio ν∗ in the plane stress constitutive matrix. Find the expression
of E∗ and ν∗ in terms of E and ν.

You may also chose to answer this exercise by doing the inverse process: go from plane strain to plain stress
by replacing a fictitious modulus and Poisson’s ratio in the plane strain constitutive matrix.

This device permits “reusing” a plane stress FEM program to do plane strain, or vice-versa, as long as the
material is isotropic.

Partial answer to go from plane stress to plane strain: ν∗ = ν/(1 − ν).

EXERCISE 14.2 [A:25] In the finite element formulation of near incompressible isotropic materials (as well
as plasticity and viscoelasticity) it is convenient to use the so-called Lamé constants λ and µ instead of E and
ν in the constitutive equations. Both λ and µ have the physical dimension of stress and are related to E and ν

by

λ = νE

(1 + ν)(1 − 2ν)
, µ = G = E

2(1 + ν)
. (E14.2)

Conversely

E = µ(3λ + 2µ)

λ + µ
, ν = λ

2(λ + µ)
. (E14.3)

Substitute (E14.3) into both of (E14.1) to express the two stress-strain matrices in terms of λ and µ. Then split
the stress-strain matrix E of plane strain as

E = Eµ + Eλ (E14.4)

in which Eµ and Eλ contain only µ and λ, respectively, with Eµ diagonal and Eλ33 = 0. This is the Lamé or
{λ, µ} splitting of the plane strain constitutive equations, which leads to the so-called B-bar formulation of
near-incompressible finite elements.4 Express Eµ and Eλ also in terms of E and ν.

For the plane stress case perform a similar splitting in which where Eλ contains only λ̄ = 2λµ/(λ + 2µ) with
Eλ33 = 0, and Eµ is a diagonal matrix function of µ and λ̄.5 Express Eµ and Eλ also in terms of E and ν.

4 Equation (E14.4) is sometimes referred to as the deviatoric+volumetric splitting of the stress-strain law, on account of
its physical meaning in plane strain. That interpretation is not fully accurate, however, for plane stress.

5 For the physical significance of λ̄ see [688, pp. 254ff].
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EXERCISE 14.3 [A:20] Include thermoelastic effects in the plane stress constitutive field equations, assuming
a thermally isotropic material with coefficient of linear expansion α. Hint: start from the two-dimensional
Hooke’s law including temperature:

exx = 1

E
(σxx − νσyy) + α �T, eyy = 1

E
(σyy − νσxx ) + α �T, 2exy = σxy/G, (E14.5)

in which �T = �T (x, y) and G = 1
2 E/(1 + ν). Solve for stresses and collect effects of �T in one vector

of “thermal stresses.”

EXERCISE 14.4 [A:15] Derive the Cauchy stress-
to-traction equations (14.10) using force equilibrium
along x and y and the geometric relations shown
in Figure E14.1. (This is the “wedge method” in
Mechanics of Materials.)

Hint: tx ds = σxx dy + σxy dx , etc.

x

y
σxx

σyy

σxy σ xy=

tx

ty n(n  =dx/ds, n  =dy/ds)

dy

x y

dx
ds

Figure E14.1. Geometry for deriving (?).

EXERCISE 14.5 [A:25=5+5+15] A linearly elastic plate is in plane stress. It is shown in courses in elasticity
that the internal strain energy density stored per unit volume of the plate expressed in terms of stresses and
strains is the bilinear form

U = 1
2 (σxx exx + σyyeyy + σxyexy + σyx eyx ) = 1

2 (σxx exx + σyyeyy + 2σxyexy) = 1
2 σT e. (E14.6)

(a) Show that (E14.6) can be written in terms of strains only as

U = 1
2 eT E e, (E14.7)

thus justifying the strain energy density expression given in (14.13) for the plane stress problem.

(b) Show that (E14.6) can be written in terms of stresses only as

U = 1
2 σT C σ, (E14.8)

in which C = E−1 is the elastic compliance (strain-stress) matrix.

(c) Suppose you want to write (E14.6) in terms of the extensional strains {exx , eyy} and of the shear stress
σxy = σyx . This is known as a mixed representation, which is used in finite elements formulated with
mixed variational principles. Show that

U = 1
2

[
exx

eyy

σxy

]T [
A11 A12 A13

A12 A22 A23

A13 A23 A33

][
exx

eyy

σxy

]
, (E14.9)

and explain how the entries Ai j of the kernel matrix A that appears in (E14.9) can be calculated6 in terms
of the elastic moduli Ei j .

Hint. Parts (a,b) are easy. Part (c) is more difficult. It can be symbolically done by the Mathematica script

6 The process of computing A is an instance of “partial inversion” of the elasticity matrix E. It is closely related to the
Schur complement concept covered in Appendix P.
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Exercises

ClearAll[exx,eyy,gxy,sxx,syy,sxy,E11,E22,E33,E12,E13,E23];

Emat={{E11,E12,E13},{E12,E22,E23},{E13,E23,E33}};

s={sxx,syy,sxy}; e={exx,eyy,gxy}; m={exx,eyy,sxy};

eqs={sxx==E11*exx+E12*eyy+E13*gxy,syy==E12*exx+E22*eyy+E23*gxy,

sxy==E13*exx+E23*eyy+E33*gxy};

sol=Simplify[Simplify[Solve[eqs,{sxx,syy,gxy}]]];

Print[sol]; U=Simplify[(e.Emat.e/2)/.sol[[1]]];

fac[i_,j_]:=If[i==j,1,1/2];

A=Table[fac[i,j]*Coefficient[U,m[[i]]*m[[j]]],{i,1,3},{j,1,3}];

Print["A=",A//MatrixForm];

If you use this solution, make sure to explain what is going on.

Note: the following Table list relations between commonly used moduli for isotropic linear elastic material.
Here K is the bulk modulus whereas M is the P-wave modulus used in seismology. Tha table is useful for
Exercise 14.2.

(λ, µ) (E, µ) (K , λ) (K , µ) (λ, ν) (µ, ν) (E, ν) (K , ν) (K , E)

K = λ+ 2µ
3

Eµ
3(3µ−E)

λ 1+ν
3ν

2µ(1+ν)
3(1−2ν)

E
3(1−2ν)

E = µ
3λ+2µ
λ+ν

9K K−λ
3K−λ

9Kµ
3K+µ

λ(1+ν)(1−2ν)
ν 2µ(1+ν) 3K (1−2ν)

λ = µ
E−2µ
3µ−E K− 2µ

3
2µν

1−2ν
Eν

(1+ν)(1−2ν)
3K
1+ν

3K (3K−E)
9K−E

µ = G = µ K−λ
2 λ K−λ

3K−λ
9Kµ

3K+µ
λ(1−2ν)

2ν
E

2(1+ν)
3K (1−2ν)

2(1+ν)

ν = λ
2(λ+µ)

E
2µ

−1 λ
3K−λ

3K−2µ
2(3K+µ)

3K−E
6K

M = λ+2µ µ
4µ−E
3µ−E 3K−2λ K+ 4µ

3 λ 1−ν
ν µ 2−2ν

1−2ν
E(1−ν)

(1+ν)(1−2ν)
3K 1−ν

1+ν
3K 3K+E

9K−E

(E14.10)
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Section 15: THREE-NODE PLANE STRESS TRIANGLES
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§15.2 BACKGROUND

§15.1. Introduction

This Chapter derives element stiffness equations of three-node triangles constructed with linear
displacements for the plane stress problem formulated in Chapter 14. These elements have six
displacement degrees of freedom, which are placed at the connection nodes. There are two main
versions that differ on where the connection nodes are located:

1. The Turner triangle has connection nodes located at the corners.

2. The Veubeke equilibrium triangle has connection nodes located at the side midpoints.

The triangle geometry is defined by the corner locations or geometric nodes in both cases. Of the
two versions, the Turner triangle is by far the most practically important one in solid and structural
mechanics.1 Thus most of the material in this Chapter is devoted to it. It enjoys several important
properties:

(i) It belongs to both the isoparametric and subparametric element families, which are introduced
in the next Chapter.

(ii) It allows closed form derivations for the stiffness matrix and consistent force vector without
need for numerical integration.

(iii) It cannot be improved by the addition of internal degrees of freedom.

Properties (ii) and (iii) are shared by the Veubeke equilibrium triangle. Since this model is rarely
used in structural applications it is covered only as advanced material in §15.5.

The Turner triangle is not a good performer for structural stress analysis. It is still used in problems
that do not require high accuracy, as well as in non-structural applications such as thermal and
electromagnetic analysis. One reason is that triangular meshes are easily generated over arbitrary
two-dimensional domains using techniques such as Delaunay triangulation.

§15.2. Background
§15.2.1. Parametric Representation of Functions

The concept of parametric representation of functions is crucial in modern FEM. Together with
multidimensional numerical integration, it is a key enabling tool for developing elements in two
and three space dimensions.2 Without these tools the developer would become lost in an algebraic
maze as element geometry and shape functions get more complicated. The essentials of parametric
representation can be illustrated through a simple example. Consider the following alternative
representations of the unit-circle function, x2 + y2 = 1:

(I) y =
√

1 − x2, (II) x = cos θ and y = sin θ. (15.1)

The direct representation (I) fits the conventional function notation, i.e., y = f (x). Given a value of
x , it returns one or more y. On the other hand, the parametric representation (II) is indirect: both x

1 The triangle was one of the two plane-stress continuum elements presented by Turner, Clough, Martin and Topp in their
1956 paper [786]. This publication is widely regarded as the start of the present FEM. The derivation was not done,
however, with assumed displacements. See Notes and Bibliography at the end of this Chapter.

2 Numerical integration is not useful for the triangular elements covered here, but essential in the more complicated iso-P
models covered in Chapters 16ff.
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Section 15: THREE-NODE PLANE STRESS TRIANGLES

and y are given in terms of one parameter, the angle θ . Elimination of θ through the trigonometric
identity cos2 θ + sin2 θ = 1 recovers x2 + y2 = 1. But there are situations in which working with
the parametric form throughout the development is more convenient. Continuum finite elements
provide a striking illustration of this point.

§15.2.2. Geometry

The geometry of the 3-node triangle shown in
Figure 15.1(a) is specified by the location of its
three corner nodes on the {x, y} plane. Nodes
are labelled 1, 2, 3 while traversing the sides
in counterclockwise fashion. Their location is
defined by their Cartesian coordinates: {xi , yi }
for i = 1, 2, 3.

The Turner triangle has six degrees of freedom,
defined by the six corner displacement compo-
nents { uxi , uyi }, for i = 1, 2, 3. The interpo-
lation of the internal displacements { ux , uy }
from these six values is studied in §15.3, after
triangular coordinates are introduced. The
triangle area can be obtained as

1 (x  ,y )11

2 (x  ,y )22

3 (x  ,y )33
(a) (b)

x

y

z  up, toward you

1

2

3

Area A > 0

Figure 15.1. The three-node, linear-displacement
plane stress triangular element: (a) geometry; (b) area

and positive boundary traversal.

2A = det

[ 1 1 1
x1 x2 x3

y1 y2 y3

]
= (x2 y3 − x3 y2) + (x3 y1 − x1 y3) + (x1 y2 − x2 y1). (15.2)

The area given by (15.2) is a signed quantity. It is positive if the corners are numbered in cyclic
counterclockwise order (when looking down from the +z axis), as illustrated in Figure 15.1(b).
This convention is followed in the sequel.

§15.2.3. Triangular Coordinates

Points of the triangle may also be located in terms of a parametric coordinate system:

ζ1, ζ2, ζ3. (15.3)

In the literature these 3 parameters receive an astonishing number of names, as the list collected
in Table 15.1 shows. In the sequel the name triangular coordinates will be used to emphasize the
close association with this particular geometry.

Equations
ζi = constant (15.4)

represent a set of straight lines parallel to the side opposite to the i th corner, as depicted in Figure 15.2.
The equations of sides 2–3, 3–1 and 1–2 are ζ1 = 0, ζ2 = 0 and ζ3 = 0, respectively. The
three corners have coordinates (1,0,0), (0,1,0) and (0,0,1). The three midpoints of the sides have
coordinates ( 1

2 , 1
2 , 0), (0, 1

2 , 1
2 ) and ( 1

2 , 0, 1
2 ), the centroid has coordinates ( 1

3 , 1
3 , 1

3 ), and so on. The
coordinates are not independent because their sum is unity:

ζ1 + ζ2 + ζ3 = 1. (15.5)
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§15.2 BACKGROUND

1

2

3

1

2

3

1

2

3

ζ1 = 1

ζ1 = 0

ζ2 = 0 ζ2 = 1

ζ3 = 0

ζ3 = 1

/
/

/

/ / / /

/

/

Figure 15.2. Triangular coordinates ζ1, ζ2, ζ3.

Table 15.1 Names of element parametric coordinates

Name Applicable to

natural coordinates all elements
isoparametric coordinates isoparametric elements
shape function coordinates isoparametric elements
barycentric coordinates simplices (triangles, tetrahedra, ...)
Möbius coordinates triangles
triangular coordinates all triangles
area (also written “areal”) coordinates straight-sided triangles

Triangular coordinates normalized as per ζ1 + ζ2 + ζ3 = 1 are often
qualified as “homogeneous” in the mathematical literature.

Remark 15.1. In pre-1970 FEM publications, triangular coordinates were often called area coordinates, and
occasionally areal coordinates. This comes from the following interpretation: ζi = A jk/A, where A jk is the
area subtended by the subtriangle formed by the point P and corners j and k, in which j and k are 3-cyclic
permutations of i . Historically this was the way coordinates were defined in 1960s papers. However this
relation does not carry over to general isoparametric triangles with curved sides and thus it is not used here.

§15.2.4. Linear Interpolation

Consider a function f (x, y) that varies linearly over the triangle domain. In terms of Cartesian
coordinates it may be expressed as

f (x, y) = a0 + a1x + a2 y, (15.6)

where a0, a1 and a2 are coefficients to be determined from three conditions. In finite element work
such conditions are often the nodal values taken by f at the corners:

f1, f2, f3. (15.7)

The expression in triangular coordinates makes direct use of those three values:

f (ζ1, ζ2, ζ3) = f1ζ1 + f2ζ2 + f3ζ3 = [ f1 f2 f3 ]

[
ζ1
ζ2
ζ3

]
= [ ζ1 ζ2 ζ3 ]

[ f1

f2

f3

]
. (15.8)

Formula (15.8) is called a linear interpolant for f .
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Section 15: THREE-NODE PLANE STRESS TRIANGLES

§15.2.5. Coordinate Transformations

Quantities that are closely linked with the element geometry are best expressed in triangular co-
ordinates. On the other hand, quantities such as displacements, strains and stresses are usually
expressed in the Cartesian system {x, y}. Thus we need transformation equations through which it
is possible to pass from one coordinate system to the other.

Cartesian and triangular coordinates are linked by the relation

[ 1
x
y

]
=

[ 1 1 1
x1 x2 x3

y1 y2 y3

] [
ζ1

ζ2

ζ3

]
. (15.9)

The first equation says that the sum of the three coordinates is one. The next two express x and
y linearly as homogeneous forms in the triangular coordinates. These are obtained by applying
the linear interpolant (15.8) to the Cartesian coordinates: x = x1ζ1 + x2ζ2 + x3ζ3 and y =
y1ζ1 + y2ζ2 + y3ζ3. Assuming A �= 0, inversion of (15.9) yields

[
ζ1

ζ2

ζ3

]
= 1

2A

[ x2 y3 − x3 y2 y2 − y3 x3 − x2

x3 y1 − x1 y3 y3 − y1 x1 − x3

x1 y2 − x2 y1 y1 − y2 x2 − x1

] [ 1
x
y

]
= 1

2A

[ 2A23 y23 x32
2A31 y31 x13
2A12 y12 x21

] [ 1
x
y

]
.

(15.10)

Here x jk = x j − xk , y jk = y j − yk , A is the triangle area given by (15.2) and A jk denotes the area
subtended by corners j , k and the origin of the x–y system. If this origin is taken at the centroid of
the triangle, A23 = A31 = A12 = A/3.

§15.2.6. Partial Derivatives

From equations (15.9) and (15.10) we immediately obtain the following relations between partial
derivatives:

∂x

∂ζi
= xi ,

∂y

∂ζi
= yi , (15.11)

2A
∂ζi

∂x
= y jk, 2A

∂ζi

∂y
= xk j . (15.12)

In (15.12) j and k denote the 3-cyclic permutations of i . For example, if i = 2, then j = 3 and
k = 1. The derivatives of a function f (ζ1, ζ2, ζ3) with respect to x or y follow immediately from
(15.12) and application of the chain rule:

∂ f

∂x
= 1

2A

(
∂ f

∂ζ1
y23 + ∂ f

∂ζ2
y31 + ∂ f

∂ζ3
y12

)
∂ f

∂y
= 1

2A

(
∂ f

∂ζ1
x32 + ∂ f

∂ζ2
x13 + ∂ f

∂ζ3
x21

) (15.13)
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1 

2 

3(a) (b)

1

2

3

Μ3 Η3

Η1
Μ2

Η2

C Η

(c)

1

2

3

OC

RC

Μ3

Μ1Μ1

Μ2

Figure 15.3. Interesting points and lines of a triangle.

which in matrix form is




∂ f

∂x
∂ f

∂y


 = 1

2A

[
y23 y31 y12

x32 x13 x21

]



∂ f

∂ζ1
∂ f

∂ζ2
∂ f

∂ζ3




. (15.14)

With these mathematical ingredients in place we are now in a position to handle the derivation of
straight-sided triangular elements, and in particular the Turner and Veubeke triangles.

§15.2.7. *Homogeneous Polynomials in Triangular Coordinates

Because ζ1, ζ2 and ζ3 are not independent, polynomial functions in those variables are not unique. For example
3−2ζ1 + ζ2 −3ζ3 and ζ1 +4ζ2 are identical, since they differ by 3−3(ζ1 + ζ2 + ζ3)=0. To achieve uniqueness
it is necessary to write the function as a homogeneous polynomial, as in the second form of this example.

To reduce the general linear polynomial c000 +c100ζ1 +c010ζ2 +c001ζ3 to homogeneous form, subtract c000(1−
ζ1 − ζ2 − ζ3), which is zero, to get P1 = (c100 − c000)ζ1 + (c010 − c000)ζ2 + (c001 − c000)ζ3.

To reduce the general quadratic polynomial c000 +c100ζ1 +c010ζ2 +c001ζ3 +c200ζ
2
1 +c020ζ

2
2 +c002ζ

2
3 +c110ζ1ζ2 +

c011ζ2ζ3 + c101ζ3ζ1 to homogeneous form, subtract (c000 + c100ζ1 + c010ζ2 + c001ζ3)(1 − ζ1 − ζ2 − ζ3).

And so on. All polynomial expressions used in this book for triangles are expressed in homogeneous form.

§15.2.8. *Interesting Points and Lines

Some distinguished lines and points of a straight-sided triangle are briefly described here for use in other
developments as well as in Exercises. The triangle medians are three lines that join the corners to the
midpoints of the opposite sides, as pictured in Figure 15.3(a). The midpoint opposite corner i is labeled Mi .

The medians 1–M1, 2–M2 and 3–M3 have equations ζ2 = ζ3, ζ3 = ζ1 and ζ1 = ζ2, respectively, in triangular
coordinates. They intersect at the centroid C of coordinates { 1

3 , 1
3 , 1

3 }. Other names for the centroid are
barycenter and center of gravity. If you make a real triangle out of cardboard, you can balance the triangle at
this point. It can be shown that the centroid trisects the medians, that is to say, the distance from a corner to
the centroid is twice the distance from the centroid to the opposite side of the triangle.

The altitudes are three lines that connect each corner with their projections onto the opposing sides, as
depicted in Figure 15.3(b). The projection of corner i is identified Hi , so the altitudes are 1–H1, 2–H2 and
3–H3. Locations Hi are called altitude feets. The altitudes intersect at the triangle orthocenter H . The lengths
of those segments are the triangle heights. The triangular coordinates of Hi and H , as well as the altitude
equations, are worked out in an Exercise.
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Another interesting point is the center OC of the circumscribed circle, or circumcircle. This is the unique
circle that passes through the three corners, as shown in Figure 15.3(c). It can be geometrically constructed by
drawing the normal to each side at the midpoints. Those three lines, called the perpendicular side bisectors,
intersect at OC . A famous theorem by Euler asserts that the centroid, the orthocenter and the circumcircle
center fall on a straight line, called the Euler line. Furthermore, C lies between OC and H , and the distance
OC –H is three times the distance H–C .

§15.3. The Turner Triangle

The simplest triangular element for plane stress (and in general, for 2D problems of variational
index m = 1) is the three-node triangle with linear shape functions, with degrees of freedom
located at the corners. The shape functions are simply the triangular coordinates. That is, N e

i = ζi

for i = 1, 2, 3. When applied to the plane stress problem, this element is called the Turner triangle.

For the plane stress problem we select the linear interpolation (15.8) for the displacement compo-
nents ux and uy at an arbitrary point P(ζ1, ζ2, ζ3):

ux = ux1ζ1 + ux2ζ2 + ux3ζ3, uy = uy1ζ1 + uy2ζ2 + uy3ζ3. (15.15)

The interpolation is illustrated in Figure 15.4. The two
expressions in (15.15) can be combined in a matrix form
that befits the expression (14.17) for an arbitrary plane
stress element:

[
ux

uy

]
=

[
ζ1 0 ζ2 0 ζ3 0
0 ζ1 0 ζ2 0 ζ3

]



ux1

uy1

ux2

uy2

ux3

uy3


 = N ue,

(15.16)

where N is the matrix of shape functions.

1 

2 

3 

ux1

ux2

ux3

uy1

uy2

u

u

x

y

uy3

ux

uy
P(ζ  ,ζ  ,ζ  )1 2 3

by linear
interpolation}

P

Figure 15.4. Displacement
interpolation over triangle.

§15.3.1. Strain-Displacement Equations

The strains within the elements are obtained by differentiating the shape functions with respect to
x and y. Using (15.14), (15.16) and the general form (14.18) we get

e = D N ue = 1

2A

[ y23 0 y31 0 y12 0
0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12

]



ux1

uy1

ux2

uy2

ux3

uy3


 = B ue, (15.17)

in which D denotes the symbolic strain-to-displacement differentiation operator given in (14.6),
and B is the strain-displacement matrix. Note that the strains are constant over the element. This is
the origin of the name constant strain triangle (CST) given it in many finite element publications.
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§15.3 THE TURNER TRIANGLE

§15.3.2. Stress-Strain Equations

The stress field σ is related to the strain field by the elastic constitutive equation in (14.5), which is
repeated here for convenience:

σ =
[

σxx

σyy

σxy

]
=

[ E11 E12 E13
E12 E22 E23
E13 E23 E33

] [ exx

eyy

2exy

]
= E e, (15.18)

where Ei j are plane stress elastic moduli. The constitutive matrix E will be assumed to be constant
over the element. Because the strains are constant, so are the stresses.

§15.3.3. The Stiffness Matrix

The element stiffness matrix is given by the general formula (14.23), which is repeated here

Ke =
∫

�e

h BT EB d�, (15.19)

where �e is the triangle domain, and h the plate thickness that appears in the plane stress problem.
Since B and E are constant, they can be taken out of the integral:

Ke = BT EB
∫

�e

h d� (15.20)

If h is uniform over the element the remaining integral in (15.20) is simply h A, and we obtain the
closed form

Ke = A h BT E B = h

4A




y23 0 x32

0 x32 y23

y31 0 x13

0 x13 y31

y12 0 x21

0 x21 y12




[ E11 E12 E13
E12 E22 E23
E13 E23 E33

] [ y23 0 y31 0 y12 0
0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12

]
.

(15.21)

Exercise 15.1 deals with the case of a linearly varying plate thickness.

§15.3.4. The Consistent Nodal Force Vector

For simplicity we consider here only internal body forces3 defined by the vector field

b =
[

bx

by

]
(15.22)

which is specified per unit of volume. The consistent nodal force vector fe is given by the general
formula (14.23) of the previous Chapter:

fe =
∫

�e

h NT b d� =
∫

�e

h




ζ1 0
0 ζ1
ζ2 0
0 ζ2
ζ3 0
0 ζ3


 b d�. (15.23)

3 For consistent force computations corresponding to distributed boundary loads over a side, see Exercise 15.4.
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Trig3TurnerMembraneStiffness[ncoor_,Emat_,h_,numer_]:=Module[{
  x1,x2,x3,y1,y2,y3,x21,x32,x13,y12,y23,y31,A,Be,Ke},
  {{x1,y1},{x2,y2},{x3,y3}}=ncoor;
  A=Simplify[(x2*y3-x3*y2+(x3*y1-x1*y3)+(x1*y2-x2*y1))/2];
  {x21,x32,x13,y12,y23,y31}={x2-x1,x3-x2,x1-x3,y1-y2,y2-y3,y3-y1};
  Be={{y23,0,y31,0,y12,0},{0,x32,0,x13,0,x21},
      {x32,y23,x13,y31,x21,y12}}/(2*A);
  If [numer, Be=N[Be]]; Ke=A*h*Transpose[Be].Emat.Be;
  Return[Ke]];

Figure 15.5. Implementation of Turner triangle stiffness matrix calculation as a Mathematica module.

The simplest case is when the body force components (15.22) as well as the thickness h are constant
over the element. Then we need the integrals∫

�e

ζ1 d� =
∫

�e

ζ2 d� =
∫

�e

ζ3 d� = 1
3 A (15.24)

which replaced into (15.23) gives

fe = Ah

3
[ bx by bx by bx by ]T . (15.25)

This agrees with the simple element-by-element force-lumping procedure, which assigns one third
of the total force along the {x, y} directions: Ahbx and Ahby , to each corner.

Remark 15.2. The integrals (15.24) are particular cases of the general integration formula of monomials in
triangular coordinates:

1

2A

∫
�e

ζ i
1 ζ

j
2 ζ k

3 d� = i! j! k!

(i + j + k + 2)!
, i ≥ 0, j ≥ 0, k ≥ 0. (15.26)

which can be derived through the Beta function. Here i, j, k are integer exponents. This formula only holds
for triangles with straight sides, and thus does not apply for higher order elements with curved sides. Formulas
(15.24) are obtained by setting exponents i = 1, j = k = 0 in (15.26), and permuting {i, j, k} cyclically.

§15.3.5. Implementation

The implementation of the Turner triangle in any programming language is very simple. A Mathe-
matica module that returns Ke is shown in Figure 15.5. The module needs only 8 lines of code. It
is invoked as

Ke=Trig3TurnerMembraneStiffness[ncoor,Emat,h,numer]; (15.27)

The arguments are

ncoor Element node coordinates, arranged as a list: { { x1,y1 },{ x2,y2 },{ x3,y3 } }.
Emat A two-dimensional list storing the 3 × 3 plane stress matrix of elastic moduli as

{ { E11,E12,E13 },{ E12,E22,E23 },{ E13,E23,E33 } }.
h Plate thickness, assumed uniform over the triangle.
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§15.3 THE TURNER TRIANGLE

Ke =

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

eigs of Ke = {139.33, 60., 20.6704, 0, 0, 0} 

ncoor={{0,0},{3,1},{2,2}}; Emat=8*{{8,2,0},{2,8,0},{0,0,3}};
Ke=Trig3TurnerMembraneStiffness[ncoor,Emat,1,False];
Print["Ke=",Ke//MatrixForm];
Print["eigs of Ke=",Chop[Eigenvalues[N[Ke]]]];
Show[Graphics[RGBColor[1,0,0]],Graphics[AbsoluteThickness[2]],
     Graphics[Polygon[ncoor]],Axes->True];

11 5 −10 −2 −1 −3
5 11 2 10 −7 −21

−10 2 44 −20 −34 18
−2 10 −20 44 22 −54
−1 −7 −34 22 35 −15
−3 −21 18 −54 −15 75

Figure 15.6. Test statements to exercise the module of Figure 15.5, and outputs.

numer A logical flag: True to request floating-point computation, else False.

This module is exercised by the statements listed at the top of Figure 15.6, which form a triangle
with corner coordinates { { 0,0 },{ 3,1 },{ 2,2 } }, isotropic material matrix with E11 = E22 = 64,
E12 = 16, E33 = 24, others zero, (that is, E = 60 and ν = 1

4 ) and unit thickness. The results are
shown at the bottom of Figure 15.6. The computation of stiffness matrix eigenvalues is always a
good programming test, since 3 eigenvalues must be exactly zero and the other 3 real and positive,
as explained in Chapter 19. The last test statement draws the triangle (this plot was moved to the
right of the numeric output to save space.)

§15.3.6. *Consistency Verification

It remains to check whether the interpolation (15.15) for element displacements meets the completeness and
continuity criteria studied in Chapter 19 for finite element trial functions. Such consistency conditions are
sufficient to insure convergence toward the exact solution of the mathematical model as the mesh is refined.

The variational index for the plane stress problem is m = 1. According to the rules stated in §19.3, the trial
functions should be 1-complete, C0 continuous, and C1 piecewise differentiable.

§15.3.7. *Checking Continuity

Along any triangle side, the variation of ux and uy is linear and uniquely determined by the value at the nodes
on that side. For example, over side 1–2 of an individual triangle, which has equation ζ3 = 0:

ux = ux1ζ1 + ux2ζ2 + ux3ζ3 = ux1ζ1 + ux2ζ2,

uy = uy1ζ1 + uy2ζ2 + uy3ζ3 = uy1ζ1 + uy2ζ2.
(15.28)

An identical argument holds for that side when it belongs
to an adjacent triangle, such as elements (e1) and (e2)

shown in Figure 15.7. Since the node values on all
elements that meet at a node are the same, ux and uy match
along the side, and the trial function is C0 interelement
continuous. Because the functions are continuous inside
the elements, it follows that the continuity requirement is
met.

1

2
(e1)

(e2)

x

x1 x2

y

y1 y2

The variation of u   and  u   over
side 1-2 depends only on the nodal
values  u   , u   , u    and u   .
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Section 15: THREE-NODE PLANE STRESS TRIANGLES

Figure 15.7. Interelement continuity check.

§15.3.8. *Checking Completeness

The completeness condition for variational order m = 1 requires that the shape functions Ni = ζi be able to
represent exactly any linear displacement field:

ux = α0 + α1x + α2 y, uy = β0 + β1x + β1 y. (15.29)

To check this we obtain the nodal values associated with the motion (15.29): uxi = α0 + α1xi + α2 yi and
uyi = β0 + β1xi + β2 yi for i = 1, 2, 3. Replace these in (15.16) and see if (15.29) is recovered. Here are the
detailed calculations for component ux :

ux =
∑

i

uxiζi =
∑

i

(α0 + α1xi + α2 yi )ζi =
∑

i

(α0ζi + α1xiζi + α2 yiζi )

= α0

∑
i

ζi + α1

∑
i

(xiζi ) + α2

∑
i

(yiζi ) = α0 + α1x + α2 y.
(15.30)

Component uy can be similarly verified. Consequently (15.16) satisfies the completeness requirement for
the plane stress problem — and in general, for any problem of variational index 1. Finally, a piecewise
linear trial function is obviously C1 piecewise differentiable and consequently has finite energy. Thus the two
completeness requirements are satisfied.

§15.3.9. *Tonti Matrix Diagram

For further developments covered in more advanced
courses, it is convenient to split the governing equations
of the element. In the case of the Turner triangle they are,
omitting element superscripts:

e = Bu, σ = Ee, f = AT σ = V BT σ. (15.31)

Here V = hm A is the volume of the element, hm being the
mean thickness. The equations (15.31) may be graphically
represented with the diagram shown in Figure 15.8. This
is a discrete Tonti diagram similar to those of Chapter 6.

e

u f

σ

f = V B  σT
Equilibrium

Constitutive

Kinematic

σ = E e

e = B u

Tf = V B  E B u = K u

Stiffness

Figure 15.8. Tonti matrix diagram for
Turner triangle.

§15.4. *Derivation Using Natural Strains and Stresses

The foregoing derivation of the Turner triangle uses Carte-
sian strains and stresses, as well as {x, y} displacements.
The only intrinsic quantities are the triangle coordinates.
This advanced section examines the derivation of the
element stiffness matrix through natural strains, natural
stresses and covariant displacements.

Although the procedure does not offer obvious shortcuts
over the previous derivation, it becomes important in
the construction of more complicated high performance
elements. It also helps reading recent literature in assumed
strain elements.

ε  = ε13

ε   = ε32

ε  = ε21

2

1

3

τ  = τ13

τ   = τ32

τ  = τ21

2

1

3
1 1

33

22

(a) (b)

Figure 15.9. Geometry-intrinsic fields for
the Turner triangle: (a) natural strains εi , (b)

natural stresses τi .
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§15.4 *DERIVATION USING NATURAL STRAINS AND STRESSES

1 

2 

3 

1 

2 

3 
φ

φ φ

1

32

L  = L1 32

L  = L2 13

L  = L3 21

(a) (c)(b)

x 1

3

2
d4

d1

d5

d2

d6

d3

Figure 15.10. Additional quantities appearing in natural strain and stress calculations:
(a) side lengths, (b) side directions, (c) covariant node displacements.

§15.4.1. *Natural Strains and Stresses

Natural strains are extensional strains directed parallel to the triangle sides, as shown in Figure 15.10(a).
Natural strains are denoted by ε21 ≡ ε3, ε32 ≡ ε1, and ε13 ≡ ε2.

Similarly, natural stresses are normal stresses directed parallel to the triangle sides, as shown in Figure 15.10(b).
Natural stresses are denoted by τ21 ≡ τ3, τ32 ≡ τ1, and τ13 ≡ τ2.

Because both natural stresses and strains are constant over the triangle, no node value association is needed.

The natural strains can be related to Cartesian strains by the following tensor transformation4

ε =
[

ε1

ε2

ε3

]
=


 c2

1 s2
1 s1c1

c2
2 s2

2 s2c2

c2
3 s2

3 s3c3


[

exx

eyy

2exy

]
= T−1

e e. (15.32)

Here c1 = x32/L1, s1 = y32/L1, c2 = x13/L2, s2 = y13/L2, c3 = x21/L3, and s3 = y21/L3, are sines and
cosines of the side directions with respect to {x, y}, as illustrated in Figure ?(a,b). The inverse of this relation
is

e =
[

exx

eyy

2exy

]
= 1

4A2


 y31 y21 L2

1 y12 y32 L2
2 y23 y13 L2

3

x31x21 L2
1 x12x32 L2

2 x23x13 L2
3

(y31x12 + x13 y21)L2
1 (y12x23 + x21 y32)L2

2 (y23x31 + x32 y13)L2
3


[

ε1

ε2

ε3

]
= Teε.

(15.33)

Note that Te is constant over the triangle. From the invariance of the strain energy density σT e = τT ε it
follows that the stresses transform as τ = Teσ and σ = T−1

e τ. That strain energy density may be expressed as

U = 1
2 eT Ee = 1

2 εT Enε, En = TT
e ETe. (15.34)

Here En is a stress-strain matrix that relates natural stresses to natural strains as τ = Enε. It may be therefore
called the natural constitutive matrix.

§15.4.2. *Covariant Node Displacements

Covariant node displacements di are directed along the side directions, as shown in Figure ?(c), which defines

4 This is the “straingage rosette” transformation studied in Mechanics of Materials books.
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the notation used for them. They are related to the Cartesian node displacements by

d =




d1

d2

d3

d4

d5

d6


 =




c3 s3 0 0 0 0
c2 s2 0 0 0 0
0 0 c1 s1 0 0
0 0 c3 s3 0 0
0 0 0 0 c2 s2

0 0 0 0 c1 s1







ux1

uy1

ux2

uy2

ux3

uy3


 = Td u. (15.35)

The inverse relation is

u =




ux1

uy1

ux2

uy2

ux3

uy3


 = 1

2A




L3 y31 L2 y21 0 0 0 0
L3x13 L2x12 0 0 0 0

0 0 L1 y12 L3 y32 0 0
0 0 L1x21 L3x23 0 0
0 0 0 0 L2 y23 L1 y13

0 0 0 0 L2x32 L1x31







d1

d2

d3

d4

d5

d6


 = T−1

d d. (15.36)

The natural strains are evidently given by the relations ε1 = (d6 − d3)/L1, ε2 = (d2 − d5)/L2 and ε3 =
(d4 − d1)/L3. Collecting these in matrix form:

ε =
[

ε1

ε2

ε3

]
=

[
0 0 −1/L1 0 0 1/L1

0 1/L2 0 0 −1/L2 0
−1/L3 0 0 1/L3 0 0

]


d1

d2

d3

d4

d5

d6


 = Bεd. (15.37)

§15.4.3. *The Natural Stiffness Matrix

The natural stiffness matrix for constant thickness h is

Ke
n = (Ah) BT

ε EnBε, En = TT
e E Te. (15.38)

The Cartesian stiffness matrix is
Ke = TT

d Kn Td . (15.39)

Comparing with Ke = (Ah) BT E B we see that

B = TeBεTd , Bε = T−1
e BT−1

d . (15.40)

§15.5. *The Veubeke Equilibrium Triangle

The Veubeke equilibrium triangle5 differs from the Turner triangle in the degree-of-freedom configuration.
As illustrated in Figure 15.11, those are moved to the midpoints {4, 5, 6} while the corner nodes {1, 2, 3} still
define the geometry of the element. In the FEM terminology introduced in Chapter 6, the geometric nodes
{1, 2, 3} and the connection nodes {4, 5, 6} no longer coincide. The node displacement vector collects the
freedoms shown in Figure 15.11(b):

ue = [ ux4 uy4 ux5 uy5 ux6 uy6 ]T . (15.41)

The quickest way to formulate the stiffness matrix of this element is to relate 15.41 to the node displacements
of the Turner triangle, renamed for convenience as

ue
T = [ ux1 uy1 ux2 uy2 ux3 uy3 ]T . (15.42)

5 The qualifier equilibrium distinguishes this element from others created by Fraeijs de Veubeke, including the 6-node
plane stress comforming triangle. See Notes and Bibliography for the original derivation from an equilibrium field.
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§15.5 *THE VEUBEKE EQUILIBRIUM TRIANGLE

4 

5 

6 

4 

5 

6 

1 (x  ,y )11

2 (x  ,y )22

3 (x  ,y )33

ux4

ux5

ux6 uy4

uy5

uy6

x

y

(a) (b) (c)

Figure 15.11. The Veubeke equilibrium triangle: (a) geometric definition; (b) degree-
of-freedom configuration; (c) element patch showing how triangles are connected at the

midpoints.

§15.5.1. *Kinematic Relations

The node freedom vectors 15.41 and 15.42 are easily related since by linear interpolation along the sides one
obviously has ux4 = 1

2 (ux1 + ux2), uy4 = 1
2 (uy1 + uy2), etc. Expressing those links in matrix form gives




ux4

uy4

ux5

uy5

ux6

uy6


 = 1

2




1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1







ux1

uy1

ux2

uy2

ux3

uy3


 ,




ux1

uy1

ux2

uy2

ux3

uy3


 =




1 0 −1 0 1 0
0 1 0 −1 0 1
1 0 1 0 −1 0
0 1 0 1 0 −1

−1 0 1 0 1 0
0 −1 0 1 0 1







ux4

uy4

ux5

uy5

ux6

uy6


 .

(15.43)

In compact form: ue = TV T ue
T and ue

T = TT V ue, with TV T = T−1
T V . The shape functions are

N4 = ζ1 + ζ2 − ζ3, N5 = −ζ1 + ζ2 + ζ3, N6 = ζ1 − ζ2 + ζ3. (15.44)

Renaming the Turner triangle strain-displacement matrix of (15.17) as BT , the corresponding matrix that
relates e = B ue in the Veubeke equilibrium triangle becomes

B = BT TT V = 1

A

[
y21 0 y32 0 y13 0
0 x12 0 x23 0 x31

x12 y21 x23 y32 x31 y13

]
(15.45)

§15.5.2. *Stiffness Matrix

The element stiffness matrix is given by the general formula (14.23). For constant plate thickness h one obtains
the closed form

Ke = A h BT E B = h

A




y21 0 x12

0 x12 y21

y32 0 x23

0 x23 y32

y13 0 x31

0 x31 y13




[
E11 E12 E13
E12 E22 E23
E13 E23 E33

][
y21 0 y32 0 y13 0
0 x12 0 x23 0 x31

x12 y21 x23 y32 x31 y13

]
. (15.46)

The computation of consistent body forces is left as an Exercise.
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Trig3VeubekeMembraneStiffness[ncoor_,Emat_,h_,numer_]:=Module[{
  x1,x2,x3,y1,y2,y3,x12,x23,x31,y21,y32,y13,A,Be,Te,Ke},
  {{x1,y1},{x2,y2},{x3,y3}}=ncoor;
  A=Simplify[(x2*y3-x3*y2+(x3*y1-x1*y3)+(x1*y2-x2*y1))/2];
  {x12,x23,x31,y21,y32,y13}={x1-x2,x2-x3,x3-x1,y2-y1,y3-y2,y1-y3};
  Be={{y21,0,y32,0,y13,0}, {0,x12,0,x23,0,x31}, 
      {x12,y21,x23,y32,x31,y13}}/A;
  If [numer,Be=N[Be]]; Ke=A*h*Transpose[Be].Emat.Be;
  Return[Ke]];

Figure 15.12. Implementation of Veubeke equilibrium triangle stiffness matrix as a Mathematica module.

§15.5.3. *Implementation

The implementation of the Veubeke equilibrium triangle as a Mathematica module that returns Ke is shown
in Figure 15.12. It needs only 8 lines of code. It is invoked as

Ke=Trig3VeubekeMembraneStiffness[ncoor,Emat,h,numer]; (15.47)

The arguments have the same meaning as those of the module Trig3TurnerMembraneStiffness described
in §15.3.6.

eigs of Ke={557.318, 240., 82.6816, 0, 0, 0}

Ke=

ncoor={{0,0},{3,1},{2,2}}; Emat=8*{{8,2,0},{2,8,0},{0,0,3}};
Ke=Trig3VeubekeMembraneStiffness[ncoor,Emat,1,False];
Print["Ke=",Ke//MatrixForm];
Print["eigs of Ke=",Chop[Eigenvalues[N[Ke]]]];

140 −60 −4 −28 −136 88
−60 300 −12 −84 72 −216
−4 −12 44 20 −40 −8

−28 −84 20 44 8 40
−136 72 −40 8 176 −80

88 −216 −8 40 −80 176

Figure 15.13. Test statements to exercise the module of Figure 15.12, and outputs.

This module is exercised by the statements listed at the top of Figure 15.13, which form a triangle with corner
coordinates { { 0,0 },{ 3,1 },{ 2,2 } }, isotropic material matrix with E11 = E22 = 64, E12 = 16, E33 = 24,
others zero, and unit thickness. The results are shown at the bottom of Figure 15.13. This is the same triangle
used to test module Trig3TurnerMembraneStiffness in §15.3.6. Note that the element is rank sufficient.

§15.5.4. *Spurious Kinematic Modes

Although an individual Veubeke equilibrium triangle is rank sufficient, assemblies are prone to the appearance
of spurious mechanisms. That is, kinematic modes that produce no strain energy although they are not rigid
body modes. These will be illustrated by studying the three macroelements pictured in Figure 15.14. For
simplicity the macroelements are of rectangular shape, but the conclusions apply to more general geometries.

Type I macroelement is built with two triangles. It has four geometric nodes: 1–4, five connection nodes: 5–9,
and 10 degrees of freedom. The eigenvalue analysis of the assembled stiffness K is given as an Exercise. It
shows that K has 4 zero eigenvalues. Since there are 3 rigid body modes in 2D, one is spurious. It is easily
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§15.6 *SHEAR LOCKING IN TURNER TRIANGLES

+ =

Thickness h/2

Type I

Type II

Type III

1 5

6

7

8 9
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4 3
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6
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8 9
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4 3

1 6 6

7 7

8 8

9 95

2

4 3

1 5

6

7

8

2

4 3

1 5

6

7

8

2

4 3
9,10

Spurious mode:

Spurious mode:
9

Figure 15.14. Three macroelement assemblies fabricated with Veubeke equilibrium
triangles to investigate spurious kinematic modes. Red-filled and white-filled circles

mark geometric and connection nodes, respectively.

shown that the spurious mode corresponds to the relative rotation of the two triangles with center node 9 as
pivot, as pictured to the right of the macroelement.

Type II macroelement is built with four crisscrossed triangles of thickness h/2 as illustrated in the Figure. It
has four geometric nodes: 1–4, six connection nodes: 5–10, and 12 degrees of freedom. (Note that although
9 and 10 occupy the same location for this geometry, they should be considered as two separate nodes.) The
eigenvalue analysis of the assembled stiffness K is given as an Exercise. It shows that K has 3 zero eigenvalues
and therefore this macroelement has no spurious modes.

Type III macroelement is of Union-Jack type and is built with 4 triangles. It has five geometric nodes: 1–5,
eight connection nodes: 6–13, and 16 degrees of freedom. The eigenvalue analysis of the assembled stiffness
K is given as an Exercise. It shows that K has 4 zero eigenvalues and consequently one spurious mode.
This correspond to the triangles rotating about the midpoints 6–9 as pivots, as pictured to the right of the
macroelement.

These examples show that this element, when used in a stiffness code, is prone to spurious pivot modes where
sides of adjacent triangles rotate relatively from each other about the midpoint connector. This is a consequence
of the element being nonconforming: full determination of linearly varying side displacements requires two
nodes over that side, and there is only one. Even if a rank sufficiently macroelement mesh unit such as Type II
of Figure 15.14 can be constructed, there is no guarantee that spurious pivot modes will not occur when those
mesh units are connected. For this reason this element is rarely used in DSM-based structural programs, but
acquires importance in applications where flux conservation is important.

§15.6. *Shear Locking in Turner Triangles

A well known deficiency of the 3-node Turner triangle is inability to follow rapidly varying stress fields. This
is understandable since stresses within the element, for uniform material properties, are constant. But its 1D
counterpart: the 2-node bar element, is nodally exact for displacements under some mild assumptions stated
in Chapter 11, and correctly solves loaded-at-joints trusses with one element per member. On the other hand,
the triangle can be arbitrarily way off under unhappy combinations of loads, geometry and meshing.
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Figure 15.15. The bending test with two macroelement types.

What happens in going from 1D to 2D? New effects emerge, notably shear energy and inplane bending. These
two can combine to produce shear locking: elongated triangles can become extraordinarily stiff under inplane
bending because of spurious shear energy.6 The bad news for engineers is that wrong answers caused by
locking are non-conservative: deflections and stresses can be so grossly underestimated that safety margins
are overwhelmed.

To characterize shear locking quantitatively it is convenient to use macroelements in which triangles are
combined to form a 4-node rectangle. This simplifies repetition to form regular meshes. The rectangle
response under in-plane bending is compared to that of a Bernoulli-Euler beam segment. It is well known that
the latter is exact under constant moment. The response ratio of macroelement to beam is a good measure of
triangle performance under bending. Such benchmarks are technically called higher order patch tests. Test
results can be summarized by one number: the energy ratio, which gives a scalar measure of relative stiffness.

§15.6.1. *The Inplane Bending Test

The test is defined in Figure 15.15. A Bernoulli-Euler plane beam of thin rectangular cross-section of height
b and thickness h is bent under applied end moments M . The beam is fabricated of isotropic material with
elastic modulus E and Poisson’s ratio ν. Except for possible end effects the exact solution of the beam problem
(from both the theory-of-elasticity and beam-theory standpoints) is a constant bending moment M(x) = M
along the span. The associated curvature is κ = M/(E Izz) = 12M/(Eb3h). The exact energy taken by a
beam segment of length a is Ubeam = 1

2 Mκa = 6M2 a/(Eb3h) = 1
24 Eb3hκ2a = 1

24 Eb3hθ 2
a /a. In the latter

θa = κa is the relative rotation of two cross sections separated by a.

To study the bending performance of triangles the beam is modeled with one layer of identical rectangular
macroelements dimensioned a×b and made up of triangles, as illustrated in Figure 15.15. The rectangle aspect
ratio is γ = a/b. All rectangles undergo the same deformations and thus it is enough to study a individual
macroelement 1-2-3-4. Two types are considered here:

Crisscrossed (CC). Formed by overlaying triangles 1-2-4, 3-4-2, 2-3-1 and 4-1-2, each with thickness h/2.
Using 4 triangles instead of 2 makes the macroelement geometrically and physically symmetric since 2 triangles
are attached to each corner.

Union-Jack (UJ). Formed by placing a fifth node at the center and dividing the rectangle into 4 triangles: 1-2-5,
2-3-5, 3-4-5, 4-1-5. By construction this element is also geometrically and physically symmetric.

6 The deterioration can be even more pronounced for its spatial counterpart: the 4-node tetrahedron element, because shear
effects are even more important in three dimensions.
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§15.6 *SHEAR LOCKING IN TURNER TRIANGLES

§15.6.2. *Energy Ratios

The assembled macroelement stiffnesses are KCC and
K+

U J , of orders 8 × 8 and 10 × 10, respectively. For the
latter the internal node 5 is statically condensed producing
an 8 × 8 stiffness KU . To test performance we apply four
alternating corner loads as shown in Figure 15.16. The
resultant bending moment is M = Pb.

1 2

4 3P

P P

P

a

b = a/γ

−θ /2a θ /2a

Figure 15.16. Bending a macroelement by
applying a relative edge rotation.

Although triangles cannot copy curvatures pointwise,7 macroelement edges can rotate since constituent tri-
angles can expand or contract. Because of symmetries, the rotations of sides 1-2 and 3-4 are −θa/2 and
θa/2, as illustrated in Figure 15.16. The corresponding corner x displacements are ±bθa/4 whereas the y
displacements are zero. Assemble these into a node displacement 8-vector uM .

uM = 1
4 bθa [ −1 0 1 0 −1 0 1 0 ]T (15.48)

The internal energy taken by a macroelement of 8 × 8 stiffness KM under (15.48) is UM = 1
2 uT

M KM uM , which
can be expressed as a function of E , ν, a, b, h and θa .8

ClearAll[a,b,Em,h,γ]; 
b=a/γ; Iz=h*b^3/12; Ubeam=Simplify[(1/2)*Em*Iz*θa^2/a];
Emat=Em*{{1,0,0},{0,1,0},{0,0,1/2}}; 
nc={{-a,-b},{a,-b},{a,b},{-a,b},{0,0}}/2;
enCC={{1,2,4},{3,4,2},{2,3,1},{4,1,3}};
enUJ={{1,2,5},{2,3,5},{3,4,5},{4,1,5}}; r={0,0};
For [m=1,m<=2,m++, mtype={"CC","UJ"}[[m]];
    nF={8,10}[[m]]; K=Table[0,{nF},{nF}]; f=Table[0,{nF}]; 
    For [e=1,e<=4,e++, 
        If [mtype=="CC", enl=enCC[[e]], enl=enUJ[[e]]];
        {n1,n2,n3}=enl; encoor={nc[[n1]],nc[[n2]],nc[[n3]]}; 
        ht=h; If [mtype=="CC", ht=h/2];
        Ke=Trig3TurnerMembraneStiffness[encoor,Emat,ht,False];
        eft={2*n1-1,2*n1,2*n2-1,2*n2,2*n3-1,2*n3};
        For [i=1,i<=6,i++, For [j=1,j<=6,j++, ii=eft[[i]];
             jj=eft[[j]]; K[[ii,jj]]+=Ke[[i,j]] ]];
        ]; KM=K=Simplify[K];
        If [mtype=="UJ",
           {K,f}= Simplify[CondenseLastFreedom[K,f]];
           {KM,f}=Simplify[CondenseLastFreedom[K,f]]];
    Print["KM=",KM//MatrixForm];         
    uM={1,0,-1,0,1,0,-1,0}*θa*b/4;
    UM=uM.KM.uM/2; rM=Simplify[UM/Ubeam];
    Print["rM=",rM]; r[[m]]=rM;
 ]; 
 Plot[Evaluate[r],{γ,0,10}];

Figure 15.17. Script to compute energy ratios for the two macroelements of Figure 15.15.

The ratio rM = UM/Ubeam is called the energy ratio. If rM > 1 the macroelement is stiffer than the beam
because it take more energy to bend it to conform to the same edge rotations, and the 2D model is said to be
overstiff. Results for zero Poisson’s ratio, computed with the script of Figure 15.17, are

rCC = 3 + 3

2
γ 2, rU J = 3(1 + γ 2)2

2 + 4γ 2
. (15.49)

7 That is the reason why they can be so stiff under bending.
8 The load P could be recovered via KM uM , but this value is not needed to compute energy ratios.
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Section 15: THREE-NODE PLANE STRESS TRIANGLES

If for example γ = a/b = 10, which is an elongated rectangular shape of 10:1 aspect ratio, rCC = 153
and the crisscrossed macroelement is 153 times stiffer than the beam. For the Union-Jack configuration
rU J = 10201/134 = 76.13; about twice better but still way overstiff. If γ = 1, rCC = 4.5 and rU J = 2:
overstiff but not dramatically so. The effect of a nonzero Poisson’s ratio is studied in Exercise 15.10.

§15.6.3. *Convergence as Mesh is Refined

Note that if γ = a/b → 0, rCC → 3 and rU J → 1.5. So even if the beam of Figure 15.15 is divided into
an infinite number of macroelements along x the solution will not converge. It is necessary to subdivide also
along the height. If 2n (n ≥ 1) identical macroelement layers are placed along the beam height while γ is
kept fixed, the energy ratio becomes

r (2n) = 22n − 1 + r (1)

22n
= 1 + r (1) − 1

22n
, (15.50)

where r (1) is the ratio (15.49) for one layer. If r (1) = 1, r (2n) = 1 for all n ≥ 1, so bending exactness is
maintained as expected. If n = 1 (two layers), r (2) = (3+r (1))/4 and if n = 2 (four layers), r (4) = (7+r (1))/8.

If n → ∞, r (2n) → 1, but convergence can be slow. For example, suppose that γ = 1 (unit aspect ratio a = b)
and that r (1) = rCC = 4.5. To get within 1% of the exact solution, 1 + 3.5/22n < 1.01. This is satisfed if
n ≥ 5, meaning 10 layers of elements along y. If the beam span is 10 times the height, 1000 macroelements
or 4000 triangles are needed for this simple problem, which is exactly solvable by one beam element.

The stress accuracy of triangles is examined in Chapter 28.

Notes and Bibliography

As a plane stress structural element, the Turner triangle was first developed in the 1956 paper by Turner
et. al. [786]. The target application was modeling of delta wing skin panels. Arbitrary quadrilaterals were
formed by assembling triangles as macroelements. Because of its geometric flexibility, the element was soon
adopted in aircraft structural analysis codes in the late 1950’s. It moved to Civil Engineering applications
through the research and teaching at Berkeley of Ray Clough, who gave the method its name in [138].

The derivation method of [786] would look unfamiliar to present FEM practicioners used to the displacement
method. It was based on assumed stress modes. More precisely: the element, referred to a local Cartesian
system {x, y}, is put under three constant stress states: σxx , σyy and σxy , collected in array σ. Lumping the
stress field to the nodes gives the node forces: f = Lσ. The strain field computed from stresses is e = E−1σ.
This is integrated to get a deformation-displacement field, to which 3 rigid-body modes are added as integration
constants. Evaluating at the nodes produces e = Au, and the stiffness matrix follows on eliminating σ and
e: K = LEA. For constant thickness and material properties it happens that L = V AT and so K = V AT EA
happily turned out to be symmetric. This A is the B of (15.17) times 2A, so in the end the stiffness matrix (for
constant plate thickness) turns out to be the same as (15.21).

The derivation from assumed displacements evolved later. It is not clear who worked it out first, although
it is mentioned in [138,830]. The equivalence of the two forms, through energy principles, had been noted
by Gallagher [297]. Early displacement derivations typically started from linear polynomials in Cartesian
coordinates. For example Przemieniecki [619] begins with

ux = c1x + c2 y + c3, uy = c4x + c5 y + c6. (15.51)

Here the ci play the role of generalized coordinates, which have to be eventually eliminated in favor of node
displacements. The same approach is used by Clough in a widely disseminated 1965 article [140]. Even
for this simple element the approach is unnecessarily complicated and leads to long hand computations. The
elegant derivation in triangular coordinates was popularized by Argyris [28].
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§15. Notes and Bibliography

The idea of using piecewise linear interpolation over a triangular mesh actually precedes [786] by 13 years.
As noted in Chapter 1, it appears in an article by Courant [156], where it is applied to a Poisson’s equation
modeling St. Venant’s torsion. The idea did not influence early work in FEM, however, since as noted above
the derivation in [786] was not based on displacement interpolation.

The Veubeke equilibrium triangle appears in [283, p. 170] and is further elaborated in [284, p. 176]. It
is constructed there as an equilibrium element, that is, the stress field inside the triangle is assumed to be
σxx = β1, σyy = β2 and σxy = β3, where {β1, β2, β3} are stress parameters. (A field of constant stresses
satisfies identically the plane-stress differential equilibrium equations for zero body forces.) Stress parameters
can be uniquely expressed in terms of generalized edge loads, which turn out to be virtual-work conjugate to
midside displacements.9 The direct displacement derivation given here as a “Turner triangle mapping” is new.
As previously noted, this element is rarely used in structural mechanics because of the danger of spurious
kinematic modes discussed in §15.5.4. It has importance, however, in some non-structural applications.

The completeness check worked out in §15.4.2 is a specialization case of a general proof developed by Irons
in the mid 1960s (see [411, §3.9] and references therein) for general isoparametric elements. The check works
because the Turner triangle is isoparametric.

What are here called triangular coordinates were introduced by Möbius in his 1827 book [512].10 They are
often called barycentric coordinates on account on the interpretation discussed in [158]. Other names are
listed in Table 15.1. Triangles possess many fascinating geometric properties studied even before Euclid. An
exhaustive development can be found, in the form of solved exercises, in [711].

It is unclear when the monomial integration formula (15.26) was first derived. As an expression for integrands
expressed in triangular coordinates it was first stated in [211].

The natural strain derivation of §15.4 is patterned after that developed for the so-called ANDES (Assumed
Natural Deviatoric Strain) elements [509]. For the Turner triangle it provides nothing new aside of fancy
terminology. Energy ratios of the form used in §15.6 were introduced in [89] as a way to tune up the stiffness
of Free-Formulation elements.

References

Referenced items have been moved to Appendix R.

9 The initial step of assuming stresses exactly mimics that of [786] a decade earlier. What is fundamentally different in
Fraeijs de Veubeke’s derivation is the use of energy theorems (in this case, PVW) to pass from generalized edge loads to
mean edge displacements. The approach is characteristic of FEM Generation 2.

10 He is better remembered for the “Möbius strip” or “Möbius band,” the first one-sided 3D surface in mathematics.
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Homework Exercises for Chapter 15
The Linear Plane Stress Triangle

EXERCISE 15.1 [A:15] Assume that the 3-node plane stress triangle has variable thickness defined over the
element by the linear interpolation formula

h(ζ1, ζ2, ζ3) = h1ζ1 + h2ζ2 + h3ζ3, (E15.1)

where h1, h2 and h3 are the thicknesses at the corner nodes. Show that the element stiffness matrix is still
given by (15.21) but with h replaced by the mean thickness hm = (h1 + h2 + h3)/3. Hint: use (15.20) and
(15.26).

EXERCISE 15.2 [A:20] The exact integrals of triangle-coordinate monomials over a straight-sided triangle
are given by the formula (15.26), where A denotes the area of the triangle, and i , j and k are nonnegative
integers. Tabulate the right-hand side for combinations of exponents i , j and k such that i + j + k ≤ 3,
beginning with i = j = k = 0. Remember that 0! = 1. (Labor-saving hint: don’t bother repeating exponent
permutations; for example i = 2, j = 1, k = 0 and i = 1, j = 2, k = 0 are permutations of the same thing.
Hence one needs to tabulate only cases in which i ≥ j ≥ k).

EXERCISE 15.3 [A/C:20] Compute the consistent node force vector fe for body loads over a Turner triangle,
if the element thickness varies as per (E15.1), bx = 0, and by = by1ζ1 + by2ζ2 + by3ζ3. Check that for
h1 = h2 = h3 = h and by1 = by2 = by3 = by you recover (15.25). For area integrals use (15.26). Partial
result: fy1 = (A/60)[by1(6h1 + 2h2 + 2h3) + by2(2h1 + 2h2 + h3) + by3(2h1 + h2 + 2h3)].

EXERCISE 15.4 [A/C:20] Derive the formula for the
consistent force vector fe of a Turner triangle of constant
thickness h = 1, if side 1–2 (ζ3 = 0, ζ2 = 1 − ζ1), is subject
to a linearly varying boundary force q = h t̂ such that

qx = qx1ζ1 + qx2ζ2 = qx1(1 − ζ2) + qx2ζ2,

qy = qy1ζ1 + qy2ζ2 = qy1(1 − ζ2) + qy2ζ2.
(E15.2)

This “ line boundary force” q has dimension of force per unit
of side length.

Procedural Hint. Use the last term of the line integral (14.21),
in which t̂ is replaced by q/h, and show that since the
contribution of sides 2-3 and 3-1 to the line integral vanish,

1 

2 

3 

q

q

q

x1

x2

y2

qy1

q  =  q   (1−ζ  ) + q   ζx x1 x22 2

q  =  q   (1−ζ  ) + q   ζy y1 y22 2

x

y

Figure E15.1. Line force on triangle side 1–2
for Exercise 15.4.

W e = (ue)
T fe =

∫
�e

uT q d�e =
∫ 1

0

uT q L21 dζ2, (E15.3)

where L21 is the length of side 1–2. Replace ux (ζ2) = ux1(1−ζ2)+ux2ζ2; likewise for uy , qx and qy , integrate
and identify with the inner product shown as the second term in (E15.3). Partial result: fx1 = L21(2qx1+qx2)/6,
fx3 = fy3 = 0.

Note. The following Mathematica script solves this Exercise. If you decide to use it, explain the logic.

ClearAll[ux1,uy1,ux2,uy2,ux3,uy3,z2,L12];

ux=ux1*(1-z2)+ux2*z2; uy=uy1*(1-z2)+uy2*z2;

qx=qx1*(1-z2)+qx2*z2; qy=qy1*(1-z2)+qy2*z2;

We=Simplify[L12*Integrate[qx*ux+qy*uy,{z2,0,1}]];

fe=Table[Coefficient[We,{ux1,uy1,ux2,uy2,ux3,uy3}[[i]]],{i,1,6}];

fe=Simplify[fe]; Print["fe=",fe];
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EXERCISE 15.5 [C+N:15] Compute the entries of Ke for the following plane stress triangle:

x1 = 0, y1 = 0, x2 = 3, y2 = 1, x3 = 2, y3 = 2,

E =
[

100 25 0
25 100 0
0 0 50

]
, h = 1.

(E15.4)

This may be done by hand (it is a good exercise in matrix multiplication) or (more quickly) using the script of
Figure 15.5. Partial result: K11 = 18.75, K66 = 118.75.

EXERCISE 15.6 [A+C:15] Show that the sum of the rows (and columns) 1, 3 and 5 of Ke as well as the sum
of rows (and columns) 2, 4 and 6 must vanish, and explain why. Check it with the foregoing script.

EXERCISE 15.7 [A:10]. Consider two triangles T and T ∗, both with positive area. The corner coordinates
of T 1 are { { x1, y1 },{ x2, y2 },{ x3, y3 } } and those of T 2 are { { x∗

1 , y∗
1 },{ x∗

2 , y∗
2 },{ x∗

3 , y∗
3 } }. A point P in

T has Cartesian coordinates { x, y } and triangular coordinates { ζ1, ζ2, ζ3 }. A point P∗ in T ∗ has Cartesian
coordinates { x∗, y∗ } and the same triangular coordinates. Show that { x∗, y∗ } and { x, y } are connected by
the affine transformation [

1
x∗

y∗

]
=

[
1 1 1
x∗

1 x∗
2 x∗

3
y∗

1 y∗
2 y∗

3

][
1 1 1
x1 x2 x3

y1 y2 y3

]−1 [
1
x
y

]
(E15.5)

(The indicated inverse exists if T has positive area, as assumed.)

EXERCISE 15.8 [A:15]. Let point P have triangular coordinates
{ζ P

1 , ζ P
2 , ζ P

3 }, as shown in Figure E15.2. Find the distances h P1, h P2

and h P3 of P to the three triangle sides, and the triangular coordinates
of points P1, P2 and P3 shown in the Figure (Pi is projection on the
side opposite to corner i .) Show that h Pi = ζPi hi = 2ζPi A/Lkj ,
for i = 1, 2, 3, j = 2, 3, 1 and k = 3, 1, 2, in which L ji denotes the
length of the side that joins corners i and j and hi is the distance from
corner i to the opposite side, as illustrated in Figure E15.2. (Note:
the distances {h P1, h P2, h P3} are called the trilinear coordinates of
a point P with respect to the vertices of the triangle. They were
introduced by Plücker in 1835. They are essentially scaled versions
of the triangular coordinates.)

1

2

3

P3

P1

P P PP2 P(ζ ,ζ  ,ζ  )1 2 3
hP3

hP2

hP1

L 21

h
3

(a)

Figure E15.2. Distances of arbi-
trary point P to three triangle sides.

EXERCISE 15.9 [A:10]. Express the distances from the triangle centroid to the 3 sides in term of the triangle
area and the side lengths. Answer: 2

3 A/L21, 2
3 A/L32 and 2

3 A/L13, where A is the area of the triangle assumed
positive and L ji is the length of side that joins corners i and j , cf. Figure E15.2, Hint: the area of each
subtriangle subtended by the centroid and two corners is 1

3 A.

EXERCISE 15.10 [A:20] Find the triangular coordinates of the altitude feet points H1, H2 and H3 pictured
in Figure 15.3. Once these are obtained, find the equations of the altitudes in triangular coordinates, and the
coordinates of the orthocenter H . Answer for H3: ζ1 = 1

2 + (L2
13 − L2

32)/(2L2
21), where L ji is the length of

side that joins corners i and j ; cf. Figure E15.2.

EXERCISE 15.11 [C+D:20] Let p(ζ1, ζ2, ζ3) represent a polynomial expression in the natural coordinates.
The integral ∫

�e

p(ζ1, ζ2, ζ3) d� (E15.6)
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over a straight-sided triangle can be computed symbolically by the following Mathematica module:

IntegrateOverTriangle[expr_,tcoord_,A_,max_]:=Module [{p,i,j,k,z1,z2,z3,c,s=0},

p=Expand[expr]; {z1,z2,z3}=tcoord;

For [i=0,i<=max,i++, For [j=0,j<=max,j++, For [k=0,k<=max,k++,

c=Coefficient[Coefficient[Coefficient[p,z1,i],z2,j],z3,k];

s+=2*c*(i!*j!*k!)/((i+j+k+2)!);

]]];

Return[Simplify[A*s]] ];

This is referenced as int=IntegrateOverTriangle[p,{ z1,z2,z3 },A,max]. Here p is the polynomial to
be integrated, z1, z2 andz3 denote the symbols used for the triangular coordinates, A is the triangle area andmax
the highest exponent appearing in a triangular coordinate. The module name returns the integral. For example,
if p=16+5*b*z2^2+z1^3+z2*z3*(z2+z3) the call int=IntegrateOverTriangle[p,{ z1,z2,z3 },A,3]
returns int=A*(97+5*b)/6. Explain how the module works.

EXERCISE 15.12 [C+D:25] Explain the logic of the script listed in Figure 15.17. Then extend it to account
for isotropic material with arbitrary Poisson’s ratio ν. Obtain the macroelement energy ratios as functions of
γ and ν. Discuss whether the effect of a nonzero ν makes much of a difference if γ >> 1.

EXERCISE 15.13 [A/C:25] Verify the conclusions of §15.5.4 as regards rank sufficiency or deficiency of the
three Veubeke macroelement assemblies pictured in Figure 15.14. Carry out tests with rectangular macroele-
ments dimensioned a × b, constant thickness h, elastic modulus E and Poisson’s ratio 0.

EXERCISE 15.14 [C+D:25] To find whether shear is the guilty party in the poor performance of elongated
triangles (as alledged in §15.6) run the script of Figure 15.17 with a zero shear modulus. This can be done by
settingEmat=Em*{ { 1,0,0 },{ 0,1,0 },{ 0,0,0 } } in the third line. Discuss the result. CanEmbe subsequently
reduced to a smaller (fictitious) value so that r ≡ 1 for all aspect ratios γ ? Is this practical?

HomogenizedLinTrigCoorFunction[expr_,{ζ1_,ζ2_,ζ3_}]:=Module[
  {f=expr,repζ0,C0}, repζ0={ζ1->0,ζ2->0,ζ3->0};
   C0=Simplify[f/.repζ0]; f=Simplify[f-C0(1-ζ1-ζ2-ζ3)];
   Return[f]];
   
HomogenizedQuadTrigCoorFunction[expr_,{ζ1_,ζ2_,ζ3_}]:=Module[
  {f,repζ0,C0,C1,C2,C3}, repζ0={ζ1->0,ζ2->0,ζ3->0};
   f=HomogenizedLinTrigCoorFunction[expr,{ζ1,ζ2,ζ3}];
   C1=Coefficient[f,ζ1]/.repζ0; C2=Coefficient[f,ζ2]/.repζ0;
   C3=Coefficient[f,ζ3]/.repζ0; {C1,C2,C3}=Simplify[{C1,C2,C3}];
   f=Simplify[Expand[f-(C1*ζ1+C2*ζ2+C3*ζ3)(1-ζ1-ζ2-ζ3)]]; 
   Return[f]];

Figure E15.3. Two Mathematica modules that homogenize linear and quadratic polynomials
expressed in triaangular coordinates.

EXERCISE 15.15 [C:15] The two Mathematica modules listed in Figure E15.3 homogenize linear and
quadratic polynomials, respectively, expressed in triangular coordinates. Explain their logic.
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EXERCISE 15.16 [C+D:25] Access the file Trig3PlaneStress.nb from the course Web site by clicking
on the appropriate link in Chapter 15 Index. This is a Mathematica Notebook that does plane stress FEM
analysis using the 3-node Turner triangle.

Download the Notebook into your directory. Load into Mathematica. Execute the top 7 input cells (which are
actually initialization cells) so the necessary modules are compiled. Each cell is preceded by a short comment
cell which outlines the purpose of the modules it holds. Notes: (1) the plot-module cell may take a while
to run through its tests; be patient; (2) to get rid of unsightly messages and silly beeps about similar names,
initialize each cell twice.

After you are satisfied everything works fine, run the cantilever beam problem, which is defined in the last
input cell.

After you get a feel of how this code operate, study the source. Prepare a hierarchical diagram of the modules,11

beginning with the main program of the last cell. Note which calls what, and briefly explain the purpose of
each module. Return this diagram as answer to the homework. You do not need to talk about the actual run
and results; those will be discussed in Part III.

Hint: a hierarchical diagram for Trig3PlaneStress.nb begins like

Main program in Cell 8 - drives the FEM analysis

GenerateNodes - generates node coordinates of regular mesh

GenerateTriangles - generate element node lists of regular mesh

........

EXERCISE 15.17 [A:10] Consider the Veubeke triangle with 3 midside nodes 4, 5 and 6. Show that three
possible shape functions are 1 − 2ζ3, 1 − 2ζ1 and 1 − 2ζ2, respectively. Show that these functions satisfy the
interpolation and completeness conditions, but fail the compatibility condition.

11 A hierarchical diagram is a list of modules and their purposes, with indentation to show dependence, similar to the table
of contents of a book. For example, if module AAAA calls BBBB and CCCC, and BBBB calld DDDD, the hierarchical diagram
may look like:

AAAA - purpose of AAAA

BBBB - purpose of BBBB

DDDD - purpose of DDDD

CCCC - purpose of CCCC
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Hint on Exercise 15.3 (added October 19, 2011)

If doing this Exercise by hand, you should process as follows.

First, multiply NT by b:

NT .b =




ζ1 0
0 ζ1

ζ2 0
0 ζ2

ζ3 0
0 ζ3




[
0

by1ζ1 + by2ζ2 + by3ζ3

]

to get a 6-vector. Entries 1,3 and 5 are zero. Entry 2 is (by1ζ1 + by2ζ2 + by3ζ3)ζ1, and so on for entries 4 and
6. Next, scale this vector by h = h1ζ1 + h2ζ2 + h3ζ3. Entries 1,3 and 5 remain zero, whereas entries 2, 4 and
6 become cubic polynomials in the ζi . For example, the second entry is

(h1ζ1 + h2ζ2 + h3ζ3) (by1ζ1 + by2ζ2 + by3ζ3)ζ1

Expand these in term of cubic monomials. For example, the expanded second entry becomes

h1 by1 ζ 3 + h1 by2 ζ 2
1 ζ2 + 7 more terms

Next, collect the ζi monomials that appear in entries 2, 4 and 6. The 10 possible monomials are ζ 3
1 , ζ 3

2 , ζ 3
3 ,

ζ 2
1 ζ2, ζ 2

1 ζ3, ζ 2
2 ζ1, ζ 2

2 ζ3, ζ 2
3 ζ1, ζ 2

3 ζ2, and ζ1ζ2ζ3. Move all monomial coefficients such as by1 h1, etc., outside the
area integral, and apply the formula (15.26) to the monomial integrals. Three cases:∫

�e

ζ 3
1 d� =

∫
�e

ζ 3
2 d� =

∫
�e

ζ 3
3 d� = A

10∫
�e

ζ 2
1 ζ2 d� =

∫
�e

ζ 2
1 ζ3 d� =

∫
�e

ζ 2
2 ζ1 d� = . . . = A

30∫
�e

ζ1ζ2ζ3 = A

60

Finally, collect the common factor A, collect the h factors of the byi as in (E15.2) and you are done. Well, not
quite. It is instructive to check your results for the special cases h1 = h2 = h3 = h (constant thickness), and
by1 = by2 = by3 = by (constant body force). If both the thickness h and the body force by are constant, the
total force on the element, which is then by h A, should divide equally in 3 for each node. This would agree
with the element-by-element force lumping recipe of Section 7).

If you are good in Mathematica, the result can be obtained in milliseconds, but you need to use the module
listed under Exercise 15.11.
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§16.2 ISOPARAMETRIC REPRESENTATION

§16.1. Introduction

The procedure used in Chapter 15to formulate the stiffness equations of the linear triangle can
be formally extended to quadrilateral elements as well as higher order triangles. But one quickly
encounters technical difficulties:

1. The construction of shape functions that satisfy consistency requirements for higher order
elements with curved boundaries becomes increasingly complicated.

2. Integrals that appear in the expressions of the element stiffness matrix and consistent nodal
force vector can no longer be evaluated in simple closed form.

These two obstacles can be overcome through the concepts of isoparametric elements and numerical
quadrature, respectively. The combination of these two ideas transformed the field of finite element
methods in the late 1960s. Together they support a good portion of what is presently used in
production finite element programs.

In the present Chapter the concept of isoparametric representation is introduced for two dimen-
sional elements. This representation is illustrated on specific elements. In the next Chapter these
techniques, combined with numerical integration, are applied to quadrilateral elements.

§16.2. Isoparametric Representation

§16.2.1. Motivation

The linear triangle presented in Chapter 115is an isoparametric element although was not originally
derived as such. The two key equations are (15.10), which defines the triangle geometry, and
(15.16), which defines the primary variable, in this case the displacement field. These equations
are reproduced here for convenience:[ 1

x
y

]
=

[ 1 1 1
x1 x2 x3

y1 y2 y3

] [
ζ1

ζ2

ζ3

]
, (16.1)

ux = ux1 N e
1 + ux2 N e

2 + ux3 N e
3 = ux1ζ1 + ux2ζ2 + ux3ζ3,

uy = uy1 N e
1 + uy2 N e

2 + uy3 N e
3 = uy1ζ1 + uy2ζ2 + uy3ζ3.

(16.2)

The interpretation of these equations is as follows.
The triangular coordinates define the element geom-
etry via (16.1). The displacement expansion (16.2)
is defined by the shape functions, which are in turn
expressed in terms of the triangular coordinates. For
the linear triangle, shape functions and triangular
coordinates coalesce.

These relations are diagrammed in Figure 16.1.
Evidently geometry and displacements are not
treated equally. If we proceed to higher order
triangular elements while keeping straight sides,
only the displacement expansion is refined whereas
the geometry definition remains the same.

1 2 3

Triangular
coordinates

ζ  , ζ  , ζ

Geometry
1, x, y

Displacement
interpolation

u  , u  x yi

Shape
functions

N(e)

Figure 16.1. Superparametric rep-
resentation of triangular element.
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1 2 3

Triangular
coordinates

ζ  , ζ  , ζ

Geometry
1, x, y

Displacement
interpolation

u  , u  x y

i

Shape
functions

N(e)

Figure 16.2. Isoparametric representation of triangular elements.

Elements built according to the foregoing prescription are called superparametric, a term that
emphasizes that unequal treatment.

§16.2.2. Equalizing Geometry and Displacements

On first inspection (16.2) and (16.1) do not look alike. Their inherent similarity can be displayed,
however, if the second one is rewritten and adjoined to (16.1) to look as follows:




1
x
y

ux

uy


 =




1 1 1
x1 x2 x3

y1 y2 y3

ux1 ux2 uy3
uy1 uy2 uy3




[
ζ1

ζ2

ζ3

]
=




1 1 1
x1 x2 x3

y1 y2 y3

ux1 ux2 uy3
uy1 uy2 uy3




[ N e
1

N e
2

N e
3

]
. (16.3)

This form emphasizes that geometry and displacements are given by the same parametric represen-
tation, as shown in Figure 16.2.

The key idea is to use the shape functions to represent both the element geometry and the problem
unknowns, which in structural mechanics are displacements. Hence the name isoparametric element
(“iso” means equal), often abbreviated to iso-P element. This property may be generalized to
arbitrary elements by replacing the term “triangular coordinates” by the more general one “natural
coordinates.” This generalization is illustrated in Figure 16.3.

Geometry
1, x, y

Displacement
interpolation

u  , u  x y

i

Shape
functions

N(e)

   Natural
coordinates

Figure 16.3. Isoparametric representation of arbitrary two-dimensional
elements: triangles or quadrilaterals. For 3D elements, expand the geometry

list to {1, x, y, z} and the displacements to {ux , uy , uz}.
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§16.4 TRIANGULAR ELEMENTS

Under this generalization, natural coordinates (triangular coordinates for triangles, quadrilateral
coordinates for quadrilaterals) appear as parameters that define the shape functions. The shape
functions connect the geometry with the displacements.

Remark 16.1. The terms isoparametric and superparametric were introduced by Irons and coworkers at
Swansea in 1966. See Notes and Bibliography at the end of this Chapter. There are also subparametric
elements whose geometry is more refined than the displacement expansion.

§16.3. General Isoparametric Formulation

The generalization of (16.3) to an arbitrary two-dimensional element with n nodes is straightforward.
Two set of relations, one for the element geometry and the other for the element displacements, are
required. Both sets exhibit the same interpolation in terms of the shape functions.

Geometric relations:

1 =
n∑

i=1

N e
i , x =

n∑
i=1

xi N e
i , y =

n∑
i=1

yi N e
i . (16.4)

Displacement interpolation:

ux =
n∑

i=1

uxi N e
i , uy =

n∑
i=1

uyi N e
i . (16.5)

These two sets of equations may be combined in matrix form as


1
x
y

ux

uy


 =




1 1 . . . 1
x1 x2 . . . xn
y1 y2 . . . yn

ux1 ux2 . . . uxn
uy1 uy2 . . . uyn







N e
1

N e
2
...

N e
n


 . (16.6)

The first three scalar equations in (16.6) express the geometry definition, and the last two the
displacement expansion. Note that additional rows may be added to this matrix expression if more
variables are interpolated by the same shape functions. For example, suppose that the thickness h
and a temperature field T are both interpolated from the n node values:



1
x
y

ux

uy

h
T




=




1 1 . . . 1
x1 x2 . . . xn
y1 y2 . . . yn

ux1 ux2 . . . uxn
uy1 uy2 . . . uyn
h1 h2 . . . hn
T1 T2 . . . Tn







N e
1

N e
2
...

N e
n


 . (16.7)

Note that the column of shape functions does not change.

To illustrate the use of the isoparametric concept, we take a look at specific 2D isoparametric
elements that are commonly used in structural and non-structural applications. These are separated
into triangles and quadrilaterals because different natural coordinates are used.
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Chapter 16: THE ISOPARAMETRIC REPRESENTATION

§16.4. Triangular Elements

§16.4.1. The Linear Triangle

The three-noded linear triangle, studied in Chapter 15 and
pictured in Figure 16.4, may be presented as an isoparametric
element:


1
x
y

ux

uy


 =




1 1 1
x1 x2 x3
y1 y2 y3

ux1 ux2 ux3
uy1 uy2 uy3




[ N e
1

N e
2

N e
3

]
. (16.8)

1

2

3

Figure 16.4. The 3-node linear triangle.

The shape functions are simply the triangular coordinates:

N e
1 = ζ1, N e

2 = ζ2, N e
3 = ζ3. (16.9)

The linear triangle is the only triangular element that is both superparametric and isoparametric.

§16.4.2. The Quadratic Triangle

The six node triangle shown in Figure 16.5 is the next
complete-polynomial member of the isoparametric
triangle family. The isoparametric definition is




1
x
y

ux

uy


 =




1 1 1 1 1 1
x1 x2 x3 x4 x5 x6
y1 y2 y3 y4 y5 y6

ux1 ux2 ux3 ux4 ux5 ux6
uy1 uy2 uy3 uy4 uy5 uy6







N e
1

N e
2

N e
3

N e
4

N e
5

N e
6




(16.10)

1
44

5 5
66

2

3

1

2

3(a) (b)

Figure 16.5. The 6-node quadratic triangle:
(a) the superparametric version, with straight
sides and midside nodes at midpoints; (b) the

isoparametric version.

The shape functions are

N e
1 = ζ1(2ζ1 − 1), N e

2 = ζ2(2ζ2 − 1), N e
3 = ζ3(2ζ3 − 1),

N e
4 = 4ζ1ζ2, N e

5 = 4ζ2ζ3, N e
6 = 4ζ3ζ1.

(16.11)

The element may have parabolically curved sides defined by the location of the midnodes 4, 5 and 6.
The triangular coordinates for a curved triangle are no longer straight lines, but form a curvilinear
system as can be observed in Figure 16.5(b).

§16.4.3. *The Cubic Triangle

The cubic triangle has ten nodes. This shape functions of this element are the subject of an Exercise in Chapter
18. The implementation is studied in Chapter 24.
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§16.5 QUADRILATERAL ELEMENTS

§16.5. Quadrilateral Elements

§16.5.1. Quadrilateral Coordinates and Iso-P Mappings

Before presenting examples of quadrilateral
elements, we must introduce the appropriate
natural coordinate system for that geometry.
The natural coordinates for a triangular
element are the triangular coordinates ζ1,
ζ2 and ζ3. The natural coordinates for a
quadrilateral element are ξ and η, which are
illustrated in Figure 16.6 for both straight
sided and curved side quadrilaterals. These
are called quadrilateral coordinates.

ξ

η

ξ=−1

η=−1

η=1

ξ=1
ξ

η

ξ=−1

η=−1

η=1

ξ=1

Figure 16.6. Quadrilateral coordinates.

These coordinates vary from −1 on one side to +1 at the other, taking the value zero over the
quadrilateral medians. This particular variation range (instead of taking, say, 0 to 1) was chosen by
Irons and coworkers to facilitate use of the standard Gauss integration formulas. Those formulas
are discussed in the next Chapter.

Remark 16.2. In some FEM derivations it is convenient to visualize the quadrilateral coordinates plotted as
Cartesian coordinates in the {ξ, η} plane. This is called the reference plane. All quadrilateral elements in the
reference plane become a square of side 2, called the reference element, which extends over ξ ∈ [−1, 1], η ∈
[−1, 1]. The transformation between {ξ, η} and {x, y} dictated by the second and third equations of (16.4),
is called the isoparametric mapping. A similar version exists for triangles. An important application of this
mapping is discussed in §16.6; see Figure 16.9 there.

§16.5.2. The Bilinear Quadrilateral

The four-node quadrilateral shown in Figure 16.7 is the
simplest member of the quadrilateral family. It is defined by




1
x
y

ux

uy


 =




1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4

ux1 ux2 ux3 ux4
uy1 uy2 uy3 uy4







N e
1

N e
2

N e
3

N e
4


 . (16.12)

1

2

3
4

ξ

η

ξ=−1

η=−1

η=1

ξ=1

Figure 16.7. The 4-node
bilinear quadrilateral.

The shape functions are

N e
1 = 1

4 (1 − ξ)(1 − η), N e
2 = 1

4 (1 + ξ)(1 − η),

N e
3 = 1

4 (1 + ξ)(1 + η), N e
4 = 1

4 (1 − ξ)(1 + η).
(16.13)

These functions vary linearly on quadrilateral coordinate lines ξ = const and η = const , but are
not linear polynomials as in the case of the three-node triangle.
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1

2

3

4

8

5

7

6 ξ

η

ξ=−1

η=−1

η=1

ξ=1

9

1

2

3

4

8

5

7

6 ξ

η

ξ=−1

η=−1

η=1

ξ=1

(a) (b)

Figure 16.8. Two widely used higher order quadrilaterals: (a) the nine-node biquadratic
quadrilateral; (b) the eight-node “serendipity” quadrilateral.

§16.5.3. The Biquadratic Quadrilateral

The nine-node quadrilateral shown in Figure 16.8(a) is the next complete member of the quadrilateral
family. It has eight external nodes and one internal node. It is defined by




1
x
y

ux

uy


 =




1 1 1 1 1 1 1 1 1
x1 x2 x3 x4 x5 x6 x7 x8 x9
y1 y2 y3 y4 y5 y6 y7 y8 y9

ux1 ux2 ux3 ux4 ux5 ux6 ux7 ux8 ux9
uy1 uy2 uy3 uy4 uy5 uy6 uy7 uy8 uy9







N e
1

N e
2
...

N e
9


 . (16.14)

This element is often referred to as the Lagrangian quadrilateral in the FEM literature, a term
explained in the Notes and Bibliography. Its shape functions are

N e
1 = 1

4 (1 − ξ)(1 − η)ξη,

N e
2 = − 1

4 (1 + ξ)(1 − η)ξη,

· · ·

N e
5 = − 1

2 (1 − ξ 2)(1 − η)η,

N e
6 = 1

2 (1 + ξ)(1 − η2)ξ,

· · ·
N e

9 = (1 − ξ 2)(1 − η2) (16.15)

These functions vary quadratically along the coordinate lines ξ = const and η = const . The shape
function associated with the internal node 9 is called a bubble function because of its geometric
shape, which is pictured in §18.4.2.

Figure 16.8(a) depicts a widely used eight-node variant called the “serendipity” quadrilateral. (A
name that originated from circumstances surrounding the element discovery.) The internal node is
eliminated by kinematic constraints as worked out in an Exercise of Chapter 18.

§16.6. Completeness Properties of Iso-P Elements

Some general conclusions as regards the range of applications of isoparametric elements can be
obtained from a completeness analysis. More specifically, whether the general prescription (16.6)
that combines (16.4) and (16.5) satisfies the completeness criterion of finite element trial expansions.
This is one of the conditions for convergence to the analytical solution. The requirement is treated
generally in Chapter 19, and is stated here in recipe form.
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§16.6 COMPLETENESS PROPERTIES OF ISO-P ELEMENTS

§16.6.1. *Completeness Analysis

The plane stress problem has variational index m = 1. A set of shape functions is complete for this problem
if they can represent exactly any linear displacement motions such as

ux = α0 + α1x + α2 y, uy = β0 + β1x + β2 y. (16.16)

To carry out the check, evaluate (16.16) at the nodes

uxi = α0 + α1xi + α2 yi uyi = β0 + β1xi + β2 yi , i = 1, . . . n. (16.17)

Insert this into the displacement expansion (16.5) to see whether the linear displacement field (16.16) is
recovered. Here are the computations for the displacement component ux :

ux =
n∑

i=1

(α0 + α1xi + α2 yi ) N e
i = α0

∑
i

N e
i + α1

∑
i

xi N e
i + α2

∑
i

yi N e
i = α0 + α1x + α2 y. (16.18)

For the last step we have used the geometry definition relations (16.4), reproduced here for convenience:

1 =
n∑

i=1

N e
i , x =

n∑
i=1

xi N e
i , y =

n∑
i=1

yi N e
i . (16.19)

A similar calculation may be made for uy . It appears that the isoparametric displacement expansion represents
(16.18) for any element, and consequently meets the completeness requirement for variational order m = 1.
The derivation carries without essential change to three dimensions.1

Can you detect a flaw in this conclusion? The fly in the ointment is the last replacement step of (16.18),
which assumes that the geometry relations (16.19) are identically satisfied. Indeed they are for all the example
elements presented in the previous sections. But if the new shape functions are constructed directly by the
methods of Chapter 18, a posteriori checks of those identities are necessary.

§16.6.2. Completeness Checks

The first check in (16.19) is easy: the sum of shape functions must be unity. This is also called the
unit sum condition. It can be easily verified by hand for simple elements. Here are two examples.

Example 16.1. Check for the linear triangle: directly from the definition of triangular coordinates,

N e
1 + N e

2 + N e
3 = ζ1 + ζ2 + ζ3 = 1. (16.20)

1 This derivation is due to B. M. Irons. See for example [397, p. 75]. The property was known since the mid 1960s and
contributed substantially to the rapid acceptance of iso-P elements.
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(e2)

η

η

ξ

ξ

1 2

x

y

(e1)

good mapping
(compatible)

bad mapping
(incompatible)

ξ−η  plane x−y plane

1
2

(e2)

(e1)

1
2

(e2)

(e1)2

2

2

Figure 16.9. Good and bad isoparametric mappings of 4-node quadrilateral
from the {ξ, η} reference plane onto the {x, y} physical plane.

Example 16.2. Check for the 4-node bilinear quadrilateral:

N e
1 + N e

2 + N e
3 + N e

4 = 1
4 (1 − ξ − η + ξη) + 1

4 (1 + ξ − η − ξη)

+ 1
4 (1 + ξ + η + ξη) + 1

4 (1 − ξ + η − ξη) = 1
(16.21)

For more complicated elements see Exercises 16.2 and 16.3.

The other two checks are less obvious. For specificity consider the 4-node bilinear quadrilateral.
The geometry definition equations are

x =
4∑

i=1

xi N e
i (ξ, η), y =

4∑
i=1

yi N e
i (ξ, η). (16.22)

Given the corner coordinates, {xi , yi } and a point P(x, y) one can try to solve for {ξ, η}. This
solution requires nontrivial work because it involves two coupled quadratics, but can be done.
Reinserting into (16.22) simply gives back x and y, and nothing is gained.2

The correct question to pose is: is the correct geometry of the quadrilateral preserved by the
mapping from {ξ, η} to {x, y}? In particular, are the sides straight lines? Figure 16.9 illustrate
these questions. Two side-two squares: (e1) and (e2), contiguous in the {ξ, η} reference plane, are
mapped to quadrilaterals (e1) and (e2) in the {x, y} physical plane through (16.22). The common
side 1-2 must remain a straight line to preclude interelement gaps or interpenetration.

We are therefore lead to consider geometric compatibility upon mapping. But this is equivalent to the
question of interelement displacement compatibility, which is stipulated as item (C) in §18.1. The
statement “the displacement along a side must be uniquely determined by nodal displacements on
that side” translates to “the coordinates of a side must be uniquely determined by nodal coordinates
on that side.” Summarizing:

2 This tautology is actually a blessing, since finding explicit expressions for the natural coordinates in terms of x and y
rapidly becomes impossible for higher order elements. See, for example, the complications that already arise for the
bilinear quadrilateral in §23.3.
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Unit-sum condition + interelement compatibility → completeness. (16.23)

This subdivision of work significantly reduces the labor involved in element testing.

§16.6.3. *Completeness for Higher Variational Index

The completeness conditions for variational index 2 are far more demanding because they involve quadratic
motions. No simple isoparametric configurations satisfy those conditions. Consequently isoparametric for-
mulations have limited importance in the finite element analysis of plate and shell bending.

§16.7. Iso-P Elements in One and Three Dimensions

The reader should not think that the concept of isoparametric representation is confined to two-
dimensional elements. It applies without conceptual changes to one and three dimensions as long as
the variational index remains one.3 Three-dimensional solid elements are covered in an advanced
course. The use of the isoparametric formulation to construct a 3-node bar element is the topic of
Exercises 16.4 through 16.7.

Notes and Bibliography

A detailed presentation of the isoparametric concept, with annotated references to the original 1960 papers
may be found in the textbook [397].

This matrix representation for isoparametric elements used here was introduced in [204].

The term Lagrangian element in the mathematical FEM literature identifies quadrilateral and hexahedra (brick)
elements that include all polynomial terms ξ iη j (in 2D) or ξ iη jµk (in 3D) with i ≤ n, j ≤ n and k ≤ n,
as part of the shape function interpolation. Such elements have (n + 1)2 nodes in 2D and (n + 1)3 nodes in
3D, and the interpolation is said to be n-bicomplete. For example, if n = 2, the biquadratic quadrilateral with
(2 + 1)2 = 9 nodes is Lagrangian and 2-bicomplete. (The qualifier “Lagrangian” in this context refers to
Lagrange’s interpolation formula, not to Lagrange multipliers.)

References

Referenced items have been moved to Appendix R

3 A limitation explained in §16.6.3.
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Homework Exercises for Chapter 16

The Isoparametric Representation

EXERCISE 16.1 [D:10] What is the physical interpretation of the shape-function unit-sum condition discussed
in §16.6? Hint: the element must respond exactly in terms of displacements to rigid-body translations in the
x and y directions.

EXERCISE 16.2 [A:15] Check by algebra that the sum of the shape functions for the six-node quadratic
triangle (16.11) is exactly one regardless of natural coordinates values. Hint: show that the sum is expressable
as 2S2

1 − S1, where S1 = ζ1 + ζ2 + ζ3.

EXERCISE 16.3 [A/C:15] Complete the table of shape functions (16.23) of the nine-node biquadratic quadri-
lateral. Verify that their sum is exactly one.

EXERCISE 16.4 [A:20] Consider a three-node bar element referred to the natural coordinate ξ . The two end
nodes and the midnode are identified as 1, 2 and 3, respectively. The natural coordinates of nodes 1, 2 and 3
are ξ = −1, ξ = 1 and ξ = 0, respectively. The variation of the shape functions N1(ξ), N2(ξ) and N3(ξ) is
sketched in Figure E16.1. These functions must be quadratic polynomials in ξ :

N e
1 (ξ) = a0 + a1ξ + a2ξ

2, N e
2 (ξ) = b0 + b1ξ + b2ξ

2, N e
3 (ξ) = c0 + c1ξ + c2ξ

2. (E16.1)

231 231
1

ξ=0 ξ=1ξ=−1ξ=0 ξ=1ξ=−1 ξ=0 ξ=1ξ=−1

111
3

231

e e
N  (ξ) 2N  (ξ) N  (ξ)e

Figure E16.1. Isoparametric shape functions for 3-node bar element (sketch). Node 3 has been
drawn at the 1–2 midpoint but it may be moved away from it, as in Exercises E16.5 and E16.6.

Determine the coefficients a0, through c2 using the node value conditions depicted in Figure E16.1; for example
N e

1 = 1, 0 and 0 for ξ = −1, 0 and 1 at nodes 1, 3 and 2, respectively. Proceeding this way show that

N e
1 (ξ) = − 1

2 ξ(1 − ξ), N e
2 (ξ) = 1

2 ξ(1 + ξ), N e
3 (ξ) = 1 − ξ 2. (E16.2)

Verify that their sum is identically one.

EXERCISE 16.5

[A/C:15+10+15+5] A 3-node straight bar element is defined by 3 nodes: 1, 2 and 3, with axial coordinates
x1, x2 and x3, respectively, as illustrated in Figure E16.2. The element has axial rigidity E A and length
� = x2 − x1. The axial displacement is u(x). The 3 degrees of freedom are the axial node displacements u1,
u2 and u3. The isoparametric definition of the element is[

1
x
u

]
=

[
1 1 1
x1 x2 x3

u1 u2 u3

][
N e

1
N e

2
N e

3

]
, (E16.3)

in which N e
i (ξ) are the shape functions (E16.2) of the previous Exercise. Node 3 lies between 1 and 2 but is

not necessarily at the midpoint x = 1
2 �. For convenience define

x1 = 0, x2 = �, x3 = ( 1
2 + α)�, (E16.4)
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Exercises

1 (ξ= −1) 3 (ξ=0) 2 (ξ=1)

x, u

x  = 0           x  = �/2+α�       x  = �1 23

axial rigidity EA

� = L(e)

Figure E16.2. The 3-node bar element in its local system.

where − 1
2 < α < 1

2 characterizes the location of node 3 with respect to the element center. If α = 0 node 3
is located at the midpoint between 1 and 2. See Figure E16.2.

(a) From (E16.4) and the second equation of (E16.3) get the Jacobian J = dx/dξ in terms of �, α and ξ .
Show that: (i) if − 1

4 < α < 1
4 then J > 0 over the whole element −1 ≤ ξ ≤ 1; (ii) if α = 0, J = �/2

is constant over the element.

(b) Obtain the 1 × 3 strain-displacement matrix B relating e = du/dx = B ue, where ue is the column
3-vector of node displacements u1, u2 and u3. The entries of B are functions of �, α and ξ . Hint:
B = dN/dx = J −1dN/dξ , where N = [ N1 N2 N3 ] and J comes from item (a).

(c) Show that the element stiffness matrix is given by

Ke =
∫ �

0

E A BT B dx =
∫ 1

−1

E A BT B J dξ. (E16.5)

Evaluate the rightmost integral for arbitrary α but constant E A using the 2-point Gauss quadrature rule
(E13.7). Specialize the result to α = 0, for which you should get K11 = K22 = 7E A/(3�), K33 =
16E A/(3�), K12 = E A/(3�) and K13 = K23 = −8E A/(3�), with eigenvalues {8E A/�, 2E A/�, 0}.
Note: use of a CAS is recommended for this item to save time.

(d) What is the minimum number of Gauss points needed to integrate Ke exactly if α = 0?

EXERCISE 16.6 [A/C:20] This Exercise is a continuation of the foregoing one, and addresses the question of
why Ke was computed by numerical integration in item (c). Why not use exact integration? The answer is that
the exact stiffness for arbitrary α is numerically useless. To see why, try the following script in Mathematica:

ClearAll[EA,L,alpha,xi]; (* Define J and B={{B1,B2,B3}} here *)

Ke=Simplify[Integrate[EA*Transpose[B].B*J,{xi,-1,1},

Assumptions->alpha>0&&alpha<1/4&&EA>0&&L>0]];

Print["exact Ke=",Ke//MatrixForm];

Print["exact Ke for alpha=0",Simplify[Ke/.alpha->0]//MatrixForm];

Keseries=Normal[Series[Ke,{alpha,0,2}]];

Print["Ke series about alpha=0:",Keseries//MatrixForm];

Print["Ke for alpha=0",Simplify[Keseries/.alpha->0]//MatrixForm];

At the start of this script define J and B with the results of items (a) and (b), respectively. Then run the script.
The line Print["exact Ke for alpha=0",Simplify[Ke/.alpha->0]//MatrixForm] will trigger er-
ror messages. Comment on why the exact stiffness cannot be evaluated directly at α = 0 (look at the printed
expression before this one). A Taylor series expansion about α = 0 circumvents these difficulties but the
2-point Gauss integration rule gives the correct answer without the gyrations.
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ξ=ξ                    ξ=ξL R
load q

1 (ξ= −1) 3 (ξ=0) 2 (ξ=1)

x, u

x  = 0           x  = �/2+α�       x  = �

� = L(e)

1 23

Figure E16.3. The 3-node bar element under a “box” axial load q.

EXERCISE 16.7 [A/C:20] Construct the consistent force vector for the 3-node bar element of the foregoing
exercise, if the bar is loaded by a uniform axial force q (given per unit of x length) that extends from ξ = ξL

through ξ = ξR , and is zero otherwise. Here −1 ≤ ξL < ξR ≤ 1. See Figure E16.3. Use

fe =
∫ ξR

−ξL

q NT J dξ, (E16.6)

with the J = dx/dξ found in Exercise 16.5(a) and analytical integration. The answer is quite complicated
and nearly hopeless by hand. Specialize the result to α = 0, ξL = −1 and ξR = 1.
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§17.2 PARTIAL DERIVATIVE COMPUTATION

§17.1. Introduction

In this Chapter the isoparametric representation of element geometry and shape functions discussed
in the previous Chapter is used to construct quadrilateral elements for the plane stress problem.
Formulas given in Chapter 14 for the stiffness matrix and consistent load vector of general plane
stress elements are of course applicable to these elements. For a practical implementation, however,
we must go through more specific steps:

1. Construction of shape functions.

2. Computations of shape function derivatives to form the strain-displacement matrix.

3. Numerical integration over the element by Gauss quadrature rules.

The first topic was dealt in the previous Chapter in recipe form, and is systematically covered in
the next one. Assuming the shape functions have been constructed (or readily found in the FEM
literature) the second and third items are combined in an algorithm suitable for programming any
isoparametric quadrilateral. The implementation of the algorithm in the form of element modules
is partly explained in the Exercises of this Chapter, and covered more systematically in Chapter 23.

We shall not deal with isoparametric triangles here to keep the exposition focused. Triangular coor-
dinates, being linked by a constraint, require “special handling” techniques that would complicate
and confuse the exposition. Chapter 24 discusses isoparametric triangular elements in detail.

§17.2. Partial Derivative Computation

Partial derivatives of shape functions with respect to the Cartesian coordinates x and y are required
for the strain and stress calculations. Because shape functions are not directly functions of x and y
but of the natural coordinates ξ and η, the determination of Cartesian partial derivatives is not trivial.
The derivative calculation procedure is presented below for the case of an arbitrary isoparametric
quadrilateral element with n nodes.

§17.2.1. The Jacobian

In quadrilateral element derivations we will need the Jacobian of two-dimensional transformations
that connect the differentials of {x, y} to those of {ξ, η} and vice-versa. Using the chain rule:

[
dx
dy

]
=




∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η


 [

dξ

dη

]
= JT

[
dξ

dη

]
,

[
dξ

dη

]
=




∂ξ

∂x

∂ξ

∂y
∂η

∂x

∂η

∂y


 [

dx
dy

]
= J−T

[
dx
dy

]
.

(17.1)

Here J denotes the Jacobian matrix of (x, y) with respect to (ξ, η), whereas J−1 is the Jacobian
matrix of (ξ, η) with respect to (x, y):

J = ∂(x, y)

∂(ξ, η)
=




∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η


 =

[
J11 J12

J21 J22

]
, J−1 = ∂(ξ, η)

∂(x, y)
=




∂ξ

∂x

∂η

∂x
∂ξ

∂y

∂η

∂y


 = 1

J

[
J22 −J12

−J21 J11

]
,

(17.2)

where J = |J| = det(J) = J11 J22 − J12 J21. In FEM work J and J−1 are called simply the Jacobian
and inverse Jacobian, respectively; the fact that it is a matrix being understood. The scalar symbol
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Chapter 17: ISOPARAMETRIC QUADRILATERALS

J is reserved for the determinant of J. In one dimension J and J coalesce. Jacobians play a
crucial role in differential geometry. For the general definition of Jacobian matrix of a differential
transformation, see Appendix D.

Remark 17.1. Observe that the matrices relating the differentials in (17.1) are the transposes of what we
call J and J−1. The reason is that coordinate differentials transform as contravariant quantities: dx =
(∂x/∂ξ) dξ + (∂x/∂η) dη, etc. But Jacobians are arranged as in (17.2) because of earlier use in covariant
transformations: ∂φ/∂x = (∂ξ/∂x)(∂φ/∂ξ) + (∂η/∂x)(∂φ/∂η), as in (17.5) below.

The reader is cautioned that notations vary among application areas. As quoted in Appendix D, one author
puts it this way: “When one does matrix calculus, one quickly finds that there are two kinds of people in this
world: those who think the gradient is a row vector, and those who think it is a column vector.”

Remark 17.2. To show that J and J−1 are in fact inverses of each other we form their product:

J−1J =
[ ∂x

∂ξ
∂ξ
∂x + ∂x

∂η
∂η
∂x

∂y
∂ξ

∂ξ
∂x + ∂y

∂η
∂η
∂x

∂x
∂ξ

∂ξ
∂y + ∂x

∂η
∂η
∂y

∂y
∂ξ

∂ξ
∂y + ∂y

∂η
∂η
∂y

]
=

[ ∂x
∂x

∂y
∂x

∂x
∂y

∂y
∂y

]
=

[
1 0
0 1

]
, (17.3)

where we have taken into account that x = x(ξ, η), y = y(ξ, η) and the fact that x and y are independent
coordinates. This proof would collapse, however, if instead of {ξ, η} we had the triangular coordinates
{ζ1, ζ2, ζ3} because rectangular matrices have no conventional inverses. This case requires special handling
and is covered in Chapter 24.

§17.2.2. Shape Function Derivatives

The shape functions of a quadrilateral element are expressed in terms of the quadrilateral coordinates
ξ and η introduced in §16.5.1. The derivatives with respect to x and y are given by the chain rule:

∂ N e
i

∂x
= ∂ N e

i

∂ξ

∂ξ

∂x
+ ∂ N e

i

∂η

∂η

∂x
,

∂ N e
i

∂y
= ∂ N e

i

∂ξ

∂ξ

∂y
+ ∂ N e

i

∂η

∂η

∂y
. (17.4)

This can be put in matrix form as




∂ N e
i

∂x
∂ N e

i

∂y


 =




∂ξ

∂x

∂η

∂x
∂ξ

∂y

∂η

∂y







∂ N e
i

∂ξ

∂ N e
i

∂η


 = ∂(ξ, η)

∂(x, y)




∂ N e
i

∂ξ

∂ N e
i

∂η


 = J−1




∂ N e
i

∂ξ

∂ N e
i

∂η


 . (17.5)

where J−1 is defined in (17.2). The computation of J is addressed in the next subsection.

§17.2.3. Computing the Jacobian Matrix

To compute the entries of J at any quadrilateral location we make use of the last two geometric
relations in (16.4), which are repeated here for convenience:

x =
n∑

i=1

xi N e
i , y =

n∑
i=1

yi N e
i . (17.6)
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Differentiating with respect to the quadrilateral coordinates,

∂x

∂ξ
=

n∑
i=1

xi

∂ N e
i

∂ξ
,

∂y

∂ξ
=

n∑
i=1

yi

∂ N e
i

∂ξ
,

∂x

∂η
=

n∑
i=1

xi

∂ N e
i

∂η
,

∂y

∂η
=

n∑
i=1

yi

∂ N e
i

∂η
. (17.7)

because the xi and yi do not depend on ξ and η. In matrix form:

J =
[

J11 J12

J21 J22

]
=




∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η


 = PX =




∂ N e
1

∂ξ

∂ N e
2

∂ξ
. . .

∂ N e
n

∂ξ

∂ N e
1

∂η

∂ N e
2

∂η
. . .

∂ N e
n

∂η







x1 y1
x2 y2
...

...

xn yn


 . (17.8)

Given a quadrilateral point of coordinates ξ , η we calculate the entries of J using (17.8). The inverse
Jacobian J−1 is then obtained by numerically inverting this 2 × 2 matrix.

Remark 17.3. The symbolic inversion of J for arbitrary ξ , η in general leads to extremely complicated
expressions unless the element has a particularly simple geometry, (for example rectangles as in Exercises
17.1–17.3). This was one of the difficulties that motivated the use of Gaussian numerical quadrature, as
discussed in §17.3 below.

§17.2.4. The Strain-Displacement Matrix

The strain-displacement matrix B that appears in the computation of the element stiffness matrix is
given by the general expression (14.18), which is reproduced here for convenience:

e =

 exx

eyy

2exy


 =




∂ N e
1

∂x 0
∂ N e

2
∂x 0 . . .

∂ N e
n

∂x 0

0
∂ N e

1
∂y 0

∂ N e
2

∂y . . . 0
∂ N e

n
∂y

∂ N e
1

∂y
∂ N e

1
∂x

∂ N e
2

∂y
∂ N e

2
∂x . . .

∂ N e
n

∂y
∂ N e

n
∂x


 ue = Bue. (17.9)

The nonzero entries of B are partials of the shape functions with respect to x and y. The calculation
of those partials is done by computing J via (17.8), inverting and using the chain rule (17.5).

Quad4IsoPShapeFunDer[ncoor_,qcoor_]:= Module[
  {Nf,dNx,dNy,dNξ,dNη,i,J11,J12,J21,J22,Jdet,ξ,η,x,y},
  {ξ,η}=qcoor; 
   Nf={(1-ξ)*(1-η),(1+ξ)*(1-η),(1+ξ)*(1+η),(1-ξ)*(1+η)}/4;
   dNξ ={-(1-η), (1-η),(1+η),-(1+η)}/4;
   dNη= {-(1-ξ),-(1+ξ),(1+ξ), (1-ξ)}/4;
   x=Table[ncoor[[i,1]],{i,4}]; y=Table[ncoor[[i,2]],{i,4}];
   J11=dNξ.x; J12=dNξ.y; J21=dNη.x; J22=dNη.y;
   Jdet=Simplify[J11*J22-J12*J21];
   dNx= ( J22*dNξ-J12*dNη)/Jdet;  dNx=Simplify[dNx];
   dNy= (-J21*dNξ+J11*dNη)/Jdet;  dNy=Simplify[dNy];
   Return[{Nf,dNx,dNy,Jdet}]
];

Figure 17.1. A shape function module for the 4-node bilinear quadrilateral.
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§17.2.5. *A Shape Function Implementation

To make the foregoing discussion more specific, Figure 17.1 shows the shape function module for the 4-node
bilinear quadrilateral. This is a code fragment that returns the value of the shape functions and their {x, y}
derivatives at a given point of quadrilateral coordinates {ξ, η}. The module is invoked by saying

{ Nf,Nfx,Nfy,Jdet }=Quad4IsoPShapeFunDer[ncoor,qcoor] (17.10)

where the arguments are

ncoor Quadrilateral node coordinates arranged in two-dimensional list form:
{ { x1,y1 },{ x2,y2 },{ x3,y3 },{ x4,y4 } }.

qcoor Quadrilateral coordinates { ξ, η } of the point.

The module returns:

Nf Value of shape functions, arranged as list { Nf1,Nf2,Nf3,Nf4 }.
Nfx Value of x-derivatives of shape functions, arranged as list { Nfx1,Nfx2,Nfx3,Nfx4 }.
Nfy Value of y-derivatives of shape functions, arranged as list { Nfy1,Nfy2,Nfy3,Nfy4 }.
Jdet Jacobian determinant.

Example 17.1. Consider a 4-node bilinear quadrilateral shaped as an axis-aligned 2:1 rectan-
gle, with 2a and a as the x and y dimensions, respectively. The node coordinate array is
ncoor={ { 0,0 },{ 2*a,0 },{ 2*a,a },{ 0,a } }. The shape functions and their {x, y} derivatives are to be
evaluated at the rectangle center ξ = η = 0. The appropiate call is

{ Nf,Nfx,Nfy,Jdet }=Quad4IsoPShapeFunDer[ncoor,{ 0,0 }]
This returns Nf={ 1/8,1/8,3/8,3/8 }, Nfx={ -1/(8*a),1/(8*a),3/(8*a),-3/(8*a) },
Nfy={ -1/(2*a),-1/(2*a),1/(2*a),1/(2*a) } and Jdet=a^2/2.

§17.3. Numerical Integration by Gauss Rules

Numerical integration is essential for practical evaluation of integrals over isoparametric element
domains. The standard practice has been to use Gauss integration because such rules use a minimal
number of sample points to achieve a desired level of accuracy. This economy is important for
efficient element calculations, since a matrix product is evaluated at each sample point. The fact
that the location of the sample points in Gauss rules is usually given by non-rational numbers is of
no concern in digital computation.

§17.3.1. One Dimensional Rules

The classical Gauss integration rules are defined by

∫ 1

−1
F(ξ) dξ ≈

p∑
i=1

wi F(ξi ). (17.11)

Here p ≥ 1 is the number of Gauss integration points (also known as sample points), wi are the
integration weights, and ξi are sample-point abcissae in the interval [−1,1]. The use of the canonical
interval [−1,1] is no restriction, because an integral over another range, say from a to b, can be
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§17.3 NUMERICAL INTEGRATION BY GAUSS RULES

Table 17.1 - One-Dimensional Gauss Rules with 1 through 5 Sample Points

Points Rule

1
∫ 1

−1
F(ξ) dξ ≈ 2F(0)

2
∫ 1

−1
F(ξ) dξ ≈ F(−1/

√
3) + F(1/

√
3)

3
∫ 1

−1
F(ξ) dξ ≈ 5

9 F(−√
3/5) + 8

9 F(0) + 5
9 F(

√
3/5)

4
∫ 1

−1
F(ξ) dξ ≈ w14 F(ξ14) + w24 F(ξ24) + w34 F(ξ34) + w44 F(ξ44)

5
∫ 1

−1
F(ξ) dξ ≈ w15 F(ξ15) + w25 F(ξ25) + w35 F(ξ35) + w45 F(ξ45) + w55 F(ξ55)

For the 4-point rule, ξ34 = −ξ24 =
√

(3 − 2
√

6/5)/7, ξ44 = −ξ14 =
√

(3 + 2
√

6/5)/7,
w14 = w44 = 1

2 − 1
6

√
5/6, and w24 = w34 = 1

2 + 1
6

√
5/6.

For the 5-point rule, ξ55 = −ξ15 = 1
3

√
5 + 2

√
10/7, ξ45 = −ξ35 = 1

3

√
5 − 2

√
10/7, ξ35 = 0,

w15 = w55 = (322 − 13
√

70)/900, w25 = w45 = (322 + 13
√

70)/900 and w35 = 512/900.

p = 1

p = 2

p = 3

p = 4

p = 5

ξ = −1 ξ = 1

Figure 17.2. The first five one-dimensional Gauss rules p = 1, 2, 3, 4, 5 depicted over the line segment
ξ ∈ [−1, +1]. Sample point locations are marked with black circles. The radii of those circles are

proportional to the integration weights.

transformed to [−1, +1] via a simple linear transformation of the independent variable, as shown
in the Remark below.

The first five one-dimensional Gauss rules, illustrated in Figure 17.2, are listed in Table 17.1. These
integrate exactly polynomials in ξ of orders up to 1, 3, 5, 7 and 9, respectively. In general a one-
dimensional Gauss rule with p points integrates exactly polynomials of order up to 2p − 1. This
is called the degree of the formula.

Remark 17.4. A more general integral, such as F(x) over [a, b] in which 
 = b − a > 0, is transformed
to the canonical interval [−1, 1] through the mapping x = 1

2 a(1 − ξ) + 1
2 b(1 + ξ) = 1

2 (a + b) + 1
2 
ξ , or

ξ = (2/
)(x − 1
2 (a + b)). The Jacobian of this mapping is J = dx/dξ = /
. Thus

∫ b

a

F(x) dx =
∫ 1

−1

F(ξ) J dξ =
∫ 1

−1

F(ξ) 1
2 
 dξ. (17.12)
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Chapter 17: ISOPARAMETRIC QUADRILATERALS

LineGaussRuleInfo[{rule_,numer_},point_]:= Module[
  {g2={-1,1}/Sqrt[3],w3={5/9,8/9,5/9}, 
   g3={-Sqrt[3/5],0,Sqrt[3/5]}, 
   w4={(1/2)-Sqrt[5/6]/6, (1/2)+Sqrt[5/6]/6,
       (1/2)+Sqrt[5/6]/6, (1/2)-Sqrt[5/6]/6},
   g4={-Sqrt[(3+2*Sqrt[6/5])/7],-Sqrt[(3-2*Sqrt[6/5])/7],
        Sqrt[(3-2*Sqrt[6/5])/7], Sqrt[(3+2*Sqrt[6/5])/7]},
   g5={-Sqrt[5+2*Sqrt[10/7]],-Sqrt[5-2*Sqrt[10/7]],0, 
        Sqrt[5-2*Sqrt[10/7]], Sqrt[5+2*Sqrt[10/7]]}/3,
   w5={322-13*Sqrt[70],322+13*Sqrt[70],512,
       322+13*Sqrt[70],322-13*Sqrt[70]}/900,
   i=point,p=rule,info={{Null,Null},0}}, 
  If [p==1, info={0,2}];
  If [p==2, info={g2[[i]],1}];
  If [p==3, info={g3[[i]],w3[[i]]}]; 
  If [p==4, info={g4[[i]],w4[[i]]}];
  If [p==5, info={g5[[i]],w5[[i]]}];
  If [numer, Return[N[info]], Return[Simplify[info]]];
]; 

Figure 17.3. A Mathematica module that returns the first five one-dimensional Gauss rules.

Remark 17.5. Higher order Gauss rules are tabulated in standard manuals for numerical computation. For
example, the widely used Handbook of Mathematical Functions [2] lists (in Table 25.4) rules with up to 96
points. For p > 6 the abscissas and weights of sample points are not expressible as rational numbers or
radicals, and can only be given as floating-point numbers.

§17.3.2. Implementation of 1D Rules

The Mathematica module shown in Figure 17.3 returns either exact or floating-point information
for the first five unidimensional Gauss rules. To get information for the i th point of the pth rule, in
which 1 ≤ i ≤ p and p = 1, 2, 3, 4, 5, call the module as

{ xii,wi }=LineGaussRuleInfo[{ p,numer },i] (17.13)

Logical flag numer is True to get numerical (floating-point) information, or False to get exact
information. The module returns the sample point abcissa ξi in xii and the weight wi in wi. If p
is not in the implemented range 1 through 5, the module returns { Null,0 }.
Example 17.2. { xi,w }=LineGaussRuleInfo[{ 3,False },2] returns xi=0 and w=8/9, whereas
{ xi,w }=LineGaussRuleInfo[{ 3,True },2] returns (to 16 places) xi=0. and w=0.888888888888889.

§17.3.3. Two Dimensional Rules

The simplest two-dimensional Gauss rules are called product rules. They are obtained by applying
the one-dimensional rules to each independent variable in turn. To apply these rules we must first
reduce the integrand to the canonical form:∫ 1

−1

∫ 1

−1
F(ξ, η) dξ dη =

∫ 1

−1
dη

∫ 1

−1
F(ξ, η) dξ. (17.14)

Once this is done we can process numerically each integral in turn:∫ 1

−1

∫ 1

−1
F(ξ, η) dξ dη =

∫ 1

−1
dη

∫ 1

−1
F(ξ, η) dξ ≈

p1∑
i=1

p2∑
j=1

wiw j F(ξi , η j ). (17.15)
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§17.3 NUMERICAL INTEGRATION BY GAUSS RULES

p = 1  (1 x 1 rule)

p = 3  (3  x 3 rule) p = 4  (4  x 4 rule)

p = 2  (2  x 2 rule)

Figure 17.4. The first four two-dimensional Gauss product rules p = 1, 2, 3, 4
depicted over a straight-sided quadrilateral region. Sample points are marked with
black circles. The areas of these circles are proportional to the integration weights.

where p1 and p2 are the number of Gauss points in the ξ and η directions, respectively. Usually
the same number p = p1 = p2 is chosen if the shape functions are taken to be the same in the ξ

and η directions. This is in fact the case for all quadrilateral elements presented here. The first four
two-dimensional Gauss product rules with p = p1 = p2 are illustrated in Figure 17.4.

§17.3.4. Implementation of 2D Gauss Rules

The Mathematica module listed in Figure 17.5 implements two-dimensional product Gauss rules
having 1 through 5 points in each direction. The number of points in each direction may be the
same or different. If the rule has the same number of points p in both directions the module is
called in either of two ways:

{ { xii,etaj },wij }=QuadGaussRuleInfo[{ p, numer }, { i,j }]
{ { xii,etaj },wij }=QuadGaussRuleInfo[{ p, numer },k ]

(17.16)

The first form is used to get information for point {i, j} of the p × p rule, in which 1 ≤ i ≤ p and
1 ≤ j ≤ p. The second form specifies that point by a “visiting counter” k that runs from 1 through
p2; if so {i, j} are internally extracted1 as j=Floor[(k-1)/p]+1; i=k-p*(j-1).

If the integration rule has p1 points in the ξ direction and p2 points in the η direction, the module
may be called also in two ways:

{ { xii,etaj },wij }=QuadGaussRuleInfo[{ { p1,p2 }, numer },{ i,j }]
{ { xii,etaj },wij }=QuadGaussRuleInfo[{ { p1,p2 }, numer },k ]

(17.17)

The meaning of the second argument is as follows. In the first form i runs from 1 to p1 and j from 1 to
p2. In the second form k runs from 1 to p1 p2; if so i and j are extracted byj=Floor[(k-1)/p1]+1;

1 Indices i and j are denoted by i1 and i2, respectively, inside the module.
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Chapter 17: ISOPARAMETRIC QUADRILATERALS

QuadGaussRuleInfo[{rule_,numer_},point_]:= Module[
 {ξ,η,p1,p2,i,j,w1,w2,m,info={{Null,Null},0}},
  If [Length[rule]==2,  {p1,p2}=rule, p1=p2=rule];
  If [p1<0, Return[QuadNonProductGaussRuleInfo[
      {-p1,numer},point]]];
  If [Length[point]==2, {i,j}=point, m=point; 
      j=Floor[(m-1)/p1]+1; i=m-p1*(j-1) ];
  {ξ,w1}=  LineGaussRuleInfo[{p1,numer},i];
  {η,w2}=  LineGaussRuleInfo[{p2,numer},j];
  info={{ξ,η},w1*w2};
  If [numer, Return[N[info]], Return[Simplify[info]]];
];

Figure 17.5. A Mathematica module that returns two-dimensional product Gauss rules.

i=k-p1*(i-1). In all four forms, logical flag numer is set to True if numerical information is
desired and to False if exact information is desired.

The module returns ξi and η j in xii and etaj, respectively, and the weight product wiw j in wij.
This code is used in the Exercises at the end of the chapter. If the inputs are not in range, the module
returns { { Null,Null },0 }.
Example 17.3. { { xi,eta },w }=QuadGaussRuleInfo[{ 3,False },{ 2,3 }] returns xi=0, eta=Sqrt[3/5]
and w=40/81.

Example 17.4. { { xi,eta },w }=QuadGaussRuleInfo[{ 3,True },{ 2,3 }] returns (to 16-place precision)
xi=0., eta=0.7745966692414834 and w=0.49382716049382713.

§17.4. The Stiffness Matrix

The stiffness matrix of a general plane stress element is given by the expression (14.23), which is
reproduced here:

Ke =
∫

�e

h BT EB d�e (17.18)

Of the terms that appear in (17.18) the strain-displacement matrix B has been discussed previously.
The thickness h, if variable, may be interpolated via the shape functions. The stress-strain matrix
E is usually constant in elastic problems, but we could in principle interpolate it as appropriate
should it vary over the element. To integrate (17.18) numerically by a two-dimensional product
Gauss rule, we have to reduce it to the canonical form (17.14), that is

Ke =
∫ 1

−1

∫ 1

−1
F(ξ, η) dξ dη. (17.19)

If ξ and η are the quadrilateral coordinates, everything in (17.19) already fits this form, except the
element of area d�e.

To complete the reduction we need to express d�e in terms of the differentials dξ and dη. The
desired relation is (see Remark below)

d�e = dx dy = det J dξ dη = J dξ dη. (17.20)

17–10



§17.5 *INTEGRATION VARIANTS

x

y

ξ

η

C

O
A

B
dΩe

∂x

∂η
dη

∂x

∂ξ
dξ

∂y

∂ξ
dξ

∂y

∂η
dη

Figure 17.6. Geometric interpretation of the Jacobian-determinant
formula.

We therefore have
F(ξ, η) = h BT EB detJ. (17.21)

This matrix function can be numerically integrated over the domain −1 ≤ ξ ≤ +1, −1 ≤ η ≤ +1
by an appropriate Gauss product rule.

Remark 17.6. To geometrically justify the area transformation formula (17.20), consider the element of area
OACB depicted in Figure 17.6. The area of this differential parallelogram can be computed as

d A = �O B × �O A = ∂x

∂ξ
dξ

∂y

∂η
dη − ∂x

∂η
dη

∂y

∂ξ
dξ

=
∣∣∣∣∣
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣ dξ dη = |J| dξ dη = det J dξ dη.

(17.22)

This formula can be extended to any number of dimensions, as shown in textbooks on differential geometry;
for example [265,319,708].

§17.5. *Integration Variants

Several deviations from the standard integration schemes described in the foregoing sections are found in the
FEM literature. Two variations are described below and supplemented with motivation Exercises.

§17.5.1. *Weighted Integration
It is sometimes useful to form the element stiffness as a linear combination of stiffnesses produced by two
different integration rules Such schemes are known as weighted integration methods. They are distinguished
from the selective-integration schemes described in the next subsection in that the constitutive properties are
not modified.

For the 4-node bilinear element weighted integration is done by combining the stiffnesses Ke
1×1 and Ke

2×2

produced by 1×1 and 2×2 Gauss product rules, respectively:

Ke
β = (1 − β)Ke

1×1 + βKe
2×2. (17.23)

Here β is a scalar in the range [0, 1]. If β = 0 or β = 1 one recovers the element integrated by the 1×1 or
2×2 rule, respectively.2

2 For programming the combination (17.23) may be regarded as a 5-point integration rule with weights w1 = 4(1−β) at
the sample point at ξ = η = 0 and wi = β (i = 2, 3, 4, 5) at the four sample points at ξ = ±1/

√
3, η = ±1/

√
3.
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Chapter 17: ISOPARAMETRIC QUADRILATERALS

The idea behind (17.23) is that Ke
1×1 is rank-deficient and too soft whereas Ke

2×2 is rank-sufficient but too stiff.
A combination of too-soft and too-stiff hopefully “balances” the stiffness. An application of this idea to the
mitigation of shear locking for modeling in-plane bending is the subject of Exercise E17.4.

§17.5.2. *Selective Integration

In the FEM literature the term selective integration is used to described a scheme for forming Ke as the sum
of two or more matrices computed with different integration rules and different constitutive properties.3 We
consider here the case of a two-way decomposition. Split the plane stress constitutive matrix E into two:

E = EI + EII (17.24)

This is called a stress-strain splitting. Inserting (17.24) into (17.13) the expression of the stiffness matrix
becomes

Ke =
∫

�e

h BT EIB d�e +
∫

�e

h BT EIIB d�e = Ke
I + Ke

II. (17.25)

If these two integrals were done through the same integration rule, the stiffness would be identical to that
obtained by integrating h BT E B d�e. The trick is to use two different rules: rule (I) for the first integral and
rule (II) for the second.

In practice selective integration is mostly useful for the 4-node bilinear quadrilateral. For this element rules
(I) and (II) are the 1×1 and 2×2 Gauss product rules, respectively. Exercises E17.5–7 investigate stress-strain
splittings (17.24) that improve the in-plane bending performance of rectangular elements.

Notes and Bibliography

The 4-node quadrilateral has a checkered history. It was first derived as a rectangular panel with edge rein-
forcements (not included here) by Argyris in his 1954 Aircraft Engineering series [22, p. 49 in the Butterworths
reprint]. Argyris used bilinear displacement interpolation in Cartesian coordinates.4

After much flailing, a conforming generalization to arbitrary geometry was published in 1964 by Taig and
Kerr [719] using quadrilateral-fitted coordinates already denoted as {ξ, η} but running from 0 to 1. (Reference
[719] cites an 1961 English Electric Aircraft internal report as original source but [397, p. 520] remarks that
the work goes back to 1957.) Bruce Irons, who was aware of Taig’s work while at Rolls Royce, changed the
{ξ, η} range to [−1, 1] to fit Gauss quadrature tables. He proceeded to create the seminal isoparametric family
as a far-reaching extension upon moving to Swansea [64,197,394,397].

Gauss integration is also called Gauss-Legendre quadrature. Gauss presented these rules, derived from first
principles, in 1814; cf. Sec 4.11 of [310]. Legendre’s name is often adjoined because the abcissas of the 1D
sample points turned out to be the zeros of Legendre polynomials. A systematic description is given in [706].
For references in multidimensional numerical integration, see Notes and Bibliography in Chapter 24.

Selective and reduced integration in FEM developed in the early 1970s, and by now there is a huge literature.
An excellent textbook source is [385].

References

Referenced items have been moved to Appendix R.

3 This technique is also called “selective reduced integration” to reflect the fact that one of the rules (the “reduced rule”)
underintegrates the element.

4 This work is probably the first derivation of a continuum-based finite element by assumed displacements. As noted in
§1.7.1, Argyris was aware of the ongoing work in stiffness methods at Turner’s group in Boeing, but the plane stress
models presented in [758] were derived by interelement flux assumptions. Argyris used the unit displacement theorem,
displacing each DOF in turn by one. The resulting displacement pattern is now called a shape function.
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Exercises

Homework Exercises for Chapter 17

Isoparametric Quadrilaterals

The Mathematica module Quad4IsoPMembraneStiffness listed in Figure E17.1 computes the element
stiffness matrix of the 4-node bilinear quadrilateral. This module is useful as a tool for the Exercises that
follow.

Quad4IsoPMembraneStiffness[ncoor_,Emat_,th_,options_]:= 
  Module[{i,k,p=2,numer=False,h=th,qcoor,c,w,Nf,
    dNx,dNy,Jdet,Be,Ke=Table[0,{8},{8}]},  
  If [Length[options]==2, {numer,p}=options,{numer}=options];
  If [p<1||p>4, Print["p out of range"]; Return[Null]];
  For [k=1, k<=p*p, k++,  
       {qcoor,w}= QuadGaussRuleInfo[{p,numer},k];
       {Nf,dNx,dNy,Jdet}=Quad4IsoPShapeFunDer[ncoor,qcoor];
        If [Length[th]==4, h=th.Nf]; c=w*Jdet*h;
        Be={Flatten[Table[{dNx[[i]],       0},{i,4}]],
            Flatten[Table[{0,       dNy[[i]]},{i,4}]],
            Flatten[Table[{dNy[[i]],dNx[[i]]},{i,4}]]}; 
        Ke+=Simplify[c*Transpose[Be].(Emat.Be)];   
      ]; Return[Simplify[Ke]]
   ];

Figure E17.1. Mathematica module to compute the stiffness matrix of a 4-node bilinear
quadrilateral in plane stress.

The module makes use of the shape function module Quad4IsoPShapeFunDer listed in Figure 17.1, and of
the Gauss integration modules QuadGaussRuleInfo and (indirectly) LineGaussRuleInfo, listed in Figures
17.5 and are included in the web-posted Notebook Quad4Stiffness.nb.5 The module is invoked as

Ke=Quad4IsoPMembraneStiffness[ncoor,Emat,thick,options] (E17.1)

The arguments are:

ncoor Quadrilateral node coordinates arranged in two-dimensional list form:
{ { x1,y1 },{ x2,y2 },{ x3,y3 },{ x4,y4 } }.

Emat A two-dimensional list storing the 3 × 3 plane stress matrix of elastic moduli:

E =
[

E11 E12 E13
E12 E22 E23
E13 E23 E33

]
(E17.2)

arranged as { { E11,E12,E33 },{ E12,E22,E23 },{ E13,E23,E33 } }. Must be symmetric. If
the material is isotropic with elastic modulus E and Poisson’s ratio ν, this matrix becomes

E = E

1 − ν2

[
1 ν 0
ν 1 0
0 0 1

2 (1 − ν)

]
(E17.3)

thick The plate thickness specified either as a four-entry list: { h1,h2,h3,h4 } or as a scalar: h.

5 This Notebook does not include scripts for doing the Exercises below, although it has some text statements at the bottom
of the cell. You will need to enter the Exercise scripts yourself.
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Chapter 17: ISOPARAMETRIC QUADRILATERALS

The first form is used to specify an element of variable thickness, in which case the entries
are the four corner thicknesses and h is interpolated bilinearly. The second form specifies
uniform thickness.

options Processing options. This list may contain two items: { numer,p } or one: { numer }.
numer is a logical flag with value True or False. If True, the computations are done in
floating point arithmetic. For symbolic or exact arithmetic work set numer to False.6

p specifies the Gauss product rule to have p points in each direction. p may be 1 through 4.
For rank sufficiency, p must be 2 or higher. If p is 1 the element will be rank deficient by
two.7 If omitted p = 2 is assumed.

The module returns Ke as an 8 × 8 symmetric matrix pertaining to the following arrangement of nodal
displacements:

ue = [ ux1 uy1 ux2 uy2 ux3 uy3 ux4 uy4 ]T . (E17.4)

1 2

34

ξ

η

a

b = a/γ

Uniform thickness h = 1
Isotropic material with elastic 
modulus E  and Poisson's ratio ν

x

y

Figure E17.2. Element for Exercises 17.1 to 17.3.

For the following three exercises we consider the specialization of the general 4-node bilinear quadrilateral
to a rectangular element dimensioned a and b in the x and y directions, respectively, as depicted in Figure
E17.2. The element has uniform unit thickness h. The material is isotropic with elastic modulus E and
Poisson’s ratio ν and consequently E reduces to (E17.3). The stiffness matrix of this element can be expressed
in closed form.8 For convenience define γ = a/b (rectangle aspect ratio), ψ1 = (1 + ν)γ , ψ2 = (1 − 3ν)γ ,
ψ3 = 2 + (1 − ν)γ 2, ψ4 = 2γ 2 + (1 − ν), ψ5 = (1 − ν)γ 2 − 4, ψ6 = (1 − ν)γ 2 − 1, ψ7 = 4γ 2 − (1 − ν)

and ψ8 = γ 2 − (1 − ν). Then the stiffness matrix in closed form is

Ke = Eh

24γ (1 − ν2)




4ψ3 3ψ1 2ψ5 −3ψ2 −2ψ3 −3ψ1 −4ψ6 3ψ2

4ψ4 3ψ2 4ψ8 −3ψ1 −2ψ4 −3ψ2 −2ψ7

4ψ3 −3ψ1 −4ψ6 −3ψ2 −2ψ3 3ψ1

4ψ4 3ψ2 −2ψ7 3ψ1 −2ψ4

4ψ3 3ψ1 2ψ5 −3ψ2

4ψ4 3ψ2 4ψ8

4ψ3 −3ψ1

symm 4ψ4




. (E17.5)

6 The reason for this option is speed. A symbolic or exact computation can take orders of magnitude more time than a
floating-point evaluation. This becomes more pronounced as elements get more complicated.

7 The rank of an element stiffness is discussed in Chapter 19.
8 This closed form can be obtained by either exact integration, or numerical integration with a 2 × 2 or higher Gauss rule.
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EXERCISE 17.1 [C:20] Exercise the Mathematica module of Figure E17.1 with the following script:

ClearAll[Em,nu,a,b,h]; Em=48; h=1; a=4; b=2; nu=0;

ncoor={{0,0},{a,0},{a,b},{0,b}};

Emat=Em/(1-nu^2)*{{1,nu,0},{nu,1,0},{0,0,(1-nu)/2}};

For [p=1, p<=4, p++,

Ke= Quad4IsoPMembraneStiffness[ncoor,Emat,h,{True,p}];

Print["Gauss integration rule: ",p," x ",p];

Print["Ke=",Chop[Ke]//MatrixForm];

Print["Eigenvalues of Ke=",Chop[Eigenvalues[N[Ke]]]]

];

Verify that for integration rules p=2,3,4 the stiffness matrix does not change and has three zero eigenvalues,
which correspond to the three two-dimensional rigid body modes. On the other hand, for p = 1 the stiffness
matrix is different and displays five zero eigenvalues, which is physically incorrect. (This phenomenon is
analyzed further in Chapter 19.) Question: why does the stiffness matrix stays exactly the same for p ≥ 2?
Hint: take a look at the entries of the integrand h BT EB J ;for a rectangular geometry are those polynomials
in ξ and η, or rational functions? If the former, of what polynomial order in ξ and η are the entries?

EXERCISE 17.2 [C:20] Check the rectangular element stiffness closed form given in (E17.5). This may be
done by hand (takes a while) or (quicker) running the script of Figure E17.3, which calls the Mathematica
module of Figure E17.1.

ClearAll[Em,Ν,a,b,h,Γ];  b=a/Γ;  
ncoor={{0,0},{a,0},{a,b},{0,b}};
Emat=Em/(1-Ν^2)*{{1,Ν,0},{Ν,1,0},{0,0,(1-Ν)/2}};
Ke= Quad4IsoPMembraneStiffness[ncoor,Emat,h,{False,2}];
scaledKe=Simplify[Ke*(24*(1-Ν^2)*Γ/(Em*h))];
Print["Ke=",Em*h/(24*Γ*(1-Ν^2)),"*\n",scaledKe//MatrixForm];

Figure E17.3. Script suggested for Exercise E17.2.

The scaling introduced in the last two lines is for matrix visualization convenience. Verify (E17.5) by printout
inspection and report any typos to instructor.

EXERCISE 17.3 [A/C:25=5+10+10] A Bernoulli-Euler plane beam of thin rectangular cross-section with
span L , height b and thickness h (normal to the plane of the figure) is bent under end moments M as illustrated
in Figure E17.4. The beam is fabricated of isotropic material with elastic modulus E and Poisson’s ratio
ν. The exact solution of the beam problem (from both the theory-of-elasticity and beam-theory standpoints)
is a constant bending moment M along the span. Consequently the beam deforms with uniform curvature
κ = M/(E Iz), in which Iz = 1

12 hb3 is the cross-section second moment of inertia about z.

The beam is modeled with one layer of identical 4-node iso-P bilinear quadrilaterals through its height. These
are rectangles with horizontal dimension a; in the Figure a = L/4. The aspect ratio b/a is denoted by γ . By
analogy with the exact solution, all rectangles in the finite element model will undergo the same deformation.
We can therefore isolate a typical element as illustrated in Figure E17.4.

The exact displacement field for the beam segment referred to the {x, y} axes placed at the element center as
shown in the bottom of Figure E17.4, are

ux = −κxy, uy = 1
2 κ(x2 + νy2), (E17.6)
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M
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M

1 2

34
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x
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Figure E17.4. Pure bending of Bernoulli-Euler plane beam of thin rectangular cross section,
for Exercises 17.3–7. The beam is modeled by one layer of 4-node iso-P bilinear quadrilaterals

through its height.

where κ is the deformed beam curvature M/E I . The stiffness equations of the typical rectangular element
are given by the close form expression (E17.5).

The purpose of this Exercise is to compare the in-plane bending response of the 4-node iso-P bilinear rectangle
to that of a Bernoulli-Euler beam element (which would be exact for this configuration). The quadrilateral
element will be called x-bending exact if it reproduces the beam solution for all {γ, ν}. This comparison is
distributed into three items.

(a) Check that (E17.6), as a plane stress 2D elasticity solution, is in full agreement with Bernoulli-Euler beam
theory. This can be done by computing the strains exx = ∂ux/∂x , eyy = ∂uy/∂y and 2exy = ∂uy/∂x +
∂ux/∂y. Then get the stresses σxx , σyy and σxy through the plane stress constitutive matrix (E17.3) of
an isotropic material. Verify that both σyy and σxy vanish for any ν, and that σxx = −E κy = −My/Iz ,
which agrees with equation (13.4) in Chapter 13.

(b) Compute the strain energy Uquad = 1
2 (ubeam)T Keubeam absorbed by the 4-node element under nodal

displacements ubeam constructed by evaluating (E17.6) at the nodes 1,2,3,4. To simplify this calculation,
it is convenient to decompose that vector as follows:

ubeam = ux
beam + uy

beam = 1
4 κab [ −1 0 1 0 −1 0 1 0 ]T

+ 1
8 κ(a2 + νb2) [ 0 1 0 1 0 1 0 1 ]T

(E17.7)

Explain why Keuy
beam must vanish and consequently

Uquad = 1
2 (ux

beam)T Keux
beam. (E17.8)

This energy can be easily computed by Mathematica by using the first 4 lines of the script of the previous
Exercise, except that here ncoor={ { -a,-b },{ a,-b },{ a,b },{ -a,b } }/2. If vector ux

beam is formed
in u as a one-dimensional list, Uquad=Simplify[u.Ke.u/2]. This should come out as a function of
M , E , ν, h, a and γ because κ = M/(E Iz) = 12M/(Eha3γ 3).

(c) From Mechanics of Materials, or equation (13.7) of Chapter 13, the strain energy absorbed by the
beam segment of length a under a constant bending moment M is Ubeam = 1

2 Mκa = M2a/(2E Iz) =
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6M2/(Eha2γ 3). Form the energy ratio r = Uquad/Ubeam and show that it is a function of the rectangle
aspect ratio γ = b/a and of Poisson’s ratio ν only:

r = r(γ, ν) = 1 + 2/γ 2 − ν

(2/γ 2)(1 − ν2)
. (E17.9)

This happens to be the ratio of the 2D model solution to the exact (beam) solution. Hence r = 1 means
that we get the exact answer, that is the 2D model is x-bending exact. If r > 1 the 2D model is overstiff,
and if r < 1 the 2D model is overflexible. Evidently r > 1 for all γ if 0 ≤ ν ≤ 1

2 . Moreover if
b << a, r >> 1; for example if a = 10b and ν = 0, r ≈ 50 and the 2D model gives only about 2%
of the correct solution. This phenomenon is referred to in the FEM literature as shear locking, because
overstiffness is due to the bending motion triggering spurious shear energy in the element. Remedies
to shear locking at the element level are studied in advanced FEM courses. Draw conclusions as to the
adequacy or inadequacy of the 2D model to capture inplane bending effects, and comment on how you
might improve results by modifying the discretization of Figure E17.4.9

EXERCISE 17.4 [A+C:20] A naive remedy to shear locking can be attempted with the weighted integration
methodology outlined in §17.6.1. Let Ke

1×1 and Ke
2×2 denote the element stiffnesses produced by 1×1 and

2×2 Gauss product rules, respectively. Take

Ke
β = (1 − β)Ke

1×1 + βKe
2×2 (E17.10)

where β is adjusted so that shear locking is reduced or eliminated. It is not difficult to find β if the element is
rectangular and isotropic. For the definition of x-bending exact please read the previous Exercise. Inserting
Ke

β into the test introduced there verify that

r = β(1 + 2γ 2 − ν)

(2/γ 2)(1 − ν2)
. (E17.11)

Whence show that if

β = 2/γ 2(1 − ν2)

1 + 2/γ 2 − ν
, (E17.12)

then r ≡ 1 for all {γ, ν} and the element is x-bending exact. A problem with this idea is that it does not
make it y-bending exact because r(γ ) �= r(1/γ ) if γ �= 1. Moreover the device is not easily extended to
non-rectangular geometries or non-isotropic material.

EXERCISE 17.5 [A+C:35] (Advanced) To understand this Exercise please begin by reading Exercise 17.3,
and the concept of shear locking. The material is again assumed isotropic with elastic modules E and Poisson’s
ratio ν. The 4-node rectangular element will be said to be bending exact if r = 1 for any {γ, ν} if the bending
test described in Exercise 17.3 is done in both x and y directions. A bending-exact element is completely
shear-lock-free.

The selective integration scheme outlined in §17.6.2 is more effective than weighted integration (covered in
the previous exercise) to fully eliminate shear locking. Let the integration rules (I) and (II) be the 1×1 and
2×2 product rules, respectively. However the latter is generalized so the sample points are located at {−χ, χ},
{χ, −χ}, {χ, χ} and {−χ, χ}, with weight 1.10 Consider the stress-strain splitting

E = E

1−ν2

[
1 ν 0
ν 1 0
0 0 1−ν

2

]
= E

1−ν2

[
α β 0
β α 0
0 0 1−ν

2

]
+ E

1−ν2

[
1−α ν−β 0
ν−β 1−α 0

0 0 0

]
= EI + EII, (E17.13)

9 Note that even if we make a → 0 and γ = b/a → ∞ by taking an infinite number of rectangular elements along x ,
the energy ratio r remains greater than one if ν > 0 since r → 1/(1 − ν2). Thus the 2D model would not generally
converge to the correct solution if we keep one layer through the height.

10 For a rectangular geometry these sample points lie on the diagonals. In the case of the standard 2-point Gauss product
rule χ = 1/

√
3.

17–17



Chapter 17: ISOPARAMETRIC QUADRILATERALS

where α and β are scalars. Show that if

χ =
√

1 − ν2

3(1 − α)
(E17.14)

the resulting element stiffness Ke
I +Ke

II is bending exact for any {α, β}. As a corollary show that that if α = ν2,
which corresponds to the splitting

E = E

1−ν2

[
1 ν 0
ν 1 0
0 0 1−ν

2

]
= E

1−ν2

[
ν2 β 0
β ν2 0
0 0 1−ν

2

]
+ E

1−ν2

[
1−ν2 ν−β 0
ν−β 1−ν2 0

0 0 0

]
= EI + EII, (E17.15)

then χ = 1/
√

3 and rule (II) becomes the standard 2×2 Gauss product rule. What are two computationally
convenient settings for β?

EXERCISE 17.6 [A+C:35] (Advanced) A variation on the previous exercise on selective integration to make
the isotropic rectangular 4-node element bending exact. Integration rule (I) is not changed. However rule (II)
has four sample points located at {0, −χ}, {χ, 0}, {0, χ} and {−χ, 0} each with weight 1.11 Show that if one
selects the stress-strain splitting (E17.13) and

χ =
√

2(1 − ν2)

3(1 − α)
(E17.16)

the resulting element stiffness Ke
I + Ke

II is bending exact for any {α, β}. Discuss which choices of α reduce χ

to 1/
√

3 and
√

2/3, respectively.

EXERCISE 17.7 [A+C:40] (Advanced, research paper level, requires a CAS to be tractable) Extend Exercise
17.5 to consider the case of general anisotropic material:

E =
[

E11 E12 E13

E12 E22 E23

E13 E23 E33

]
(E17.17)

The rules for the selective integration scheme are as described in Exercise 17.5. The appropriate stress-strain
splitting is

E = EI + EII =
[

E11 α1 E12β E13

E12 β E22 α2 E23

E13 E23 E33

]
+

[
E11(1 − α1) E12(1 − β) 0
E12(1 − β) E22(1 − α2) 0

0 0 0

]
(E17.18)

in which β is arbitrary and

1 − α1 = |E|
3χ2 E11(E22 E33 − E2

23)
= 1

3χ2C11
, 1 − α2 = |E|

3χ2 E22(E11 E33 − E2
13)

= 1

3χ2C22
,

|E| = det(E) = E11 E22 E33 + 2E12 E13 E23 − E11 E2
23 − E22 E2

13 − E33 E2
12,

C11 = E11(E22 E33 − E2
13)/|E|, C22 = E22(E11 E33 − E2

13)/|E|.
(E17.19)

Show that the resulting rectangular element is bending exact for any E and χ �= 0. (In practice one would
select χ = 1/

√
3.)

11 This is called a 4-point median rule, since the four points are located on the quadrilateral medians.
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§18.2 DIRECT FABRICATION OF SHAPE FUNCTIONS

§18.1. Requirements

This Chapter explains, through a series of examples, how isoparametric shape functions can be
directly constructed by geometric considerations. For a problem of variational index 1, the isopara-
metric shape function N e

i associated with node i of element e must satisfy the following conditions:

(A) Interpolation condition. Takes a unit value at node i , and is zero at all other nodes.

(B) Local support condition. Vanishes over any element boundary (a side in 2D, a face in 3D) that
does not include node i .

(C) Interelement compatibility condition. Satisfies C0 continuity between adjacent elements over
any element boundary that includes node i .

(D) Completeness condition. The interpolation is able to represent exactly any displacement field
which is a linear polynomial in x and y; in particular, a constant value.

Requirement (A) follows directly by interpolation from node values. Conditions (B), (C) and (D)
are consequences of the convergence requirements discussed further in the next Chapter.1 For the
moment these three conditions may be viewed as recipes.

One can readily verify that all isoparametric shape function sets listed in Chapter 16 satisfy the first
two conditions from construction. Direct verification of condition (C) is also straightforward for
those examples. A statement equivalent to (C) is that the value of the shape function over a side
(in 2D) or face (in 3D) common to two elements must uniquely depend only on its nodal values on
that side or face.

Completeness is a property of all element isoparametric shape functions taken together, rather than
of an individual one. If the element satisfies (B) and (C), in view of the discussion in §16.6 it is
sufficient to check that the sum of shape functions is identically one.

§18.2. Direct Fabrication of Shape Functions

Contrary to the what the title of this Chapter implies, the isoparametric shape functions listed in
Chapter 16 did not come out of a magician’s hat. They can be derived systematically by a judicious
inspection process. By “inspection” it is meant that the geometric visualization of shape functions
plays a crucial role.

The method is based on the following observation. In all examples given so far the isoparametric
shape functions are given as products of fairly simple polynomial expressions in the natural coor-
dinates. This is no accident but a direct consequence of the definition of natural coordinates. All
shape functions of Chapter 16 can be expressed as the product of m factors:

N e
i = ci L1 L2 . . . Lm, (18.1)

where
L j = 0, j = 1, . . . m. (18.2)

are the homogeneous equation of lines or curves expressed as linear functions in the natural coor-
dinates, and ci is a normalization coefficient.

1 Convergence means that the discrete FEM solution approaches the exact analytical solution as the mesh is refined.
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1

2

3

1

2

3

(c)(a)

1

2

3(b)
ζ1 = 0

Figure 18.1. The three-node linear triangle: (a) element geometry; (b) equation
of side opposite corner 1; (c) perspective view of the shape function N1 = ζ1.

For two-dimensional isoparametric elements, the ingredients in (18.1) are chosen according to the
following five rules.

R1 Select the L j as the minimal number of lines or curves linear in the natural coordinates that
cross all nodes except the i th node. (A sui generis “cross the dots” game.) Primary choices in
2D are the element sides and medians.

R2 Set coefficient ci so that N e
i has the value 1 at the i th node.

R3 Check that N e
i vanishes over all element sides that do not contain node i .

R4 Check the polynomial order over each side that contains node i . If the order is n, there must
be exactly n + 1 nodes on the side for compatibility to hold.

R5 If local support (R3) and interelement compatibility (R4) are satisfied, check that the sum of
shape functions is identically one.

The examples that follow show these rules in action for two-dimensional elements. Essentially the
same technique is applicable to one- and three-dimensional elements.

§18.3. Triangular Element Shape Functions

This section illustrates the use of (18.1) in the construction of shape functions for the linear and the
quadratic triangle. The cubic triangle is dealt with in Exercise 18.1.

§18.3.1. The Three-Node Linear Triangle

Figure 18.1 shows the three-node linear triangle that was studied in detail in Chapter 15. The three
shape functions are simply the triangular coordinates: Ni = ζi , for i = 1, 2, 3. Although this result
follows directly from the linear interpolation formula of §15.2.4, it can be also quickly derived from
the present methodology as follows.

The equation of the triangle side opposite to node i is L j-k = ζi = 0, where j and k are the cyclic
permutations of i . Here symbol L j-k denotes the left hand side of the homogeneous equation of
the natural coordinate line that passes through node points j and k. See Figure 18.1(b) for i = 1,
j = 2 and k = 3. Hence the obvious guess is

N e
i

guess= ci Li . (18.3)
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1
4

5
6

2

3

1
4

5
6

2

3

1
4

5
6

2

3ζ1 = 0 ζ1 = 0

ζ1 = 1/2
ζ2 = 0

(c)(a) (b)

Figure 18.2. The six-node quadratic triangle: (a) element geometry; (b) lines
(in red) whose product yields N e

1 ; (c) lines (in red) whose product yields N e
4 .

This satisfies conditions (A) and (B) except the unit value at node i ; this holds if ci = 1. The
local support condition (B) follows from construction: the value of ζi is zero over side j–k.
Interelement compatibility follows from R4: the variation of ζi along the 2 sides meeting at node
i is linear and that there are two nodes on each side; cf. §15.4.2. Completeness follows since
N e

1 + N e
2 + N e

3 = ζ1 + ζ2 + ζ3 = 1. Figure 18.1(c) depicts N e
1 = ζ1, drawn normal to the element

in perspective view.

§18.3.2. The Six-Node Quadratic Triangle

The geometry of the six-node quadratic triangle is shown in Figure 18.2(a). Inspection reveals two
types of nodes: corners (1, 2 and 3) and midside nodes (4, 5 and 6). Consequently we can expect
two types of associated shape functions. We select nodes 1 and 4 as representative cases.

For both cases we try the product of two linear functions in the triangular coordinates because we
expect the shape functions to be quadratic. These functions are illustrated in Figures 18.2(b,c) for
corner node 1 and midside node 4, respectively.

For corner node 1, inspection of Figure 18.2(b) suggests trying

N e
1

guess= c1 L2-3 L4-6, (18.4)

Why is (18.4) expected to work? Clearly N e
1 will vanish over 2-5-3 and 4-6. This makes the function

zero at nodes 2 through 6, as is obvious upon inspection of Figure 18.2(b), while being nonzero at
node 1. This value can be adjusted to be unity if c1 is appropriately chosen. The equations of the
lines that appear in (18.4) are

L2-3: ζ1 = 0, L4-6: ζ1 − 1
2 = 0. (18.5)

Replacing into (18.3) we get
N e

1 = c1 ζ1(ζ1 − 1
2 ), (18.6)

To find c1, evaluate N e
1 (ζ1, ζ2, ζ3) at node 1. The triangular coordinates of this node are ζ1 = 1,

ζ2 = ζ3 = 0. We require that it takes a unit value there: N e
1 (1, 0, 0) = c1 × 1 × 1

2 = 1 whence
c1 = 2 and finally

N e
1 = 2ζ1(ζ1 − 1

2 ) = ζ1(2ζ1 − 1), (18.7)
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1

4
5

6

2

3
1

4
5

6

2

3

N e
1 = ζ1(2ζ1 − 1) N e

4 = 4ζ1ζ 2

Figure 18.3. Perspective view of shape functions N e
1 and N e

4 for the quadratic
triangle. The plot is done over a straight side triangle for programming simplicity.

as listed in §16.5.2. Figure 18.3 shows a perspective view. The other two corner shape functions
follow by cyclic permutations of the corner index.

For midside node 4, inspection of Figure 18.2(c) suggests trying

N e
4

guess= c4 L2-3 L1-3 (18.8)

Evidently (18.8) satisfies requirements (A) and (B) if c4 is appropriately normalized. The equation
of sides L2-3 and L1-3 are ζ1 = 0 and ζ2 = 0, respectively. Therefore N e

4 (ζ1, ζ2, ζ3) = c4 ζ1ζ2.
To find c4, evaluate this function at node 4, the triangular coordinates of which are ζ1 = ζ2 = 1

2 ,
ζ3 = 0. We require that it takes a unit value there: N e

4 ( 1
2 , 1

2 , 0) = c4 × 1
2 × 1

2 = 1. Hence c4 = 4,
which gives

N e
4 = 4ζ1ζ2 (18.9)

as listed in §16.5.2. Figure 18.3 shows a perspective view of this shape function. The other two
midside shape functions follow by cyclic permutations of the node indices.

It remains to carry out the interelement continuity check. Consider node 1. The boundaries
containing node 1 and common to adjacent elements are 1–2 and 1–3. Over each one the variation
of N e

1 is quadratic in ζ1. Therefore the polynomial order over each side is 2. Because there are
three nodes on each boundary, the compatibility condition (C) of §18.1 is verified. A similar check
can be carried out for midside node shape functions. Exercise 16.1 verified that the sum of the Ni

is unity. Therefore the element is complete.

§18.4. Quadrilateral Element Shape Functions

Three quadrilateral elements, with 4, 9 and 8 nodes, respectively, which are commonly used in com-
putational mechanics serve as examples to illustrate the construction of shape functions. Elements
with more nodes, such as the bicubic quadrilateral, are not treated as they are rarely used.

§18.4.1. The Four-Node Bilinear Quadrilateral

The element geometry and natural coordinates are shown in Figure 18.4(a). Only one type of
node (corner) and associated shape function is present. Consider node 1 as typical. Inspection of
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1
2

3
4

ξ

η

1
2

3
4

1

2

3

4
ξ = 1

η = 1
(c)(a) (b)

Figure 18.4. The four-node bilinear quadrilateral: (a) element geometry; (b) sides (in red)
that do not contain corner 1; (c) perspective view of the shape function N e

1 .

Figure 18.4(b) suggests trying

N e
1

guess= c1 L2-3 L3-4 (18.10)

This plainly vanishes over nodes 2, 3 and 4, and can be normalized to unity at node 1 by adjusting
c1. By construction it vanishes over the sides 2–3 and 3–4 that do not belong to 1. The equation of
side 2-3 is ξ = 1, or ξ − 1 = 0. The equation of side 3-4 is η = 1, or η − 1 = 0. Replacing in
(18.10) yields

N e
1 (ξ, η) = c1(ξ − 1)(η − 1) = c1(1 − ξ)(1 − η). (18.11)

To find c1, evaluate at node 1, the natural coordinates of which are ξ = η = −1:

N e
1 (−1, −1) = c1 × 2 × 2 = 4c1 = 1. (18.12)

Hence c1 = 1
4 and the shape function is

N e
1 = 1

4 (1 − ξ)(1 − η), (18.13)

as listed in §16.6.2. Figure 18.4(c) shows a perspective view.

For the other three nodes the procedure is the same, traversing the element cyclically. It can be
verified that the general expression of the shape functions for this element is

N e
i = 1

4 (1 + ξi ξ)(1 + ηi η). (18.14)

The continuity check proceeds as follows, using N e
1 as example. Node 1 belongs to interelement

boundaries 1–2 and 1–3. Over side 1–2, η = −1 is constant and N e
1 is a linear function of ξ . To see

this, replace η = −1 in (18.13). Over side 1–3, ξ = −1 is constant and N e
1 is a linear function of η.

Consequently the polynomial variation order is 1 over both sides. Because there are two nodes on
each side the compatibility condition is satisfied. The sum of the shape functions is one, as shown
in (16.21); thus the element is complete.
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Figure 18.5. The nine-node biquadratic quadrilateral: (a) element geometry; (b,c,d): lines
(in red) whose product makes up the shape functions N e

1 , N e
5 and N e

9 , respectively.

(c) (d)

(a) (b)

N e
1 = 1

4 (ξ − 1)(η − 1)ξη

N e
5 = 1

2 (1 − ξ 2)η(η − 1)

N e
5 = 1

2 (1 − ξ 2)η(η − 1)

N e
9 = (1 − ξ 2)(1 − η2)(back view)
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9

Figure 18.6. Perspective view of the shape functions for nodes 1, 5 and 9 of the nine-node
biquadratic quadrilateral.
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Figure 18.7. The eight-node serendipity quadrilateral: (a) element geometry; (b,c):
lines (in red) whose product make up the shape functions N e

1 and N e
5 , respectively.

§18.4.2. The Nine-Node Biquadratic Quadrilateral

The element geometry is shown in Figure 18.5(a). This element has three types of shape functions,
which are associated with corner nodes, midside nodes and center node, respectively.

The lines whose product is used to construct three types of shape functions are illustrated in
Figure 18.5(b,c,d) for nodes 1, 5 and 9, respectively. The technique has been sufficiently illustrated
in previous examples. Here we summarize the calculations for nodes 1, 5 and 9, which are taken
as representatives of the three types:

N e
1 = c1L2-3L3-4L5-7L6-8 = c1(ξ − 1)(η − 1)ξη. (18.15)

N e
5 = c5L2-3L1-4L6-8L3-4 = c5 (ξ − 1)(ξ + 1)η(η − 1) = c5 (1 − ξ 2)η(1 − η). (18.16)

N e
9 = c9 L1-2L2-3L3-4L4-1 = c9 (ξ − 1)(η − 1)(ξ + 1)(η + 1) = c9 (1 − ξ 2)(1 − η2) (18.17)

Imposing the normalization conditions we find

c1 = 1
4 , c5 = − 1

2 , c9 = 1, (18.18)

and we obtain the shape functions listed in §16.6.3. Perspective views are shown in Figure 18.6.
The remaining Ni ’s are constructed through a similar procedure.

Verification of the interelement continuity condition is immediate: the polynomial variation order
of N e

i over any side that belongs to node i is two and there are three nodes on each side. Exercise
16.2 checks that the sum of shape function is unity. Thus the element is complete.

§18.4.3. The Eight-Node “Serendipity” Quadrilateral

This is an eight-node quadrilateral element that results when the center node 9 of the biquadratic
quadrilateral is eliminated by kinematic constraints. The geometry and node configuration is shown
in Figure 18.7(a). This element has been widely used in commercial codes since the 70s for static
problems. It is gradually being phased out in favor of the 9-node quadrilateral for dynamic problems.
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(a) (b) (c) (d)

Figure 18.8. Node configurations for which the magic recipe does not work.

The 8-node quadrilateral has two types of shape functions, which are associated with corner nodes
and midside nodes. Lines whose products yields the shape functions for nodes 1 and 5 are shown
in Figure 18.7(b,c).

Here are the calculations for shape functions of nodes 1 and 5, which are taken again as representative
cases.

N e
1 = c1L2-3L3-4L5-8 = c1(ξ − 1)(η − 1)(1 + ξ + η) = c1(1 − ξ)(1 − η)(1 + ξ + η), (18.19)

N e
5 = c5L2-3L3-4L4-1 = c5 (ξ − 1)(ξ + 1)(η − 1) = c5 (1 − ξ 2)(1 − η). (18.20)

Imposing the normalization conditions we find

c1 = − 1
4 , c5 = 1

2 (18.21)

The other shape functions follow by appropriate permutation of nodal indices. The interelement
continuity and completeness verification are similar to that carried out for the nine-node element,
and are relegated to exercises.

§18.5. Does the Magic Wand Always Work?

The “cross the dots” recipe (18.1)–(18.2) is not foolproof. It fails for certain node configurations
although it is a reasonable way to start. It runs into difficulties, for instance, in the problem posed
in Exercise 18.6, which deals with the 5-node quadrilateral depicted in Figure 18.8(a). If for node 1
one tries the product of side 2–3, side 3–4, and the diagonal 2–5–4, the shape function is easily
worked out to be N e

1 = − 1
8 (1 − ξ)(1 − η)(ξ + η). This satisfies conditions (A) and (B). However,

it violates (C) along sides 1–2 and 4–1, because it varies quadratically over them with only two
nodes per side.

§18.5.1. Hierarchical Corrections

A more robust technique relies on a correction approach, which employs a combination of terms
such as (18.1). For example, a combination of two patterns, one with m factors and one with n
factors, is

N e
i = ci Lc

1 Lc
2 . . . Lc

m + di Ld
1 Ld

2 . . . Ld
n , (18.22)

Here two normalization coefficients: ci and di , appear. In practice trying forms such as (18.22)
from scratch becomes cumbersome. The development is best done hierarchically. The first term is
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§18.5 DOES THE MAGIC WAND ALWAYS WORK?

taken to be that of a lower order element, called the parent element, for which the one-shot approach
works. The second term is then a corrective shape function that vanishes at the nodes of the parent
element. If this is insufficient one more corrective term is added, and so on.

The technique is best explained through examples. Exercise 18.6 illustrates the procedure for the
element of Figure 18.8(a). The next subsection works out the element of Figure 18.8(b).

§18.5.2. Transition Element Example

The hierarchical correction technique is useful for transition elements, which have corner nodes
but midnodes only over certain sides. Three examples are pictured in Figure 18.8(b,c,d). Shape
functions that work can be derived with one, two and three hierarchical corrections, respectively.

As an example, let us construct the shape function N e
1 for the 4-node transition triangle shown in

Figure 18.8(b). Candidate lines for the recipe (18.1) are obviously the side 2–3: ζ1 = 0, and the
median 3–4: ζ1 = ζ2. Accordingly we try

N e
1

guess= c1ζ1(ζ1 − ζ2), N1(1, 0, 0) = 1 = c1. (18.23)

This function N e
1 = ζ1(ζ1 − ζ2) satisfies conditions (A) and (B) but fails compatibility: over side

1–3 of equation ζ2 = 0, because N e
1 (ζ1, 0, ζ3) = ζ 2

1 . This varies quadratically but there are only 2
nodes on that side. Thus (18.23) is no good.

To proceed hierarchically we start from the shape function for the 3-node linear triangle: N e
1 = ζ1.

This will not vanish at node 4, so apply a correction that vanishes at all nodes but 4. From
knowledge of the quadratic triangle midpoint functions, that is obviously ζ1ζ2 times a coefficient
to be determined. The new guess is

N e
1

guess= ζ1 + c1ζ1ζ2. (18.24)

Coefficient c1 is determined by requiring that N e
1 vanish at 4: N e

1 ( 1
2 , 1

2 , 0) = 1
2 + c1

1
4 = 0, whence

c1 = −2 and the shape function is
N e

1 = ζ1 − 2ζ1ζ2. (18.25)

This is easily checked to satisfy compatibility on all sides. The verification of completeness is left
to Exercise 18.8.

Note that since N e
1 = ζ1(1 − 2ζ2), (18.25) can be constructed as the normalized product of lines

ζ1 = 0 and ζ2 = /. The latter passes through 4 and is parallel to 1–3. As part of the opening moves
in the shape function game this would be a lucky guess indeed. If one goes to a more complicated
element no obvious factorization is possible.
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Chapter 18: SHAPE FUNCTION MAGIC

Cell 18.1 Mathematica Module to Draw a Function over a Triangle Region

PlotTriangleShapeFunction[xytrig_,f_,Nsub_,aspect_]:=Module[
{Ni,line3D={},poly3D={},zc1,zc2,zc3,xyf1,xyf2,xyf3,
xc,yc, x1,x2,x3,y1,y2,y3,z1,z2,z3,iz1,iz2,iz3,d},
{{x1,y1,z1},{x2,y2,z2},{x3,y3,z3}}=Take[xytrig,3];
xc={x1,x2,x3}; yc={y1,y2,y3}; Ni=Nsub*3;
Do [ Do [iz3=Ni-iz1-iz2; If [iz3<=0, Continue[]]; d=0;

If [Mod[iz1+2,3]==0&&Mod[iz2-1,3]==0, d= 1];
If [Mod[iz1-2,3]==0&&Mod[iz2+1,3]==0, d=-1];
If [d==0, Continue[]];
zc1=N[{iz1+d+d,iz2-d,iz3-d}/Ni];
zc2=N[{iz1-d,iz2+d+d,iz3-d}/Ni];
zc3=N[{iz1-d,iz2-d,iz3+d+d}/Ni];
xyf1={xc.zc1,yc.zc1,f[zc1[[1]],zc1[[2]],zc1[[3]]]};
xyf2={xc.zc2,yc.zc2,f[zc2[[1]],zc2[[2]],zc2[[3]]]};
xyf3={xc.zc3,yc.zc3,f[zc3[[1]],zc3[[2]],zc3[[3]]]};
AppendTo[poly3D,Polygon[{xyf1,xyf2,xyf3}]];
AppendTo[line3D,Line[{xyf1,xyf2,xyf3,xyf1}]],

{iz2,1,Ni-iz1}],{iz1,1,Ni}];
Show[ Graphics3D[RGBColor[1,0,0]],Graphics3D[poly3D],
Graphics3D[Thickness[.002]],Graphics3D[line3D],
Graphics3D[RGBColor[0,0,0]],Graphics3D[Thickness[.005]],
Graphics3D[Line[xytrig]],PlotRange->All,
BoxRatios->{1,1,aspect},Boxed->False]

];
ClearAll[f1,f4];
xyc1={0,0,0}; xyc2={3,0,0}; xyc3={Sqrt[3],3/2,0};
xytrig=N[{xyc1,xyc2,xyc3,xyc1}]; Nsub=16;
f1[zeta1_,zeta2_,zeta3_]:=zeta1*(2*zeta1-1);
f4[zeta1_,zeta2_,zeta3_]:=4*zeta1*zeta2;
PlotTriangleShapeFunction[xytrig,f1,Nsub,1/2];
PlotTriangleShapeFunction[xytrig,f4,Nsub,1/2.5];

§18.6. *Mathematica Modules to Plot Shape Functions

A Mathematica module called PlotTriangleShape Functions, listed in Cell 18.1, has been developed to
draw perspective plots of shape functions Ni (ζ1, ζ2, ζ3) over a triangular region. The region is assumed to
have straight sides to simplify the logic. The test statements that follow the module produce the shape function
plots shown in Figure 18.3 for the 6-node quadratic triangle. Argument Nsub controls the plot resolution while
aspect controls the xyz box aspect ratio. The remaining arguments are self explanatory.

Another Mathematica module called PlotQuadrilateralShape Functions, listed in Cell 18.2, has been
developed to produce perspective plots of shape functions Ni (ξ, η) over a quadrilateral region. The region
is assumed to have straight sides to simplify the logic. The test statements that follow the module produce
the shape function plots shown in Figure 18.6(a,b,d) for the 9-node biquadratic quadrilateral. Argument Nsub
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§18.6 *MATHEMATICA MODULES TO PLOT SHAPE FUNCTIONS

Cell 18.2 Mathematica Module to Draw a Function over a Quadrilateral Region

PlotQuadrilateralShapeFunction[xyquad_,f_,Nsub_,aspect_]:=Module[
{Ne,Nev,line3D={},poly3D={},xyf1,xyf2,xyf3,i,j,n,ixi,ieta,
xi,eta,x1,x2,x3,x4,y1,y2,y3,y4,z1,z2,z3,z4,xc,yc},
{{x1,y1,z1},{x2,y2,z2},{x3,y3,z3},{x4,y4,z4}}=Take[xyquad,4];
xc={x1,x2,x3,x4}; yc={y1,y2,y3,y4};
Ne[xi_,eta_]:=N[{(1-xi)*(1-eta),(1+xi)*(1-eta),

(1+xi)*(1+eta),(1-xi)*(1+eta)}/4]; n=Nsub;
Do [ Do [ ixi=(2*i-n-1)/n; ieta=(2*j-n-1)/n;

{xi,eta}=N[{ixi-1/n,ieta-1/n}]; Nev=Ne[xi,eta];
xyf1={xc.Nev,yc.Nev,f[xi,eta]};
{xi,eta}=N[{ixi+1/n,ieta-1/n}]; Nev=Ne[xi,eta];
xyf2={xc.Nev,yc.Nev,f[xi,eta]};
{xi,eta}=N[{ixi+1/n,ieta+1/n}]; Nev=Ne[xi,eta];
xyf3={xc.Nev,yc.Nev,f[xi,eta]};
{xi,eta}=N[{ixi-1/n,ieta+1/n}]; Nev=Ne[xi,eta];
xyf4={xc.Nev,yc.Nev,f[xi,eta]};
AppendTo[poly3D,Polygon[{xyf1,xyf2,xyf3,xyf4}]];
AppendTo[line3D,Line[{xyf1,xyf2,xyf3,xyf4,xyf1}]],

{i,1,Nsub}],{j,1,Nsub}];
Show[ Graphics3D[RGBColor[1,0,0]],Graphics3D[poly3D],

Graphics3D[Thickness[.002]],Graphics3D[line3D],
Graphics3D[RGBColor[0,0,0]],Graphics3D[Thickness[.005]],
Graphics3D[Line[xyquad]], PlotRange->All,
BoxRatios->{1,1,aspect},Boxed->False]

];
ClearAll[f1,f5,f9];
xyc1={0,0,0}; xyc2={3,0,0}; xyc3={3,3,0}; xyc4={0,3,0};
xyquad=N[{xyc1,xyc2,xyc3,xyc4,xyc1}]; Nsub=16;
f1[xi_,eta_]:=(1/2)*(xi-1)*(eta-1)*xi*eta;
f5[xi_,eta_]:=(1/2)*(1-xi^2)*eta*(eta-1);
f9[xi_,eta_]:=(1-xi^2)*(1-eta^2);
PlotQuadrilateralShapeFunction[xyquad,f1,Nsub,1/2];
PlotQuadrilateralShapeFunction[xyquad,f5,Nsub,1/2.5];
PlotQuadrilateralShapeFunction[xyquad,f9,Nsub,1/3];

controls the plot resolution while aspect controls the xyz box aspect ratio. The remaining arguments are self
explanatory.
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Chapter 18: SHAPE FUNCTION MAGIC

Notes and Bibliography

The name “shape functions” for interpolation functions directly expressed in terms of physical coordinates
(the node displacements in the case of isoparametric elements) was coined by Irons. The earliest published
reference seems to be the paper [64]. This was presented in 1965 at the first Wright-Patterson conference, the
first all-FEM meeting that strongly influenced the development of computational mechanics in Generation 2.
The key connection to numerical integration was presented in [394], although it is mentioned in prior internal
reports. A comprehensive exposition is given in the textbook by Irons and Ahmad [397].

The quick way of developing shape functions presented here was used in the writer’s 1966 thesis [203] for
triangular elements. The qualifier “magic” arose from the timing for covering this Chapter in a Fall Semester
course: the lecture falls near Halloween.

References

Referenced items have been moved to Appendix R.
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Exercises

Homework Exercises for Chapter 18

Shape Function Magic

EXERCISE 18.1 [A/C:10+10] The complete cubic triangle for plane stress has 10 nodes located as shown in
Figure E18.1, with their triangular coordinates listed in parentheses.

4(2/3,1/3,0)
5(1/3,2/3,0)

2(0,1,0)

6(0,2/3,1/3)

7(0,1/3,2/3)

3(0,0,1)

8(1/3,0,2/3)

9(2/3,0,1/3) 0(1/3,1/3,1/3)

1(1,0,0) 1

2

3

4 5

6

78

9
0

Figure E18.1. Ten-node cubic triangle for Exercise 18.1. The left picture shows the
superparametric element whereas the right one shows the isoparametric version with curved sides.

N N1 4 N0
e e e

Figure E18.2. Perspective plots of the shape functions N e
1 , N e

4 and N e
0

for the 10-node cubic triangle.

(a) Construct the cubic shape functions N e
1 , N e

4 and N e
0 for nodes 1, 4, and 0 (the interior node is labeled as

zero, not 10) using the line-product technique. [Hint: each shape function is the product of 3 and only 3
lines.] Perspective plots of those 3 functions are shown in Figure E18.2.

(b) Construct the missing 7 shape functions by appropriate node number permutations, and verify that the
sum of the 10 functions is identically one. For the unit sum check use the fact that ζ1 + ζ2 + ζ3 = 1.

EXERCISE 18.2 [A:15] Find an alternative shape function N e
1 for corner node 1 of the 9-node quadrilateral

of Figure 18.5(a) by using the diagonal lines 5–8 and 2–9–4 in addition to the sides 2–3 and 3–4. Show that
the resulting shape function violates the compatibility condition (C) stated in §18.1.

EXERCISE 18.3 [A/C:15] Complete the above exercise for all nine nodes. Add the shape functions (use a
CAS and simplify) and verify whether their sum is unity.

EXERCISE 18.4 [A/C:20] Verify that the shape functions N e
1 and N e

5 of the eight-node serendipity quadri-
lateral discussed in §18.4.3 satisfy the interelement compatibility condition (C) stated in §18.1. Obtain all 8
shape functions and verify that their sum is unity.

EXERCISE 18.5 [C:15] Plot the shape functions N e
1 and N e

5 of the eight-node serendipity quadrilateral studied
in §18.4.3 using the module PlotQuadrilateralShapeFunction listed in Cell 18.2.
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1
2

34

ξ

η

5

N N1 5

Figure E18.3. Five node quadrilateral element for Exercise 18.6.

EXERCISE 18.6 [A:15]. A five node quadrilateral element has the nodal configuration shown in Figure E18.3.
Perspective views of N e

1 and N e
5 are shown in that Figure.2 Find five shape functions N e

i , i = 1, 2, 3, 4, 5 that
satisfy compatibility, and also verify that their sum is unity.

Hint: develop N5(ξ, η) first for the 5-node quad using the line-product method; then the corner shape functions
N̄i (ξ, η) (i = 1, 2, 3, 4) for the 4-node quad (already given in the Notes); finally combine Ni = N̄i + αN5,
determining α so that all Ni vanish at node 5. Check that N1 + N2 + N3 + N4 + N5 = 1 identically.

EXERCISE 18.7 [A:15]. An eight-node “brick” finite ele-
ment for three dimensional analysis has three isoparametric
natural coordinates called ξ , η and µ. These coordinates vary
from −1 at one face to +1 at the opposite face, as sketched
in Figure E18.4.

Construct the (trilinear) shape function for node 1 (follow the
node numbering of the figure). The equations of the brick
faces are:

1485 : ξ = −1 2376 : ξ = +1
1265 : η = −1 4378 : η = +1
1234 : µ = −1 5678 : µ = +1

z

x
y

ξ

η

µ

1

2

3

4

5

6

7

8

Figure E18.4. Eight-node isoparametric
“brick” element for Exercise 18.7.

EXERCISE 18.8 [A:15]. Consider the 4-node transition triangular element of Figure 18.8(b). The shape
function for node 1, N1 = ζ1 − 2ζ1ζ2 was derived in §18.5.2 by the correction method. Show that the others
are N2 = ζ2 − 2ζ1ζ2, N3 = ζ3 and N4 = 4ζ1ζ2. Check that compatibility and completeness are verified.

EXERCISE 18.9 [A:15]. Construct the six shape functions for the 6-node transition quadrilateral element of
Figure 18.8(c). Hint: for the corner nodes, use two corrections to the shape functions of the 4-node bilinear
quadrilateral. Check compatibility and completeness. Partial result: N1 = 1

4 (1−ξ)(1−η)− 1
4 (1−ξ 2)(1−η).

EXERCISE 18.10 [A:20]. Consider a 5-node transition triangle in which midnode 6 on side 1–3 is missing.
Show that N e

1 = ζ1 − 2ζ1ζ2 − 2ζ2ζ3. Can this be expressed as a line product like (18.1)?

2 Although this N e
1 resembles the N e

1 of the 4-node quadrilateral depicted in Figure 18.4, they are not the same. That in
Figure E18.3 must vanish at node 5 (ξ = η = 0). On the other hand, the N e

1 of Figure 18.4 takes the value 1
4 there.
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1

1

1

2

2

2
2

2
2

3

3

3

4
4

4
4

4

4

Set CL1

Set CL2

Reference
triangular
elements

Side 2-4 maps to this
parabola; part of triangle
2-3-4 turns "inside out"

Figure E18.5. Mapping of reference triangles under sets (E18.1) and (E18.2).
Triangles are slightly separated at the diagonal 2–4 for visualization convenience.

EXERCISE 18.11 [A:30]. The three-node linear triangle is known to be a poor performer for stress analysis.
In an effort to improve it, Dr. I. M. Clueless proposes two sets of quadratic shape functions:

CL1: N1 = ζ 2
1 , N2 = ζ 2

2 , N3 = ζ 2
3 . (E18.1)

CL2: N1 = ζ 2
1 + 2ζ2ζ3, N2 = ζ 2

2 + 2ζ3ζ1, N3 = ζ 2
3 + 2ζ1ζ2. (E18.2)

Dr. C. writes a learned paper claiming that both sets satisfy the interpolation condition, that set CL1 will work
because it is conforming and that set CL2 will work because N1 + N2 + N3 = 1. He provides no numerical
examples. You get the paper for review. Show that the claims are false, and both sets are worthless. Hint:
study §16.6 and Figure E18.5.

EXERCISE 18.12 [A:25]. Another way of constructing shape functions for “incomplete” elements is through
kinematic multifreedom constraints (MFCs) applied to a “parent” element that contains the one to be derived.
Suppose that the 9-node biquadratic quadrilateral is chosen as parent, with shape functions called N P

i , i =
1, . . . 9 given in §18.4.2. To construct the shape functions of the 8-node serentipity quadrilateral, the motions
of node 9 are expressed in terms of the motions of the corner and midside nodes by the interpolation formulas

ux9 = α(ux1 + ux2 + ux3 + ux4) + β(ux5 + ux6 + ux7 + ux8),

uy9 = α(uy1 + uy2 + uy3 + uy4) + β(uy5 + uy6 + uy7 + uy8),
(E18.3)

where α and β are scalars to be determined. (In the terminology of Chapter 9, ux9 and uy9 are slaves
while boundary DOFs are masters.) Show that the shape functions of the 8-node quadrilateral are then
Ni = N P

i + αN P
9 for i = 1, . . . 4 and Ni = N P

i + βN P
9 for i = 5, . . . 8. Furthermore, show that α and β can

be determined by two conditions:

1. The unit sum condition:
∑8

i=1 Ni = 1, leads to 4α + 4β = 1.

2. Exactness of displacement interpolation for ξ 2 and η2 leads to 2α + β = 0.

Solve these two equations for α and β, and verify that the serendipity shape functions given in §18.4.3 result.

EXERCISE 18.13 [A:25] Construct the 16 shape functions of the bicubic quadrilateral.
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§19.2 THE VARIATIONAL INDEX

§19.1. Overview

Chapters 11 through 18 have discussed, in piecemeal fashion, requirements for shape functions
of isoparametric elements. These are motivated by convergence: as the mesh is refined, the FEM
solution should approach the analytical solution of the mathematical model.1 This attribute is
obviously necessary to instill confidence in FEM results from the standpoint of mathematics.

This Chapter provides unified information on convergence requirements. These requirements can
be grouped into three:

Completeness. The elements must have enough approximation power to capture the analytical
solution in the limit of a mesh refinement process. This intuitive statement is rendered more precise
below.

Compatibility. The shape functions should provide displacement continuity between elements.
Physically these insure that no material gaps appear as the elements deform. As the mesh is refined,
such gaps would multiply and may absorb or release spurious energy.

Stability. The system of finite element equations must satify certain well posedness conditions that
preclude nonphysical zero-energy modes in elements, as well as the absence of excessive element
distortion.

Completeness and compatibility are two aspects of the so-called consistency condition between
the discrete and mathematical models. A finite element model that passes both completeness and
continuity requirements is called consistent. This is the FEM analog of the famous Lax-Wendroff
theorem,2 which says that consistency and stability imply convergence.

Remark 19.1. A deeper mathematical analysis done in more advanced courses shows that completeness is
necessary for convergence whereas failure of the other requirements does not necessarily precludes it. There
are, for example, FEM models in common use that do not satisfy compatibility. Furthermore, numerically
unstable models may be used (with caution) in situations where that property is advantageous, as in the
modeling of local singularities. Nonetheless, the satisfaction of the three criteria guarantees convergence and
may therefore be regarded as a safe choice for the beginner user.

§19.2. The Variational Index

For the mathematical statement of the completeness and continuity conditions, the variational index
alluded to in previous sections plays a fundamental role.

The FEM is based on the direct discretization of an energy functional �[u], where u (displacements
for the elements considered in this book) is the primary variable, or (equivalently) the function to
be varied. Let m be the highest spatial derivative order of u that appears in �. This m is called the
variational index.

1 Of course FEM convergence does not guarantee the correctness of the mathematical model in capturing the physics. As
discussed in Chapter 1, model verification against experiments is a different and far more difficult problem.

2 Proven originally for classical finite difference discretizations in fluid mechanics. More precisely, it states that a numerical
scheme for the scalar conservation law, du/dt + d f/dx = 0 converges to a unique (weak) solution, if it is consistent,
stable and conservative. There is no equivalent theorem for systems of conservation laws.
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Chapter 19: FEM CONVERGENCE REQUIREMENTS

Example 19.1. In the bar problem discussed in Chapter 11,

�[u] =
∫ L

0

(
1
2 u′ E Au′ − qu

)
dx . (19.1)

The highest derivative of the displacement u(x) is u′ = du/dx , which is first order in the space coordinate x .
Consequently m = 1. This is also the case on the plane stress problem studied in Chapter 14, because the
strains are expressed in terms of first order derivatives of the displacements.

Example 19.2. In the plane beam problem discussed in Chapter 12,

�[v] =
∫ L

0

(
1
2 v′′ E Iv′′ − qv

)
dx . (19.2)

The highest derivative of the transverse displacement is the curvature κ = v′′ = d2v/dx2, which is of second
order in the space coordinate x . Consequently m = 2.

§19.3. Consistency Requirements

Using the foregoing definition of variational index, we can proceed to state the two key requirements
for finite element shape functions.

§19.3.1. Completeness

The element shape functions must represent exactly all polynomial terms
of order ≤ m in the Cartesian coordinates. A set of shape functions that
satisfies this condition is called m-complete.

Note that this requirement applies at the element level and involves all shape functions of the
element.

Example 19.3. Suppose a displacement-based element is for a plane stress problem, in which m = 1. Then
1-completeness requires that the linear displacement field

ux = α0 + α1x + α2 y, uy = α0 + α1x + α2 y (19.3)

be exactly represented for any value of the α coefficients. This is done by evaluating (19.3) at the nodes to
form a displacement vector ue and then checking that u = Neue recovers exactly (19.3). Section 16.6 presents
the details of this calculation for an arbitrary isoparametric plane stress element. That analysis shows that
completeness is satisfied if the sum of the shape functions is unity and the element is compatible.

Example 19.4. For the plane beam problem, in which m = 2, the quadratic transverse displacement

v = α0 + α1x + α2x2 (19.4)

must be exactly represented over the element. This is easily verified in for the 2-node beam element developed
in Chapter 13, because the assumed transverse displacement is a complete cubic polynomial in x . A complete
cubic contains the quadratic (19.4) as special case.
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(a) (b)

i

(c)

i

2-node bars

i

Figure 19.1. An element patch is the set of all elements attached to a patch node, labeled i .
(a) illustrates a patch of triangles; (b) a mixture of triangles and quadrilaterals; (c) a mixture of

triangles, quadrilaterals, and bars.

§19.3.2. Compatibility

To state this requirement succintly, it is convenient to introduce the concept of element patch, or
simply patch. This is the set of all elements attached to a given node, called the patch node. The
definition is illustrated in Figure 19.1, which shows three different kind of patches attached to patch
node i in a plane stress problem. The patch of Figure 19.1(a) contains only one type of element:
3-node linear triangles. The patch of Figure 19.1(b) mixes two plane stress element types: 3-node
linear triangles and 4-node bilinear quadrilaterals. The patch of Figure 19.1(c) combines three
element types: 3-node linear triangles, 4-node bilinear quadrilaterals, and 2-node bars.

We define a finite element patch trial function as the union of shape functions activated by setting
a degree of freedom at the patch node to unity, while all other freedoms are zero.

A patch trial function “propagates” only over the patch, and is zero beyond it. This property follows
from the local-support requirement stated in §18.1: a shape function for node i should vanish on
all sides or faces that do not include i .

With the help of these definitions we can enunciate the compatibility requirement as follows.

Patch trial functions must be C (m−1) continuous between interconnected
elements, and Cm piecewise differentiable inside each element.

If the variational index is m = 1, the patch trial functions must be C0 continuous between elements,
and C1 inside elements.

A set of shape functions that satisfies the first requirement is called conforming. A conforming
expansion that satisfies the second requirement is said to be of finite energy. Note that this condition
applies at two levels: individual element, and element patch. An element endowed with conforming
shape functions is said to be conforming. A conforming element that satisfies the finite energy
requirement is said to be compatible.3

3 The FEM literature is a bit fuzzy as regards these terms. It seems better to leave the qualifier “conforming” to denote
interelement compatibility; informally “an element that gets along with its neighbors.” The qualifier “compatible” is
used in the stricter sense of conforming while possessing sufficient internal smoothness.
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(b)(a) (c)

(e)
(d) (f)

3-node bars

Figure 19.2. Examples of 2D non-matching meshes. Interelement boundaries that fail matching
conditions are shown offset for visualization convenience. In (a,b,c) some nodes do not match. In

(d,e,f) nodes and DOFs match but some sides do not, leading to violations of C0 continuity.

Figures 19.1(b,c) illustrates the fact that one needs to check the possible connection of matching
elements of different types and possibly different dimensionality.

§19.3.3. Matching and Non-Matching Meshes

As stated, compatibility refers to the complete finite element mesh because mesh trial functions are
a combination of patch trial functions, which in turn are the union of element shape functions. This
generality poses some logistical difficulties because the condition is necessarily mesh dependent.
Compatibility can be checked at the element level by restricting attention to matching meshes. A
matching mesh is one in which adjacent elements share sides, nodes and degrees of freedom, as in
the patches shown in Figure 19.1.

For a matching mesh it is sufficient to restrict consideration first to a pair of adjacent elements, and
then to the side shared by these elements. Suppose that the variation of a shape function along
that side is controlled by k nodal values. Then a polynomial variation of order up to k − 1 in the
natural coordinate(s) can be specified uniquely over the side. This is sufficient to verify interelement
compatibility for m = 1, implying C0 continuity, if the shape functions are polynomials.

This simplified criterion is the one used in previous Chapters. Specific 2D examples were given in
Chapters 15 through 18.

Remark 19.2. If the variational index is m = 2 and the problem is multidimensional, as in the case of
plates and shells, the check is far more involved and trickier because continuity of normal derivatives along
a side is involved. This practically important scenario is examined in advanced FEM treatments. The case of
non-polynomial shape functions is, on the other hand, of little practical interest.
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Mesh of
tetrahedra

Mesh of
bricks

Common surface

Figure 19.3. Example of a 3D non-matching mesh. Top portion discretized with
tetrahedra, lower portion with bricks. Nodes and boundary-quad edges and DOFs

match, but element types are different, leading to violation of C0 continuity.

A mesh that does not satisfy the matching criteria stated above is called a nonmatching mesh.
Several two-dimensional examples are shown in Figure 19.2. As can be seen there is a wide range
of possibilities: nonmatching nodes, matching nodes but different element types, etc. Figure 19.3
depicts a three-dimensional example, in which case even more variety can be expected.

Nonmatching meshes are the rule rather than the exception in contact and impact problems (which,
being geometrically nonlinear, are outside the scope of this book). See Figure 19.4 illustrates what
happens in a problem of slipping contact.

���������
���������

Initial shape Deformed shape

���������
���������

Figure 19.4. In contact and impact problems, matching meshes are the exception rather than the
rule. Even if the meshes match at initial contact, slipping may produce a nonmatching mesh in

the deformed configuration, as illustrated in the figure.

In multiphysics simulations nonmatching meshes are common, since they are often prepared sepa-
rately for the different physical components, as illustrated in Figure 19.5.

§19.4. Stability

Stability may be informally characterized as ensuring that the finite element model enjoys the same
solution uniqueness properties of the analytical solution of the mathematical model. For example, if
the only motions that produce zero internal energy in the mathematical model are rigid body motions,
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Fluid

Structure

Figure 19.5. Nonmatching meshes are common in multiphysics problems, as in this example of
fluid-structure interaction (FSI). Two-dimensional model to simulate flow around a thin plate. If

the meshes are independenly prepared node locations will not generally match.

the finite element model must inherit that property. Since FEM can handle arbitrary assemblies of
elements, including individual elements, this property is required to hold at the element level.

In the present outline we are concerned with stability at the element level. Stability is not a property
of shape functions per se but of the implementation of the element as well as its geometrical
definition. It involves two subordinate requirements: rank sufficiency, and Jacobian positiveness.
Of these, rank sufficiency is the most important one.

§19.4.1. Rank Sufficiency

The element stiffness matrix must not possess any zero-energy kinematic mode other than rigid
body modes.

This can be mathematically expressed as follows. Let nF be the number of element degrees of
freedom, and nR be the number of independent rigid body modes. Let r denote the rank of Ke. The
element is called rank sufficient if r = nF − nR and rank deficient if r < nF − nR . In the latter
case, the rank deficiency is defined by

d = (nF − nR) − r (19.5)

If an isoparametric element is numerically integrated, let nG be the number of Gauss points, while
nE denotes the order of the stress-strain matrix E. Two additional assumptions are made:

(i) The element shape functions satisfy completeness in the sense that the rigid body modes are
exactly captured by them.

(ii) Matrix E is of full rank.

Then each Gauss point adds nE to the rank of Ke, up to a maximum of nF − nR . Hence the rank
of Ke will be

r = min(nF − nR, nE nG) (19.6)

To attain rank sufficiency, nE nG must equal or exceed nF − nR :

nE nG ≥ nF − nR (19.7)

from which the appropriate Gauss integration rule can be selected.

In the plane stress problem, nE = 3 because E is a 3 × 3 matrix of elastic moduli; see equation
(14.5)2. Also nR = 3. Consequently r = min(nF − 3, 3nG) and 3nG ≥ nF − 3.
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Table 19.1 Rank-sufficient Gauss Rules for Some Plane Stress Elements

Element n nF nF − 3 Min nG Recommended rule

3-node triangle 3 6 3 1 centroid∗

6-node triangle 6 12 9 3 3-point rules∗

10-node triangle 10 20 17 6 6-point rule∗

4-node quadrilateral 4 8 5 2 2 x 2
8-node quadrilateral 8 16 13 5 3 x 3
9-node quadrilateral 9 18 15 5 3 x 3
16-node quadrilateral 16 32 29 10 4 x 4
∗ These triangle integration rules are introduced in §24.2.
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1 2

3

1 2

3

1 2

3

1 2

3

4 4 4 4 4

Figure 19.6. Effect of displacing node 4 of the four-node bilinear quadrilateral shown on the
leftmost picture, to the right.

Remark 19.3. The fact that each Gauss point adds nE nG to the rank can be proven considering the following
property. Let B be a nE ×nF rectangular real matrix with rank rB ≤ nE , and E an nE ×nE positive-definite (p.d.)
symmetric matrix. Then the rank of BT E B is rB . Proof: let u 
= 0 be a non-null nF -vector. If BT E B u = 0
then 0 = uT BT E B u = ||E1/2 B u||. Therefore B u = 0. Identify now B and E with the strain-displacement
and stress-strain (constitutive) matrix, respectively. In the plane stress case nE = 3, nF = 2n > 3 is the
number of element freedoms. Thus B has rank 3 and a fortiori BT E B must also have rank 3 since E is p.d.
At each Gauss point i a contribution of wi B

T E B, which has rank 3 if wi > 0, is added to Ke. By a theorem
of linear algebra, the rank of Ke increases by 3 until it reaches nF − nR .

Example 19.5. Consider a plane stress 6-node quadratic triangle. Then nF = 2×6 = 12. To attain the proper
rank of 12 − nR = 12 − 3 = 9, nG ≥ 3. A 3-point Gauss rule, such as the midpoint rule defined in §24.2,
makes the element rank sufficient.

Example 19.6. Consider a plane stress 9-node biquadratic quadrilateral. Then nF = 2 × 9 = 18. To attain
the proper rank of 18 − nR = 18 − 3 = 15, nG ≥ 5. The 2 × 2 product Gauss rule is insufficient because
nG = 4. Hence a 3 × 3 rule, which yields nG = 9, is required to attain rank sufficiency.

Table 19.1 collects rank-sufficient Gauss integration rules for some widely used plane stress elements
with n nodes and nF = 2n freedoms.
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§19.4.2. Jacobian Positiveness

The geometry of the element should be such that the determinant J = det J of the Jacobian matrix
defined4 in §17.2, is positive everywhere. As illustrated in Equation (17.20), J characterizes the
local metric of the element natural coordinates.
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Figure19.7. Effect of moving midpoint 5 of a 9-node biquadratic quadrilateral
tangentially toward corner 2.

For a three-node triangle J is constant and in fact equal to 2A. The requirement J > 0 is equivalent
to saying that corner nodes must be positioned and numbered so that a positive area A > 0 results.
This is called a convexity condition. It is easily checked by a finite element program.

But for 2D elements with more than 3 nodes distortions may render portions of the element metric
negative. This is illustrated in Figure 19.6 for a 4-node quadrilateral in which node 4 is gradually
moved to the right. The quadrilateral gradually morphs from a convex figure into a nonconvex
one. The center figure is a triangle; note that the metric near node 4 is badly distorted (in fact
J = 0 there) rendering the element unacceptable. This clearly contradicts the erroneous advice of
some FE books, which state that quadrilaterals can be reduced to triangles as special cases, thereby
rendering triangular elements unnecessary.

For higher order elements proper location of corner nodes is not enough. The non-corner nodes
(midside, interior, etc.) must be placed sufficiently close to their natural locations (midpoints,

4 This definition applies to quadrilateral elements. The Jacobian determinant of an arbitrary triangular element is defined
in §24.2.
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Figure 19.8. Effect of displacing midpoints 4, 5 and 6 of an equilateral 6-node triangle along
the midpoint normals. Motion is inwards in first two top frames, outwards in the last four. In

the lower leftmost picture nodes 1 through 6 lie on a circle.

centroids, etc.) to avoid violent local distortions. The effect of midpoint motions in quadratic
elements is illustrated in Figures 19.7 and 19.8.

Figure 19.7 depicts the effect of moving midside node 5 tangentially in a 9-node quadrilateral
element while keeping all other 8 nodes fixed. When the location of 5 reaches the quarter-point of
side 1-2, the metric at corner 2 becomes singular in the sense that J = 0 there. Although this is
disastrous in ordinary FE work, it has applications in the construction of special “crack” elements
for linear fracture mechanics.

Displacing midside nodes normally to the sides is comparatively more forgiving, as illustrated in
Figure 19.8. This depicts a 6-node equilateral triangle in which midside nodes 4, 5 and 6 are moved
inwards and outwards along the normals to the midpoint location. As shown in the lower left
picture, the element may be even morphed into a “parabolic circle” (meaning that nodes 1 through
6 lie on a circle) without the metric breaking down.

Notes and Bibliography

The literature on the mathematics of finite element methods has grown exponentially since the monograph of
Strang and Fix [705]. This is very readable but out of print. A more up-to-date exposition is the textbook by
Szabo and Babuska [721]. The subjects collected in this Chapter tend to be dispersed in recent monographs
and obscured by overuse of functional analysis.
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References

Referenced items have been moved to Appendix R.
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Exercises

Homework Exercises for Chapter 19

FEM Convergence Requirements

EXERCISE 19.1 [D:20] Explain why the two-dimensional meshes pictured in Figure 19.2(d,e,f) fail interele-
ment compatibility although nodes and DOFs match.

EXERCISE 19.2 [A:20] The isoparametric definition of the straight 3-node bar element in its local system x̄
is [

1
x̄
v̄

]
=

[
1 1 1
x̄1 x̄2 x̄3

ū1 ū2 ū3

][
N e

1 (ξ)

N e
2 (ξ)

N e
3 (ξ)

]
. (E19.1)

Here ξ is the isoparametric coordinate that takes the values −1, 1 and 0 at nodes 1, 2 and 3, respectively, while
N e

1 , N e
2 and N e

3 are the shape functions found in Exercise 16.3 and listed in (E16.2).

For simplicity, take x̄1 = 0, x̄2 = L , x̄3 = 1
2 L + αL . Here L is the bar length and α a parameter that

characterizes how far node 3 is away from the midpoint location x̄ = 1
2 L . Show that the minimum α’s

(minimal in absolute value sense) for which J = dx̄/dξ vanishes at a point in the element are ±1/4 (the
quarter-points). Interpret this result as a singularity by showing that the axial strain becomes infinite at a an
end point. (This result has application in fracture mechanics modeling.)

EXERCISE 19.3 [A:15] Consider one dimensional bar-like elements with n nodes and 1 degree of freedom
per node so nF = n. The correct number of rigid body modes is 1. Each Gauss integration point adds 1 to
the rank; that is NE = 1. By applying (19.7), find the minimal rank-preserving Gauss integration rules with
p points in the longitudinal direction if the number of node points is n = 2, 3 or 4.

EXERCISE 19.4 [A:20] Consider three dimensional solid “brick” elements with n nodes and 3 degrees of
freedom per node so nF = 3n. The correct number of rigid body modes is 6. Each Gauss integration point
adds 6 to the rank; that is, NE = 6. By applying (19.7), find the minimal rank-preserving Gauss integration
rules with p points in each direction (that is, 1×1×1, 2×2×2, etc) if the number of node points is n = 8, 20,
27, or 64. Partial answer: for n = 27 the minimal rank preserving rule is 3 × 3 × 3.

EXERCISE 19.5 [A/C:35] (Requires use of a CAS help to be tractable). Repeat Exercise 19.2 for a 9-node
plane stress element. The element is initially a perfect square, nodes 5,6,7,8 are at the midpoint of the sides
1–2, 2–3, 3–4 and 4–1, respectively, and 9 at the center of the square. Displace 5 tangentially towards 2 until
the Jacobian determinant at 2 vanishes. This result is important in the construction of “singular elements” for
fracture mechanics.

EXERCISE 19.6 [A/C:35] Repeat Exercise 19.5 but moving node 5 along the normal to the side. Discuss
the range of motion for which det J > 0 within the element.

EXERCISE 19.7 [A:20] Discuss whether the deVeubeke triangle presented in Chapter 15 satisfies complete-
ness and interelement-compatbility requirements.
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