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811.2 DEFINITION OF BAR MEMBER

§11.1. A New Beginning

This Chapter begins Part 11 of the course. This Part focuses on the construction of structural and
continuum finite elementsusing avariational formulation based on the Total Potential Energy. Why
only elements? Becausethe other synthesis steps of the DSM: globalization, merge, BC application
and solution, remain the same asin Part |. Those operations are not element dependent.

Individual elements are constructed in this Part beginning with the ssmplest ones and progressing
to more complicated ones. The formulation of 2D finite elements from a variational standpoint is
discussed in Chapters 14 and following. Although the scope of that formulation isbroad, exceeding
structural mechanics, it is better understood by going through specific elements first.

From a geometrical standpoint the ssmplest finite elements are one-dimensional or line el ements.
This means that the intrinsic dimensionality is one, although these elements may be used in one,
two or three space dimensions upon transformation to global coordinates as appropriate. The
simplest one-dimensional structural element is the two-node bar element, which we have already
encountered in Chapters 2, 3 and 5 as the truss member.

In this Chapter the bar stiffness equations are rederived using the variational formulation. For
uniform propertiesthe resulting equations are the same as those found previously using the physical
or Mechanics of Materials approach. The variational method has the advantage of being readily
extendible to more complicated situations, such as variable cross section or more than two nodes.

a b
y (@) (b)
X | -
Cross section » axial rigidity EA
—> U(X)
z q(x) P
—>—>—>>
P
X N cross
N . /ﬁ\* section
Longitudinal axis - L >

Ficure 11.1. A fixed-free bar member: (a) 3D view showing reference frame; (b) 2D view on {x, y} plane
highlighting some quantities that are important in bar analysis.

811.2. Definition of Bar Member

In structural mechanics abar isastructural component characterized by two properties:

(1) Onepreferreddimension: thelongitudinal dimensionor axial dimensionismuchlarger that the
other two dimensions, which arecollectively known astransversedimensions. Theintersection
of a plane normal to the longitudinal dimension and the bar defines the cross sections. The
longitudinal dimension defines the longitudinal axis. See Figure 11.1(a).

(2) The bar resists an internal axial force along its longitudinal dimension.
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Chapter 11: VARIATIONAL FORMULATION OF BAR ELEMENT

Table11.1 Nomenclaturefor Mathematical Model of Axially L oaded Bar

Quantity Meaning
X Longitudinal bar axis*
() d(.)/dx
u(x) Axial displacement
q(x) Distributed axial force, given per unit of bar length
L Total bar length
E Elastic modulus

A Cross section area; may vary with x
EA Axial rigidity
e=du/dx =Uu Infinitesimal axial strain
o =Ee=EU Axial stress
F=Aoc =EAe=EAU Internal axial force

P Prescribed end |oad

* X isused in this Chapter instead of X (asin Chapters 2—3) to simplify the notation.

In addition to trusses, bar elements are used to model cables, chains and ropes. They are aso used
asfictitious elements in penalty function methods, as discussed in Chapter 9.

Wewill consider hereonly straight bars, althoughtheir crosssection may vary. Our one-dimensional
mathematical model assumes that the bar material is linearly elastic obeying Hooke's law, and that
displacements and strains are infinitessmal. Figure 11.1(b) pictures some relevant quantities for a
fixed-free bar. Table 11.1 collects the necessary terminology for the governing equations.

Figure 11.2 displays the governing equations of the bar in a graphic format called a Tonti diagram.
The formal similarity with the diagrams used in Chapter 5 to explain MoM elements should be
noted, although the diagram of Figure 11.2 pertains to the continuum bar model rather than to the
discrete one. (The qualifier “strong form” is explained in the next Chapter.)

§811.3. Variational Formulation

Toillustrate the variational formulation, the finite element equations of the bar will be derived from
the Minimum Potential Energy principle.

§11.3.1. TheTotal Potential Energy Functional

In Mechanics of Materialsit is shown that the internal energy density at a point of alinear-elastic
material subjected to a one-dimensional state of stress o and straineisid = %a(x)e(x), where
o isto be regarded as linked to the displacement u through Hooke's law ¢ = Ee and the strain-
displacement relation e = u’ = du/dx. Thisi/ isaso caled the strain energy density. Integration
over the volume of the bar gives the total internal energy

L L L
U= %/ oedV = %/ Fedx = %/ (EAU)U dx = %/ u'EAU dx. (11.1)
\ 0 0 0
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811.3 VARIATIONAL FORMULATION

Prescribed | PN (" e Distributed
~ end = displacement axial load
displacement u(x) q(x)

Kinematic] e=u' F'+g=0 | Equilibrium
Axia I F=EAe Axial i
i force Force BCs Péne%clrcl) t;ejd

e(x) Constitutive F(X)

Fi1cUure 11.2. Strong-form Tonti diagram for the continuum model of a bar member. Field equations and BCs
are represented as lines connecting the boxes. Yellow (brown) boxes contain unknown (given) quantities.

All integrand quantitiesin (11.1) may depend on X.

The external work potential is the work performed by applied mechanical loads working on the
bar displacements. This potential is denoted by W. (The external energy V is the negative of the
work potential: V = —W. In the ensuing derivations W will be used instead of V.) It collects
contributions from two sources:

1. Thedistributed load q(x). This contributes a cross-section density of q(x)u(x) becauseq is
assumed to be already integrated over the section.

2. Any specified axial point load(s). For the fixed-free example of Figure 11.1 the end load P
would contribute P u(L).

The second source may be folded into thefirst by conventionally writing any point load P acting at
across section x = a asacontribution P §(a) to q(x), in which §(a) denotes the one-dimensional
Dirac deltafunction at x = a. If thisis done the external energy can be concisely expressed as

L
w =/ qudx. (11.2)
0

The total potential energy of the bar is given by

| NI=U-W | (11.3)

Mathematically IT is afunctional, called the Total Potential Energy functional or TPE. It depends
only on the axial displacement u(x). In Variational Calculus u(x) is called the primary variable
of the functional. When the dependence of IT on u needs to be emphasized we shall write TT[u] =
U [u] —W][u], with bracketsenclosing the primary variable. Todisplay both primary andindependent
variables we write, for example, IT[u(x)] = U[u(x)] — W[u(x)].

Remark 11.1. According to the rules of Variational Calculus, the Euler-Lagrange equation for IT is
_om d am

T 9u dxau

— _q— (EAUY (11.4)
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Chapter 11: VARIATIONAL FORMULATION OF BAR ELEMENT

ou(x)
u(x)+ du(X) ou(L)
u(L)
X)
% u0) =0 «

F1cURE 11.3. Concept of admissible variation of the axial displacement function u(x). For convenience u(x) is
plotted normal to the longitudinal axis. Both u(x) and u(x) + su(x) shown above are kinematically admissible,
and so isthe variation §u(x). Note that the variation su(L) is not zero because the BC at X = L is natural.

The stationary condition for ITis& = 0, or
(EAU)Y +q=0 (11.5)

This is the strong (pointwise) equation of equilibrium in terms of the axial displacement, which reduces to
EAU +q = 0if EAisconstant. Thisequation is not explicitly used in the FEM development. It isinstead
replaced by §TT = 0, with the variation restricted over the class of finite element interpolation functions.

811.3.2. Admissible Variations

The concept of admissiblevariationisfundamental in both variational calculusand the variationally
formulated FEM. Onlythe primary variable(s) of afunctional may bevaried. For the TPE functional
(11.3) thisisthe axial displacement u(x). Suppose that u(x) is changed to u(x) + 8 u(x).t Thisis
illustrated in Figure 11.3, where for convenience u(x) is plotted normal to x. The TPE functional
changes accordingly as

[T =TII[u] = II+4 61 = II[u+ su]. (11.6)
The function § u(x) and the scalar §I1 are called the variations of u(x) and IT, respectively. The
variation § u(x) should not be confused with the ordinary differential du(x) = u’(x) dx since on
taking the variation the independent variable x isfrozen; that is, §x = 0.

A displacement variation su(x) is said to be admissible when both u(x) and u(x) 4+ § u(x) are
kinematically admissiblein the sense of the Principle of Virtual Work (PVW). This agrees with the
conditions of classical variational calculus, and are restated next.

A kinematically admissible axial displacement u(x) obeys two conditions:
(i) Itiscontinuous over the bar length, that is, u(x) € C°inx € [0, L].

(i) It satisfies exactly any displacement boundary condition, such as the fixed-end specification
u(0) = O of Figure 11.1. See of Figure 11.3.

The variation § u(x) pictured in Figure 11.3 is kinematically admissible because both u(x) and
u(x) 4+ & u(x) satisfy the foregoing conditions. Note that the variation su(L) at thefreeend x = L
is not necessarily zero because that boundary condition is natural; that is, not specified directly in
terms of the displacement u(L). On the other hand, §(0) = 0.

The physical meaning of conditions (i)—ii) isthe subject of Exercise 11.1.

1 Thesymbol § notimmediately followed by aparenthesisis not adeltafunction but instead denotes variation with respect
to the variable that follows.
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811.3 VARIATIONAL FORMULATION

up, f; quy f qug, 3 U, fy (Us, f5

() ) e 4

O O O O O
1 2 3 4 5
u u(x)
Us
u Us Uq X
=0 ”

FI1GURE 11.4. FEM discretization of bar member. A piecewise- linear admissible displacement trial
function u(x) is drawn underneath the mesh. It is assumed that the left end is fixed; thusu; = 0.

§11.3.3. TheMinimum Total Potential Energy Principle

The Minimum Total Potential Energy (M TPE) principle states that the actual displacement solution
u*(x) that satisfies the governing equations is that which renders IT stationary:2

SI=386U—-8SW=0 iff u=u" (11.7)

with respect to admissible variations u = u* + §u of the exact displacement field u*(x).

Remark 11.2. Using standard techniquesof variational calculus® it can be shownthat if EA > 0and kinematic
boundary conditions weed out any rigid motions, the solution u*(x) of (11.7) exists, is unique, and renders
IT[u] a minimum over the class of kinematically admissible displacements. The last attribute explains the
“minimum” in the name of the principle.

811.3.4. TPE Discretization

To apply the TPE functional (11.3) to the derivation of FEM equations we replace the contin-
uum mathematical model by a discrete one consisting of a union of bar elements. For example,
Figure 11.4 illustrates the subdivision of afixed-free bar member into four two-node elements.

Functionals are scalars. Therefore, for a discretization such as that shown in Figure 11.4, the TPE
functional (11.3) may be decomposed into a sum of contributions of individual elements:

N=0%+0®+... 4+t (11.8)

in which Ng denotes the number of elements. The same decomposition applies to both its internal
energy and external work potential components:

sU =8UD 4+ +sUMNe — SW = sW® + .+ swNe — (11.9)

aswell asto the stationarity condition (11.7):

STT =611 +811@ 4+ ...+ 611N = 0. (11.10)

2 The symbol “iff” in (11.7) is an abbreviation for “if and only if”.
3 Seereferencesin Notes and Bibliography at the end of Chapter.
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@ s, (b1) L (b2
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FicUure 11.5. A two-node, TPE-based bar element: (a) element configuration and axial displacement
variation (plotted normal to element axis for better visibility); (b1,b2,b3) displacement interpolation
expressed in terms of linear shape functions; (c) element shape functions.

Using the fundamental lemma of variational calculus,” it can be shown that (11.10) impliesthat for
ageneric element e we may write

STI® = sU® — sW° = 0. (11.11)

This variational equation is the basis for the derivation of element stiffness equations once the
displacement field has been discretized over the element, as described next.

Remark 11.3. In mathematics (11.11) is called afirst variation form. It is a special case of a more genera
expression called a weak form, which is covered in more detail later. In mechanics it states the Principle of
Virtual Work or PVW for each element: §U®€ = §W¢, which saysthat the virtual work of internal and external
forces on admissible displacement variationsis equal if the element isin equilibrium [588].

811.3.5. Bar Element Discretization

Figure 11.5(a) depicts ageneric bar element e. It has two nodes, which are labeled 1 and 2. These
are called the local node numbers.®> The element is referred to its local axis X = x — X;, which
measures the distance from its left end. The two degrees of freedom are u$ and u$. (Bars are not
necessary since the directions of X and x are the same.) The element lengthis¢ = L°®.

The mathematical concept of bar finite elementsisbased on approximating axial displacement u(x)
over the element. The exact displacement u* is replaced by an approximate displacement

u*(X) &~ u¢(x) (11.12)

4 See, e.g., Chapter Il of Gelfand and Fomin [297].

5 Note the notational change from the labelsi and j of Part I. Thiswill facilitate transition to multidimensional elements
in Chapters 14ff.
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811.3 VARIATIONAL FORMULATION

over the finite element mesh. This approximate displacement, u®(x), taken over all elementse =
1,2,...NF€ iscaled thefinite element trial expansion or ssimply trial expansion. See Figure 11.4.
ThisFE trial expansion must belong to the class of kinematically admissible displacements defined
in 2. Consequently, it must be C° continuous over and between elements. The most common
choices fpr u€ are polynomialsin x, asin the development that follows.

811.3.6. Interpolation by Shape Functions

In atwo-node bar el ement the only possible polynomial choice of the displacement u® that satisfies
theinterelement continuity requirement islinear. It can be expressed by thefollowing interpolation
formula, which is graphically developed in Figure 11.5(b1,b2,b3):

e
US(x) = NEUE + NSUE =[N NE] [34 = N°ue, (11.13)
2

Thefunctions N7 and N3 that multiply the node displacementsu; and u, are called shape functions,
while N is called the shape function matrix. In this case N® reduces to arow vector.

The shape functions interpolate the internal displacement u€ directly from the node values. They
arepictured in Figure 11.5(c). For thiselement, with X = x — x; measuring the axial distance from
the left node i, the shape functions are

X X
Nf=1-2=1-¢ Nj=_=¢ (11.14)

Here
X — X1

14

Is a dimensionless coordinate, also known as a natural coordinate, that varies from 0 through 1
over the element. Note that dx = ¢d¢ and d¢ = dx/£. The shape function Nf hasthe value 1 at
node 1 and O at node 2. Conversely, shape function N5 has the value O at node 1 and 1 at node 2.
Thisis agenera property of shape functions. It follows from the fact that element displacement
interpolations such as (11.13) are based on physical node values.

X (11.15)
¢ '

§11.3.7. The Strain-Displacement Matrix

The axial strain associated with the trial function u€is

du® e dN{  dNJ ug 1 ué
= — = /: —_— = — —1 1 1 :B € 1116
e= " = =[5 dx][ug et ] =B —
in which
1
B = / [-1 1], (112.17)

is called the strain-displacement matrix. Note that B is constant over the element.
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(a) (b)

u Ng
Mckline)
N@ | NE X
@) O (2 O ©) O 4) o 3 |'3 A
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FIGURE 11.6. Trial basisfunction (ak.a hat function) for node 3 of afour-element bar discretization.

§11.3.8. *Trial Basis Functions

Shape functions are associated with elements. A trial basis function, or simply basis function, is associated
with anode. Suppose nodei of abar discretization connects elements (el) and (€2). Thetrial basis function
N; is defined as

N if x € element (e1)

Ni(X) =1 N® if x € element (€2) (11.18)

0 otherwise
For a piecewise linear discretization, such as that used in the two-node bar, this function has the shape of a
hat. Thusit isaso called a hat function or chapeau function. See Figure 11.6, in whichi = 3, el = 2, and
e2 = 3. The concept isimportant in the variational interpretation of FEM as a Rayleigh-Ritz method.

Remark 11.4. In addition to continuity, shape and trial functions must satisfy a completeness requirement
with respect to the governing variational principle. This condition is stated and discussed in later Chapters.
Sufficesfor now to say that the shape functions (11.14), aswell asthe associated trial functions, do satisfy this
reguirement.

811.4. TheFinite Element Equations

Inlinear FEM thediscretization process based on the TPE functional leadsto thefollowing algebraic
form in the node displacements

Mme=Ue—We, inwhich U®% I Keu® and W E T (11.19)

Here K © and f° are called the element stiffness matrix and the element consistent nodal force vector,
respectively. ThethreescalarsT1¢, U € and W€ are only function of the node displacementsu®. (This
is a consequence of displacements being the only primary variable of the TPE functional.) Note
that U®€ and W€ depend quadratically and linearly, respectively, on those displacements. Taking
the variation of T1¢ with respect to the node displacements gives®

T oI1®
aue
Because the variations §u€ can be arbitrary, the bracketed expression must vanish, which yields

STI® = (5u°) = (su®)" [Keus—f¢] = 0. (11.20)

| Keue=f° | (11.21)

These are the familiar element stiffness equations. Hence the foregoing names given to K€ and €
arejustified a posteriori.

6 The % factor disappears on taking the variation because U € is quadratic in the node displacements. For areview on the
calculus of discrete quadratic forms, see Appendix D.
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811.4 THE FINITE ELEMENT EQUATIONS

811.4.1. The StiffnessMatrix
We now apply the foregoing expressions to the two-node bar element. Itsinternal energy U€is

1

X2
ue:%/ eEAedx:%/ eEAetds. (11.22)
X1 0

Note that the integration variable x has been changed to the natural coordinate ¢ defined in (11.15)
that varies from O through 1, whence dx = ¢d¢. Thisform is symmetrically expanded using the
strain-displacement matrix relation (11.16), by insertinge = e” = (u®)"BT and e = B u¢ into the
first and second e of (11.22), respectively, to get
1 1 1 _1 1 ue
ue= %f (u®)"BTEABULd; = %/ [u$ us]-> [ ] EA-[-1 1] [ g] ede.
0 0 L 1 V4 us
(11.23)

The nodal displacements do not depend on position and can be moved out of the integral. Also
B'TEAB = EAB'Bsince EAisascaar:

! LEA _ e
Ue= 1w [ EABTBEdcwe = d[ut u) | 7[_1 ﬂm; [Eg] (11.24)
0 0 2

By (11.19) thisis expressible as 1 (ue)T K®ue. Since u® isarbitrary, K® is extracted as

1 YEAT 1 -1 17 1 -17 (*
Ke:/ EAB'B¢d :/ —[ ]Ed =—[ }/ EA dc.
A =) @ -r 1" 1, ¢
(11.25)

Thisisthe bar element stiffness matrix. For a homogeneous and prismatic bar of constant rigidity,
E A can be moved outside the integral, fol d¢ = 1 and (11.25) collapsesto

Ke:E—A[ 1 _1]. (11.26)

£ -1 1

Thisis the same element stiffness matrix of the prismatic truss member derived in Chapters 2 and
5 by aMechanics of Materials approach, but now obtained through a variational argument.

811.4.2. The Consistent Node Force Vector

The consistent node force vector € defined in (11.19) comes from the element contribution to the
external work potential W:

X2 1 1
We:f qudx:f qNTueﬁdgz(ue)T/ q[lzg‘] ¢de € (ue)Tfe, (11.27)
X1 0 0

Since u€ is arbitrary,

X2 1
fe:/ q[lzg}dxzfo q[lzg]ﬁdg. (11.28)
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(b) Load casel: point load P at x=L
o P
@ >

(c) Load casell: q(x) varieslinearly
5 \ from g, at x=0 through ¢ at x=L

[ | %—»—-@—» —»—»(:)2

3 | N

I L >

Z

%

(@)

2%

(d) Load caselll: g(x)=0q (constant)
N fromx=0 through x=L/2, else 0

(1) 2
\ o

F1GURE 11.7. Fixed-free, prismatic bar example: (a) configuration; (b,c,d) FEM discretization and |oad cases.

in which ¢ is defined by (11.15). If g is constant over the element, it may be taken out of the

integral:
1
fe:q/ [1_§]€d§. (11.29)
0 ¢

This gives the same results as with the EbE lumping method of Chapter 7. See Exercise 11.3.

Example 11.1. Thetwo-node bar element istested on the benchmark problem defined in Figure 11.7. A fixed-
free, homogeneous, prismatic bar of length L, elastic modulus E and cross section area A hasthe configuration
illustratedin Figure 11.7(a). Itisdiscretized with asingle element asshowninFigure 11.7(b,c,d), and subjected
to the three load cases pictured there. Case | involves a point load P at the free end, which may be formally
represented as

q'(x) = P (L) (11.30)

where § () denotes the delta function with argument x.

Casell involvesadistributed axial |oad that varieslinearly from g, = q(0) at the fixed end through g, = q(L)
at the free end:

9" (x) =l —¢) + e, (11.31)

inwhich¢ =1 — x/L. Caselll involves a“box” distributed load q(x) that is constant and equal to gy from
the fixed end x = 0 through midspan x = L /2, and zero otherwise:

9" 00 = 0o (HOO — H(x — 3L)), (11.32)

in which H() denotes the Heaviside unit step function with argument x. The master stiffness egquations
constructed using the prismatic stiffness matrix (11.26) with ¢ = L and X — x are

EAT 1 —-177ul] _7f"] _m
~ o alld]=ld]=m (139
Here supercript m identifies the load case. The consistent node forces computed from (11.28) with £ = L and
X — xare L L
0 20 + Q2 m _ QLT3
f':[ ] f":—[ } f :—[] 11.34
P 6 Lo + 20, g L1 (1139
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811.5 WEAK FORMS

On applying the fixed end support condition uf® = 0 and solving for uf', the free end deflections are
I_& u||:(q1+2q2)|—2 u|||:C|O|—2
EA’ 2 6EA 2 8EA’

The analytical solutions for u(x), obtained on integrating the ODE E Au” + q = 0 with boundary conditions
u) =0,F(L)=EAU(L)=Pforcasel and F(L) = EAU'(L) = Ofor casesll and Ill, are

(11.35)

2 a2
U () = B u (x) = X [3(01402) L=—30q; L X+ (g1 —02) X ]’ U (x) = i(LX—XZ—i—(X—%L)Z).

EA 6EA 2EA
(11.36)

In the expression of u''! (x), (x — L)% means (x — $L)?if x > 1L, else zero (Macauley’s bracket notation
for discontinuity functions). Evaluating (11.36) at x = L and comparing to (11.35), one finds that the three
computed end deflections are exact.

For case | this agreement is no surprise: the exact u' (x) is linear in x, which is contained in the span of
the linear shape functions. But for Il and 111 thisis far from obvious since the exact solutions are cubic and
piecewise quadratic, respectively, in X. The fact that the exact solution is verified at the free end node is an
instance of the nodal exactness property discussed in §11.6.1.

Note that in cases Il and Il the FEM displacement solutions inside the element, which vary linearly, will
not agree pointwise with the exact solutions, which do not. For example the exact midspan displacement is
u''"(3L) = qoL?/(8EA) = u''' (L), whereasthe FEM interpolation would give gL 2/ (16 E A) there, in error
by 100%. To reduce such internal discrepancies the member may be divided into more elements.

§11.5. Weak Forms

Weak forms are expressions notorioudly difficult to explain to newcomers. They occupy an inter-
mediate position between differential equations and functionals. There are so many variants and
procedural kinks, however, that their position in the mathematical food chain is fuzzy. Confusion
is compounded by the use of disparate terminology, some generic, some application oriented. To
shed some sunlight into this murky swamp, we go through a specific example: the bar member.

§11.5.1. From Strongto Weak

The governing differential equation for a bar member in terms of axial displacements is
(EAu/(x))/ 4+ q(x) = 0, or EAU”(X) + q(x) = 0if therigidity EA is constant. Replace the
zero by r (x), which stands for residual, and move it to the left-hand side:

r(x) = (EAU(X)) +q(x), orif EAisconstant: r(x) = EAu"(X) + g. (11.37)

The governing ODE may be compactly stated asr (x) = 0. This must hold at each point over the
member span, say x € [0, L]. Hence the term strong form (SF) used for this kind of mathematical
model. No ambiguity so far. But suppose that insisting onr (x) = 0 everywhere istoo demanding.
We would like to relax that condition so it is satisfied only in an average sense. To accomplish that,
multiply the residual by a function v(x), integrate over the problem domain, and set the result to
zero:

L
J= / r(x)v(x)dx = 0. (11.38)
0

Here v(X) is supposed to be sufficiently well behaved for the integral to exist. Ignoring boundary
conditions for now, (11.38) is called aweak form, which is often abbreviated to WF in the sequel.

11-13



Chapter 11: VARIATIONAL FORMULATION OF BAR ELEMENT

Function v(X) receivestwo namesin theliterature: test functionin ageneral mathematical context,
and weight function (also weighting function) in the context of approximation methods based on
weak forms. In what follows both terms will be used within the appropriate context.

811.5.2. Weak Form Based Approximation Example

To show how weak forms can be used to generate approximate solutions, consider again afixed-free,
prismatic, homogeneous bar member (that is, E A isconstant), under uniformload q(x) = qo aong
its length and zero load at the free end. The WF (11.38) becomes

L
J= / (EAU"(X) + 0o) v(x) dx = 0. (11.39)
0

subject to the end conditions
u0 =0, F(L)=EAU(L) =0 (11.40)
We will restrict both u(x) and v(x) to be quadratic polynomials:
UX) = ag+ a1 X+ ap X%, v(x) = by + by x + by x2. (11.41)

inwhich g and by are numerical coefficients, real in this case. Once assumptions such as those
in (11.41) are made, more terminology kicksin. The assumed u(x) is now called atrial function,
which is spanned by the linear-space basis {1, x, x?} of dimension 3. The assumed v(x) is called
a weight function, which is spanned by exactly the same basis. There is a special name for the
scenario when the trial and weight function bases coalesce: the Galerkin method.”. We will call
the end result a Galerkin solution. Replacing (11.41) into (11.39) we get

L
J= 6(6bo +3b; L 4 2by L?) (2EAa@; + Qo). (11.42)

Now J must vanishfor any arbitrary valueof {bg, bz, by}. Onextractingtheexpressionsthat multiply
those coefficients we obtain the same equation thrice: 2EAa; + o = 0. Thusa; = —o/(2EA),
whereas ag and a; remain arbitrary. Consequently the Galerkin solution before BC is

D 2
2EA

ODE aficionados would recognize this as the general solution of EAu” + ¢o = 0 so Uncle Boris
has done the job. Applying the end conditions (11.40) givesa, = O and a; = qo/(E A) whencethe
final solutionis

uX) =ap+ar X — (11.43)

u(x) = zq?oA (2L — X). (11.44)

Replacing into (11.37) and (11.40) it may be verified that thisis the exact analytical solution.

Instead of applying the end conditions a posteriori we may try to incorporate them a priori into
the trial function assumption. On enforcing (11.40) into the assumed u(x) of (11.41) we find that
ap = 0anda; = —2a, L. Thetria function becomes

uxX) = axx (x — 2L), (11.45)

7 Introduced by Boris Galerkin in 1912. For abrief account of the general methodology, see Notes and Bibliogr aphy
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and only onefree coefficient remains. Accordingly only oneweight basisfunctionisneeded: either
1, x or x? does the job, and the exact solution (11.44) is obtained again.?

What happensif theload q(x) varies, say, linearly and the same quadratic polynomial assumptions
(11.41) are used? Then Galerkin goes gaga. See Exercise 11.8.

Even for this trivial example, several procedural choices are apparent. If we allow the trial and
weight function spaces to differ, volatility zooms up. Furthermore, we can apply transformations
to the residual integral as done in the next subsection. Compared to the well ordered world of
variational-based FEM, confusion reigns supreme.

811.5.3. Balanced Weak Forms

Some method in the madness can be injected by balancing. A look at (11.39) reveals an unpleasant
asymmetry. Second derivatives of u(x) appear, but none of v(x). This places unequal restrictions
on smoothness of the trial and test function spaces. Integration by parts restores derivative order

balance. Replacing [y EAU” vdx = — [ EAU v’ dx+ (EAU)v|; and rearranging termsyields

L L
J= f EAU (X) v'(X) dx —f a(x) v(x)dx — (EAU'(X)) v(x)\g . (11.46)
0 0

This will be called a balanced-derivative weak form, or smply a balanced weak form (BWF). It
displays obvious advantages:. (i) same smoothness requirements for assumed u and v, and (ii) end
BC appear explicitly in the non-integral term, neatly factored into essential and natural. A minor
flaw isthat the original residual isno longer clearly visible.

For abar with variable axial rigidity replace EAU” by (EAU’) in thefirst integrand.

On repeating the Galerkin procedure of the previous subsection with the assumptions (11.41) one
finds an identical J, as may be expected, and the same final solution. Again one has the choice of
pre- or post-imposing the end conditions (11.40). Generally thelatter choiceisfar more convenient
in acomputer implementation.

811.5.4. Principle of Virtual Work as Balanced Weak Form

Thereisacloserel ationship between the BWF (11.46) and one of thefundamental toolsof Analytical
Mechanics: the Principle of Virtual Work (PVW). To exhibit it, set the test function to be an
admissible variation of u(x): v(x) = §u(x), in which §u(x) strongly satisfies all essential BC.
Then assume that J isthe first variation of afunctional IT:

L L
J =f EAu’(x)Su/(x)dx—/ q(x) Su(x) dx — (EAu’(x))au(x)|cL) o s (11.47)
0 0

Indeed thisisthe first variation of the TPE functional:

L L
M=U-W-= %/ u'(x) EAU (X) dx — / q(x) u(x) dx (11.48)
0 0

8 Some early works covering weighted residual methods, for example Crandall [159], proclaim that the trial function must
satisfy all BC abinitio. Later ones, e.g., [260,261], relax that rule to BC of essential type (in Galerkin methods, thisrule
applies to both trial and test functions since the spaces coalesce). In practice this rule can be often relaxed further, asin
the example of 811.5.2, applying essential BCs at the last moment.
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Chapter 11: VARIATIONAL FORMULATION OF BAR ELEMENT

Hence J = Oisthesame as §I1 = O or §U = §W, which isthe PVW for an elastic bar member.
This relationship can be used to prove an important property: Galerkin method is equivalent to a
variational formulation if the residual is the Euler-Lagrange equation of afunctional.

Remark 11.5. Where does the boundary term (EAU'(x)) 5u(x)‘L in (11.47) go? Actually, into SW. This
immersion is a bit tricky, and depends on redefining q(x) to include prescribed end point forces such as
N(L) = EAU(L) = P through deltafunctions. Thisisthe subject of Exercise 11.9.

§11.5.5. *Weighted Residual Methods

Galerkin method is widely used in computational mechanics, but does not exhaust al possibilities of using a
weak form as source for obtaining numerical solutions. The main generalization consist of allowing trial and
test (weight) functions to be different. Thisleadsto arich class of approximation methods unified under the
name Method of Weighted Residuals or MWR.

The key idea is as follows. Both u(x) and v(x) are restricted to belong to linear function spaces of finite
dimension N, and N,. These are the trial function space and the test function space, respectively. which are
spanned by basis functions ¢; (x) and v (X), respectively:

u) =spanf{i 0. 1<i < No}. v =span{yi (). 1<i < N,} (11.49)

in which usually N, = N,. Since the spaces are linear, any u(x) and v(x) can be represented as linear
combination of the basis functions:

Ny Ny
U =Y a0, v =Y byi(x. (11.50)
i=1 i=1

Here g and by are scalar coefficients, which may be real or complex depending on the nature of the problem.
Insert these into the weak form, perform the necessary integrations, and extract the N, expressions that are
coefficients of the b;. Solve these equations for the coefficients a;, and replace in the first of (11.50) to get the
approximate solution u(x).

The MWR methodology is of course not restricted to one space dimension. It also extends to time-dependent
problems. It can be merged smoothly with the FEM concept of piecewise approximation using shapefunctions.
Some references are provided under Notes and Bibliography.

§11.6. *Accuracy Analysis

Low order 1D elements may give surprisingly high accuracy. In particular the lowly two-node bar el ement
can display infinite accuracy under some conditions. This phenomenon is studied in this advanced section as
it provides an introduction to modified equation methods and Fourier analysis along the way.

§11.6.1. *Nodal Exactness and Superconvergence

Suppose that the following two conditions are satisfied:

1. Thebar properties are constant along the length (prismatic member).

2. Thedistributed load q(x) is zero between nodes. The only applied loads are point forces at the nodes.

If so, alinear axial displacement u(x) asdefined by (11.13) and (11.14) isthe exact solution over each el ement
since constant strain and stress satisfy, €lement by element, all of the governing equationslistedin Figure 11.2.°

9 The interna equilibrium equation p' + q = EAU” + q = 0 is trivially verified because q = 0 from the second
assumption, and u” = 0 because of shape function linearity.
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@ a(x) (b) , : ,
> > > > > > >>>>>>>> Trial basisfunction N

O O for nodej
s X = x, g ,| EA_ o 1-0(¢—x)/¢ =1~y T X2+ ()0 = 1+
| G Two-element <

"—Xk XJ+€ patch ijk ?—?—ok

FicUure 11.8. Superconvergence patch analysis. (a) lattice of bar elements; (b) two element patch.

It follows that if the foregoing conditions are verified the FEM solution is exact; that is, it agrees with the
analytical solution of the mathematical model.’® Adding extra elements and nodes would not change the
solution. That is the reason behind the truss discretizations used in Chapters 2—-3: one element per member is
enough if they are prismatic and loads are applied to joints. Such models are called nodally exact.

What happensif the foregoing assumptions are not met? Exactnessisthen generally lost, and severa elements
per member may bebeneficial if spuriousmechanismsareavoided.!* For a1D latticeof equal-length, prismatic
two-node bar elements, an interesting and more difficult result is: the solution is nodally exact for any loading
if consistent node forcesare used. Thisis proven inthe subsection below. Thisresult underliestheimportance
of computing node forces correctly.

If conditions such as equal-length are relaxed, the solution is no longer nodally exact but convergence at the
nodesis extremely rapid (faster than could be expected by standard error analysis) as long as consistent node
forces are used. This phenomenon is called superconvergence in the FEM literature.

§11.6.2. *Fourier Patch Analysis

Thefollowing analysisis based on the modified differential equation (MoDE) method of Warming and Hyett
[?] combined with the Fourier patch analysis approach of Park and Flaggs [553,554]. Consider a lattice of
two-node prismatic bar elements of constant rigidity E A and equal length ¢, asillustrated in Figure 11.8. The
total length of thelatticeis L. The system is subject to an arbitrary axial load q(x). The only requirement on
g(x) isthat it has a convergent Fourier seriesin the space direction.

From the lattice extract apatch®? of two elements connecting nodes x; , X; and x, asshownin Figure 11.8. The
FEM patch equations at node j are

Ui
R —1]|:ujj|:fj, (11.51)

Uk
in which the node force f; is obtained by consistent lumping:
Xk 0 1
f) =/ q)N; (x) dx =f qxj + ¥ 0)(L+ ) Ly +/ 9 + ¥ (L —y) edy.  (11.52)
Xi -1 0

Here N;(x) is the “hat” trial basis function for node j, depicted in Figure 11.8, and ¢ = (x — Xj)/¢ isa
dimensionlesscoordinate that takesthevalues—1, 0 and 1 at hodesi, j andk, respectively. If q(x) isexpanded

10 | variational language: the Green function of the u” = 0 problem isincluded in the FEM trial space.
11 These can happen when transforming such elements for 2D and 3D trusses. See Exercise E11.7.
12 A patch is the set of all elements connected to anode; in thiscase j.
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Chapter 11: VARIATIONAL FORMULATION OF BAR ELEMENT

in Fourier series

M
400 = ) an€?™,  fn=mr/L, (11.53)
m=1

(the term m = 0 requires special handling) the exact solution of the continuum equation EAU” +q = 0is

XM: 8 G
u*(x) = unefm . ur = 5 (11.54)
m=1 EAﬁm
Evaluation of the consistent force using (11.52) gives

in2/ 1l

SN“(5Pml) -

F=> fim fin= qu%éﬁsz- (11.55)
m=1 Zﬂmz

To construct a modified differential equation (MoDE), expand the displacement by Taylor series centered at
node j. Evaluateati and k: uj = uj — €U} + €2u]/2! — 3u’/3! 4 4 /4 + .. and U = uj 4 LU +
€U /24 €3u’ /3! + £4u /4 + . ... Replace these seriesinto (11.51) to get

2EAL Ly Euvg Cgo = f 11.56
Thisisan ODE of infinite order. It can be reduced to an algebraic equation by assuming that the response of

(11.56) to gy €™ isharmonic: ujme#m. If so U = —B2Ujm, U}, = BhUjm, etc, and the MODE becomes

1 p2e2 phet . SN (3Bml) .,
2EA€ﬁ§1 <§—% 2' — ... Ujm=4EA€S|n2(%-IBmE) ujm= fjmzqu#e'ﬂmXJ.
! ! ! 2B
(11.57)

Solving gives ujy, = Q€ Pmi /(EAB2), which compared with (11.54) shows that Ujm = uj, forany m > 0.
Consequently u;j = uj. In other words, the MoDE (11.56) and the original ODE: EAU” + g = 0 have the
same value at X = X; for any load q(x) developable as (11.53). This proves nodal exactness. In between
nodes the two solutions will not agree.*®

The case m = 0 has to be treated separately since the foregoing expressions become 0/0. The response to a
uniform g = qp isaquadratic in x, and it is not difficult to prove nodal exactness.

§11.6.3. *Robin Boundary Conditions

Suppose that for a bar of length L one has the following end conditions: u’(0) = au(0) + b at x = 0 and
U (L) = au(L) + ba x = L, inwhich a and b are given coefficients. Those are called Robin BCs in the
literature. Adjoining them as Courant penalty terms gives the functional

L
F(u) = / [FEAU)? — qu]dx + 1[u'(0) — au(0) — b]* + 1[u'(L) + au(L) + b]>. (11.58)
0

Divide [0,L] into N elements and N = N + 1 nodes. Do C° linear interpolation over each element, insert
into F (u) toget Fg(u) = %uT Ku — fTv, inwhich u isthe vector of node values, K the master stiffness matrix
and f the master force vector. Coefficientsa and b will affect both K and f.

13 The FEM solution varies linearly between nodes whereas the exact one is generally trigonometric.
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Vanishing of thefirst variation: § Fy = 0yieldsthe FEM equationsKu = f to be solved for u. The Robin BCs
at x = 0and x = L will affect the stiffness and force contributions of thefirst and last elements, but not those
of interior elements.

This kind of boundary value problem (i.e., with Robin BCs) is common in heat conduction and heat transfer
with convection given over cooling surfaces. In that case the heat flux is proportional to the difference of the
(unknown) surface temperature and that of the cooling fluid. Elementsthat "touch” the convention boundary
are affected.

Notes and Bibliography

The foregoing account pertains to the simplest structural finite element: the two-node bar element. For bar
members these developments may be generalized in several directions, three of which are mentioned next.

Refined bar models. Adding internal nodes we can pass from linear to quadratic and cubic shape functions.
These elements are rarely useful on their own right, but as accessories to 2D and 3D high order continuum
elements (for example, to model edge reinforcements.) For that reason they are not considered here. The
3-node bar element is developed in exercises assigned in Chapter 16.

Use in 2D and 3D truss structures. The only additional ingredients are the local-to-global transformations
discussed in Chapters 3 and 6.

Curved bar elements. These can be derived using isoparametric mapping, a device introduced | ater.
Matrices for straight bar elements are available in any finite element book; for example Przemieniecki [596].

Tonti diagrams were introduced in the 1970s in papers now difficult to access, for example [749]. Scanned
images are available, howewer, fromhttp://wuw.dic.units.it/perspage/discretephysics

The fundamentals of Variational Calculus may be studied in the excellent textbook [297], which is now
availablein an inexpensive Dover edition. The proof of the MPE principle can be found in texts on variational
methods in mechanics. For example: Langhaar [435], which is the most readable “old fashioned” treatment
of the energy principles of structural mechanics, with a clear treatment of virtual work. (Out of print but
used copies may be found via the web engines cited in 81.5.2.) The elegant treatment by Lanczos [434] is
recommended as reading material although it is more oriented to physics than structural mechanics.

It was noted that weak forms occupy an intermediate position between two older classical areas. differential
equations (introduced in the XVII Century by the Calculus founders) and variational forms (introduced by
Euler in the XVIII Century). Some weak forms in disguise are also ancient; e.g., the PVW was placed on
firm mathematical grounds by Lagrange in thelate XV 111 Century [430]. But their rapid devel opment astools
for producing approximate solutions of ODEs and PDEs took place in the early X1X Century. Five important
variants are: Galerkin (1915), subdomain (1923), least squares (1928), moments (1932), and collocation
(1937). These, as well as a few others of less importance, were unified in 1956 under the label Method of
Weighted Residualsor MWR, by Crandall [159]. Other attemptsat unification during this period may befound
in [19,147]. The use of MWR methods, especially Galerkin's, as enabling devices to generate finite element
eguations developed rapidly following the pioneer paper [820]. The chief motivation was to accommodate
application problems where a classical variational formulation does not exist, or isinconvenient to use.

The first accuracy study of FEM discretizations using modified equation methods is by Waltz et. a. [780];
however their procedures were faulty, which led to incorrect conclusions. The first correct derivation of
modified equations appeared in [783]. The topic has recently attracted interest from applied mathematicians
because modified equations provide asystematic tool for backward error analysisof differential equations: the
discrete solution is the exact solution of the modified problem. Thisis particularly important for the study of
long term behavior of discrete dynamical systems, whether deterministic or chaotic. Recommended references
along these lines are [318,327,709].

Nodal exactness of bar models for point node loads is a particular case of a theorem by Tong [746]. For
arbitrary loads it was proven by Park and Flaggs [553,554], who followed a variant of the scheme of §11.6.2.
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A different technique is used in Exercise 11.10. The budding concept of superconvergence, which emerged
in the late 1960s, is outlined in the book of Strang and Fix [698]. There isamonograph [781] devoted to the
subject; it covers only Poisson problems but provides a comprehensive reference list until 1995.

References
Referenced items moved to Appendix R.

11-20



Exercises

Homework Exercisesfor Chapter 11
Variational Formulation of Bar Element

EXERCISE 11.1 [D:10] Explain the kinematic admissibility requirements stated in ? in terms of physics,
namely ruling out the possibility of gaps or interpenetration as the bar material deforms.

EXERCISE 11.2 [A/C:15] Using (11.25), derive the stiffness matrix for a tapered bar el ement in which the
cross section area varies linearly along the element length:

A=A0A-0)+ AL, (E11.1)

where A and A; are the areas at the end nodes, and ¢ = x®/¢ is the dimensionless coordinate defined in
§11.3.6. Show that this yields the same answer as that of a stiffness of a constant-area bar with cross section
%(Aa + A)). Note: the following Mathematica script may be used to solve this exercise:'

ClearAl I [Le,x, EmA A, A ];

Be={{-1,1}}/Le; {=x/Le; A=A *(1-Q)+A *(;

Ke=I nt egr at e[ En* A* Tr anspose[ Be] . Be, {x, 0, Le}];

Ke=Si mpl i fy[ Ke] ;

Print["Ke for varying cross section bar: ",Ke//MatrixForni;

In this and following scripts Le stands for £.

EXERCISE 11.3 [A:10] Find the consistent load vector f° for a bar of constant area A subject to a uniform
axia forceq = pgA per unit length along the element. Show that this vector isthe same as that obtained with
the element-by-element (EbE) *“lumping” method of §8.4, which simply assigns half of the total |oad: % POAL,

to each node. Hint: use (11.29) and fol; d¢ = 1.

EXERCISE 11.4 [A/C:15] Repeat the previous calculation for the tapered bar element subject to a force
g = pgA per unit length, in which A varies according to (E11.1) whereas p and g are constant. Check that if
A = Aj onerecovers fi = f; = %pgAﬁ. Note: the following Mathematica script may be used to solve this
exercise:®

ClearAll[qg, A A ,A,p, g, Le, X];

(=x/Le; Ne={{1-(,(}}; A=A *(1-Q)+A *{; q=p*g*A
fe=Integrate[g*Ne, {x, 0, Le}];

fe=Sinplify[fe];

Print["fe for uniformload q: ",fe//MtrixForn;
ClearAll[A;

Print["fe check: ",Sinplify[fel.{A ->A A ->A}]//MtrixForn;

EXERCISE 11.5 [A/C:20] A tapered bar element of length ¢, end areas A; and A; with A interpolated as
per (E11.1), and constant density p, rotates on a plane at uniform angular velocity o (rad/sec) about nodei.
Taking axis x along the rotating bar with origin at nodei, the centrifugal axial forceis q(x) = p Aw?x aong
the length, inwhich x = x°. Find the consistent node forces as functions of p, A;, A, @ and ¢, and specialize
the result to the prismatic bar A = A; = A;. Partial result check: f; = 2pw?At? for A= A = Aj.

14 TheClearAll[...] atthe start of the script is recommended programming practice to initialize variables and avoid
“cell crosstalk.” InaModule thisisdone by listing the local variables after the Module keyword.

15 TheClearAl1[A] beforethe last statement is essential; else A would retain the previous assignation.
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EXERCISE 11.6 [A:15] (Reguiresknowledge of Dirac’s deltafunction properties.) Find the consistent load
vector f¢ if the bar is subjected to a concentrated axia force Q at a distance x = a from its left end. Use
(11.28), withg(x) = Qé(a), in which é(a) isthe one-dimensional Dirac’'s deltafunction at x = a. Note: the
following script doesit by Mathematica, but it is overkill:

ClearAl[Le,q,Q a,x];

(=x/Le; Ne={{1-C,C}}; g=Q*'DiracDelta[x-a];
fe=Sinplify[ Integrate[g*Ne, {x,-Infinity,Infinity}] 1];
Print["fe for point load Q at x=a: ",fe//MatrixForn;

EXERCISE 11.7 [C+D:20] In alearned paper, Dr. . M. Clueless proposes “improving” the result for the
exampletrussby putting threeextranodes, 4, 5and 6, at themidpoint of members 1-2, 2-3 and 1-3, respectively.
His“reasoning” isthat moreisbetter. Try Dr. C. ssuggestion using the Mathematicaimplementation of Chapter
4 and verify that the solution “blows up” because the modified master stiffnessissingular. Explain physically
what happens.

EXERCISE 11.8 [C+D:15] This exercise illustrates “Galerkin surprises” Take up again the example of
811.5.2, but suppose now that the axial load varies linearly, as in (11.31). The tria and weight function
assumptions are the quadratic polynomials (11.41). Show that the integral (11.39) is given by

12J/L = by (24EA & + 6(0h+02)) + by (12EA & + 2(01+20)) + bp (BEA& + (01+302)).  (E11.2)

and that the resulting 3 equations for a, are inconsistent unless g; = . Only one weight function gives
the correct solution at x = L; which one? Note that the Galerkin method is generally viewed as the “most
reliable” member of the MWR tribe. But unforeseen surprises have asilver lining: more papers can be written
to explain them. Hereisapartia fix: make the test function satisfy the essential BC a priori.

EXERCISE 11.9 [A:20]. Prove that (11.47) isthe first variation of (11.48), thus linking the PVW with the
TPE functional. See Remark 11.5 for a hint on how to treat the boundary term in (11.47).

EXERCISE 11.10 [A:35, close to research paper level]. Prove nodal exactness of the two-node bar el ement
for arbitrary but Taylor expandable loading without using the Fourier series approach. Hints: expand q(x) =
ax;) + €)' (X)) + €¥)%q"(x)/2! + ..., where £y = x — X; is the distance to node j, compute the
consistent force f;(x) from (11.52), and differentiate the MoDE (11.56) repeatedly in x while truncating all
derivatives to a maximum order n > 2. Show that the original ODE: EAU” + q = 0, emerges as an identity
regardless of how many derivatives are kept.
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812.2 WHAT IS A BEAM?

§12.1. Introduction

The previous Chapter introduced the TPE-based variational formulation of finite elements, which
was illustrated for the bar element. This Chapter applies that technique to a more complicated
one-dimensional element: the plane beam described by engineering beam theory.

Mathematically, the main difference of beams with respect to barsis the increased order of conti-
nuity required for the assumed transverse-displacement functions to be admissible. Not only must
these functions be continuous but they must possess continuous x first derivatives. To meet this
requirement both deflections and slopes are matched at nodal points. Slopes may be viewed as
rotational degrees of freedom in the small-displacement assumptions used here.

§12.2. What isaBeam?

Beams are the most common type of structural component, particularly in Civil and Mechanical
Engineering. A beamisabar-likestructural member whose primary functionisto support transverse
loading and carry it to the supports. See Figure 12.1.

By “bar-like” it is meant that one of the dimen-

iR
sions is considerably larger than the other two.
This dimension is called the longitudinal dimen-
sion or beamaxis. Theintersection of planes nor-

mal to the longitudinal dimension with the beam
member are called cross sections. A longitudinal
planeis one that passes through the beam axis.

FiGURE 12.1. A beam is a structural member
designed to resist transverse loads.

A beam resists transverse loads mainly through bending action, Bending produces compressive
longitudinal stressesin one side of the beam and tensile stresses in the other.

Thetwo regions are separated by aneutral Neutral surface Compressive stress
surface of zero stress. The combination of
tensile and compressive stresses produces e A N T
aninternal bending moment. Thismoment

Is the primary mechanism that transports Tensil /
loads to the supports. The mechanism is ensile stress
illustrated in Figure 12.2. FIGURE 12.2. Beam transverse loads are

primarily resisted by bending action.
812.2.1. Terminology

A general beam is a bar-like member designed to resist a combination of loading actions such as
biaxial bending, transverse shears, axial stretching or compression, and possibly torsion. If the
internal axial force is compressive, the beam has also to be designed to resist buckling. If the
beam is subject primarily to bending and axial forces, it is called abeam-column. If it is subjected
primarily to bending forces, it is called simply abeam. A beam is straight if its longitudinal axis
isstraight. It isprismatic if its cross section is constant.

A spatial beam supportstransverse loadsthat can act on arbitrary directions along the cross section.
A plane beam resists primarily transverse loading on a preferred longitudinal plane. This Chapter
considers only plane beams.
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Chapter 12: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT

8§12.2.2. Mathematical Models

One-dimensional mathematical models of structural beams are constructed on the basis of beam
theories. Becausebeamsareactually three-dimensional bodies, all model snecessarily involve some
form of approximation to the underlying physics. The simplest and best known modelsfor straight,
prismatic beams are based on the Bernoulli-Euler beam theory (also called classical beam theory
and engineering beamtheory), and the Timoshenko beamtheory. The Bernoulli-Euler theory isthat
taught in introductory Mechanics of Materials courses, and is the one emphasized in this Chapter.
The Timoshenko beam model is presented in Chapter 13, which collects advanced material.

Both model s can be used to formulate beam finite elements. The Bernoulli-Euler beam theory leads
to the so-called Hermitian beam elements.! These are also known as C* elements for the reason
explainedin 812.5.1. Thismodel neglectsthe effect of transverse shear deformationson theinternal
energy. Elements based on Timoshenko beam theory, also known as C° elements, incorporate a
first order correction for transverse shear effects. This model assumes additional importance in
dynamics and vibration.

§12.2.3. Assumptionsof Classical Beam Theory

The Bernoulli-Euler or classical beam theory for plane beams rests on the following assumptions:

1. Planar symmetry. The longitudinal axis is straight and the cross section of the beam has a
longitudinal plane of symmetry. The resultant of the transverse loads acting on each section
lies on that plane. The support conditions are aso symmetric about this plane.

2. Cross section variation. The cross section is either constant or varies smoothly.

Normality. Plane sections originally normal to the longitudinal axis of the beam remain plane
and normal to the deformed longitudinal axis upon bending.

4. Srain energy. The internal strain energy of the member accounts only for bending moment
deformations. All other contributions, notably transverse shear and axial force, are ignored.

5. Linearization. Transverse deflections, rotations and deformations are considered so small that
the assumptions of infinitessmal deformations apply.

6. Material model. The material is assumed to be elastic and isotropic. Heterogeneous beams
fabricated with several isotropic materials, such as reinforced concrete, are not excluded.

§12.3. TheBernoulli-Euler Beam Theory
812.3.1. Element Coordinate Systems

Under transverseloading one of the top surfaces shortenswhilethe other elongates; see Figure 12.2.
Therefore a neutral surface that undergoes no axial strain exists between the top and the bottom.
Theintersection of thissurface with each cross section definesthe neutral axis of that cross section.?

1 The qualifier “Hermitian” relates to the use of a transverse-displacement interpolation formula studied by the French
mathematician Hermite. The term has nothing to do with the mathematical model used.

2 |f the beam is homogenous, the neutral axis passes through the centroid of the cross section. If the beam is fabricated
of different materials — for example, areinforced concrete beam — the neutral axes passes through the centroid of an
“equivalent” cross section. Thistopic is covered in Mechanics of Materials textbooks; for example Popov [595].
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Y, VA

q(x)
1 et {1 [ g
X, g z Neutral axis
Z %?gg Centroid
Neutral surface |« L > section Symmetry plane

Ficure 12.3. Terminology and choice of axesfor Bernoulli-Euler model of plane beam.

The Cartesian axes for plane beam analysis are chosen as shown in Figure 12.3. Axis x liesaong
the longitudinal beam axis, a neutral axis height. Axisy liesin the symmetry plane and points
upwards. Axis zisdirected along the neutral axis, forming aRHS system with x and y. The origin
is placed at the leftmost section. The total length (or span) of the beam member iscalled L.

812.3.2. Kinematics

The motion under loading of a plane beam member in the X, y plane is described by the two
dimensional displacement field
[“(X’ y)] , (12.1)

v(X, )

where u and v are the axial and transverse displacement components, respectively, of an arbitrary
beam material point. The motion in the z direction, which is primarity due to Poisson’s ratio
effects, isof nointerest. The normality assumption of the Bernoulli-Euler model can be represented
mathematically as

dv(X)
dX

Note that the slope v" = dv/dx = dv/dx of the deflection curve has been identified with the
rotation symbol 6. Thisispermissiblebecause6 representsto first order, according to the kinematic
assumptions of this model, the rotation of a cross section about z positive CCW.

§12.3.3. Loading

U(X, y) =-Y = —yU/ = _yev U(X7 y) = U(X)- (122)

Thetransverse force per unit length that acts on the beam in the +y direction isdenoted by q(x), as
illustrated in Figure 12.3. Concentrated |oads and moments acting on isolated beam sections can
be represented by the delta function and its derivative. For example, if a transverse point load F
actsat X = a, it contributes Fé(a) to q(x). If the concentrated moment C acts at X = b, positive
CCW, it contributes Cé’(b) to q(x), where §’ denotes a doublet acting at x = b.

§12.3.4. Support Conditions

Support conditions for beams exhibit far more variety than for bar members. Two canonical cases
are often encountered in engineering practice: simple support and cantilever support. These are
illustrated in Figures 12.4 and 12.5, respectively. Beams often appear as components of skeletal
structures called frameworks, in which case the support conditions are of more complex type.
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Chapter 12: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT

FIGURE 12.5. A cantilever beam is clamped at one end
and free at the other. Airplane wings and stabilizers are
examples of this configuration.

FIGURE 12.4. A simply supported beam has end
supportsthat precludetransversedisplacementsbut
permit end rotations.

812.3.5. Strains, Stresses and Bending M oments

TheBernoulli-Euler or classical model assumesthat theinternal energy of beam member isentirely
due to bending strains and stresses. Bending produces axial stresses oy, Which will be abbreviated
to o, and axid strains e, which will be abbreviated to e. The strains can be linked to the
displacements by differentiating the axial displacement u(x) of (12.2):

ou 9%V d?v
- —_y—— ——y—— — ' = —vk. 12.3
e Ix y8x2 de2 yv YK (12.3)
Here « denotes the deformed beam axis curvature, which to first order is« & d?v/dx? = v”. The
bending stress o = oy is linked to e through the one-dimensional Hooke's law

d?v
o =Ee= —Ey@ = —Eyk, (12.4)
where E isthe longitudinal elastic modulus. The most important stress resultant in classical beam
theory is the bending moment M, which is defined as the cross section integral

d?v 5
M_/A yadA_dezfAy dA=El«. (12.5)
Here | = |,, denotes the moment of inertia f A y?dA of

the cross section with respect to the z (neutral) axis. The M
bending moment M is considered positive if it compresses

the upper portion: y > 0, of thebeam cross section, asillus- X
trated in Figure 12.6. This convention explainsthe negative

signof yintheintegral (12.5). Theproduct E| iscalled the \

bending rigidity of the beam with respect to flexure about FIGURE 12.6. Positivesign

the z axis. convention for M and V.

The governing equations of the Bernoulli-Euler beam model are summarized in the Tonti diagram
of Figure 12.7.
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Displacement Transverse

BCs '
_ displacements
displacements V(X)

Distributed
transverse load

q(x)

Kinematic | Kk = V" M"=q | Equilibrium

— | Bending
M=ElK moment

Constitutive M(X)

Curvature Force BCs

K(X)

Prescribed
end loads

FIrcure 12.7. The Tonti diagram for the governing equations of the Bernoulli-Euler beam model.

§12.4. Total Potential Energy Functional

Thetotal potential energy of the beamis

| m=u-w (12.6)

where as usual U and W denote the internal and external energies, respectively. As previously
explained, in the Bernoulli-Euler model U includes only the bending energy:

L L L L
U :%/aedV: %/ dex:%/ Elx?dx = %/ El (v)° dx:%/ V' Elv" dx.
\ 0 0 0 0

(12.7)

The external work W accounts for the applied transverse force:

L
W:/ quv dx. (12.8)
0

The three functionals I, U and W must be regarded as depending on the transverse displacement
v(X). When this dependence needs to be emphasized we write IT[v], U[v] and W[v].

Note that IT[v] includes up to second derivativesin v, because v’ = k appearsin U. This number
is called the variational index. Variational calculus tells us that since the index is 2, admissible
displacements v(x) must be continuous, have continuous first derivatives (slopes or rotations), and
satisfy the displacement BCsexactly. This continuity requirement can be succintly stated by saying
that admissible displacements must be C* continuous. This condition guides the construction of
beam finite elements described below.

Remark 12.1. If there is an applied distributed moment m(x) per unit of beam length, the external energy

(12.8) must be augmented with afoL m(x)6(x) dx term. Thisisfurther elaborated in Exercises 12.4 and 12.5.
Such kind of distributed loading is uncommon in practice although in framework analysis occasionally the
need arises for treating a concentrated moment between nodes.
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Chapter 12: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT

§12.5. Beam Finite Elements

Beam finite elements are obtained by subdivid-
ing beam members longitudinally. The simplest
Bernoulli-Euler plane beam element has two end P’ (x+U,y+V)
nodes: 1 and 2, and four degrees of freedom (DOF).
These are collected in the node displacement vector

Ut =[v1 61 v2 65]. (12.9)

The element isshown in Figure 12.8, which pictures
the undeformed and deformed configurations.

X —»N
- V4 > P(X’y)

FIGURE 12.8. The two-node Bernoulli-Euler
plane beam element with four DOFs.

812.5.1. Finite Element Trial Functions

The freedoms (12.9) are used to define uniquely the variation of the transverse displacement v€(x)
over the element. The C* continuity requirement says that both v(x) and the Slope 6 = v/(x) =
dv(x)/dx must be continuous over the entire member, and in particular between beam elements.

C1 continuity can betrivially met within each element by choosing polynomial interpolation shape
functionsas shown bel ow, because polynomialsare C* continuous. Matching nodal displacements
and rotations with adjacent elements enforces the necessary interelement continuity.

€) (b)

/ V(X) / v(X)

— —~
Ficure 12.9. Deflection of a clamped-SS beam discretized with four elements, grossly
exaggerated for visibility. (@) Cubic deflection elements; (b) linear deflection elements. The

latter maintains only C° continuity, leading to unacceptable material gap and interpenetration at
nodes.

Remark 12.2. Thephysical reason for C* continuity isillustrated in Figure 12.9, in which the lateral deflection
curve v(X) isgrossly exaggerated for visibility. The left figure shows the approximation of v(x) by four cubic
functions, which maintain the required continuity. The right figure shows an attempt to approximate v(x) by
four piecewise linear functions that maintain only C° continuity. In this case material gap and interpenetration
occur at the nodes, as well as at the clamped left end, because section rotations jump between elements.
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§12.5.2. Shape Functions

The simplest shape functions that meet the C* continuity requirement for the nodal DOF configu-
ration (12.9) are called the Hermitian cubic shape functions. The interpolation formula based on

these functionsis
V1

01
v2
0>

These shapefunctionsare conveniently expressed intermsof thedimensionless* natural” coordinate

2
=X (12.11)
¢ K
where¢ istheelement length. Coordinate& varies ~ Vi= 1 Nj(&)
fromé& = —lanodel(x =0 toé = +1

at node 2 (x = ¢). Note that dx/dé = ¢ and
dé/dx = 2/¢. The shape functionsin terms of &

are
e _ 11 _£)2 / A
e _ 1 2
Ny = 561 —§)°(1+§),

(12.12)
NZ = 21 +8§)*2~6),
NS, = =361+ 61— &).

NsA(€)
§=-1 £=1
Ficure 12.10. Cubic shape functions of
plane beam element.

Thesefour functionsare depicted in Figure 12.10.

The curvature « that appearsin U can be expressed in terms of the nodal displacements by differ-
entiating twice with respect to x:
_dRf00  4dRE)  4dN®
dx?2 2 dg?2 2 de?

Here B = N” isthe 1 x 4 curvature-displacement matrix

u® = Bu® = N"u" (12.13)

1
I N 3
B=-l6; -1 —6; 3%+1]. (12.14)

Remark 12.3. The 4/¢? factor in (12.13) comes from the differentiation chain rule. If f (x) isafunction of x,
and & = 2x/¢ — 1, noting that d(2/¢) /dx = 0 one gets

0
2 2
dioo  di@de  2df@  d*foo  deyddie +§% (@) AdTE) 1215

dx  de dx ¢ de °  dxz  Ax de de ]~ 2 de2
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ClearAllI[El,I,E&];

Be={{6*&, (3*&-1)*I,-6*E, (3*&+1)*}}/1"2;

Ke=(El *1/2)*I nt egr at e[ Transpose[ Be] . Be, {&, -1, 1}];
Ke=Sinplify[Ke]; Print["Ke for prismatic beam"];
Print[Ke//MatrixForni;
Print[Sinplify[Ke*I~2/El]//MatrixForni;

Ke for prismatic beam: CearAl[q,l,&;
12EI  6EI _12EI 6El Ne={{2*(1-§)"2*(2+), (1-§"2*(1+E)*I,
I3 I K 12 2% (1+8) "2*(2- &),~(1+)"2* (1-§) *I} }/ 8;
6 El 4El 6 El 2El fe=(g*l/2)*Integrate[ Ne, {§, -1, 1}]; fe=Sinplify[fe];

Print["ferT for uniformload g:\n",fe//MatrixFornj;

H
)
m
o
m
N
K=
m
o
m

ferT for uniform load q:

lg 1%g g Izq)
2 12 2 12

(o2}
m
N
m
[}
m o
N
m-S

Ficure 12.11. Using Mathematica to form K€ for a FIGURE 12.12. Using Mathematica to form f€ for
prismatic beam element. uniform transverse load q.

812.6. TheFinite Element Equations

Insertion of (12.12) and (12.14) into the TPE functional specialized to this element, yields the
quadratic form in the nodal displacements

e = Z(u®)TKu® — (u®)'fe, (12.16)
where
4 1
Kezf El BTde=/ El B'B J¢dg, (12.17)
0 -1
isthe element stiffness matrix and
14 1
fe:/O Nqux:/_lNTq Tt de, (12.18)

isthe consistent element node force vector. The calculation of the entries of K® and f® for prismatic
beams and uniform load q is studied next. More complex cases are treated in the Exercises.

812.6.1. The StiffnessMatrix of a Prismatic Beam

If the bending rigidity EI is constant over the element it can be moved out of the &-integral in
(12.17):

6¢
1 o El [ 3‘56_ 1,6 68
e 1 _EI _
K_2EI€/1B Bds_%fl _TS;S [% -1 = 3+1]ds (1219
3 +1
Expanding and integrating over the element yields
36£2 6£(3E—1)¢  —3682  BE(3E+1)L 12 6¢ —12 6¢
ke EL[* (1% —es@-De %*-nez | El| 4 —6e 202
23 ), 3652 —6E(3E+1)¢ VE 12 —6¢

(12.20)
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Although the foregoing integrals can be easily carried out by hand, it is equally expedient to use a
CAS such as Mathematica or Maple. For example the Mathematica script listed in the top box of
Figure 12.11 processes (12.20) using the Integrate function. The output, shown in the bottom
box, corroborates the hand integration result.

812.6.2. Consistent Nodal Force Vector for Uniform L oad
If g does not depend on x it can be moved out of (12.18), giving

JL-522+8) 1

. Ho§tA-9%a+8) st
fezle/ NTd :lef 8 de =1qe¢| © |. 12.21
AN tasere-e |72 1 R

~Ha+e2A-9 —5t

Thisshowsthat auniform load g over the beam element mapsto two transverse nodeloadsq¢/2, as
may be expected, plus two nodal moments +q¢2/12. Thelatter are called the fixed-end momentsin
the structural mechanics literature.®> The hand result (12.21) can be verified with the Mathematica
script of Figure 12.12, in which € is printed as a row vector to save space.

N (b) Load casel M
(@ \ x @ 32)
Ty,v N
N N g (c) Load casell *p
§—>X [B X O 02
N | N _
| L - (d) Loadcaselll g uniform

8 T e e
%—»X ©) {2

FIGURE 12.13. Cantilever beam problem for Example 12.1: (a) structure,
(b-c): one-element FEM idealizations for three load cases.

Example 12.1. To see the beam element in action consider the cantilever illustrated in Figure 12.13(a). The
beam is prismatic with constant rigidity EI and span L. It is discretized with a single element as shown
in Figure 12.13(b,c,d), and subjected to the three load cases pictured there. Case | involves an applied end
moment M, casell atransverse end force P, and case |11 auniformly distributed load q over the entire beam.
The FEM equations are constructed using the stiffness matrix (12.20) with £ = L.

For the first two load cases, forces at end node 2 are directly set up from the given loads since no lumping is
needed. Applying the support conditions v; = 6; = 0 gives the reduced stiffness equations

Elr 12 —6L[u]_[0 El[ 12 —6L1[v)] [P
F[—GL 4L2][92']_|:M]’ FI:—6L 4L2][92"]_[0]’ (12.22)

3 Introduced by Hardy Crossin 1930 (long before FEM) as a key ingredient for his moment distribution method. Indeed
thetitle of hisfamous paper [174] is“Analysis of continuous frames by distributing fixed-end moments.”
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El v(x)/(gL*) El 6(x)/(qL3) M(x)/(qLZ)
Section rotation -
02 [Lateral deflection 03 —— Andlytical _Bending moment
i < 0. Analytica
Analytica ~ o02d|——-FEM,B=0 _ N FEM, B =0
018 | _ _ _FEM,B=0 e 6 ..... FEM,B=1| _———" 0. -—- P =
. ~
0.1 0.15 7 _ame===23s 0
P 0.
0.05] 0062 4 o
' x/L L
02 04 06 08 1 02 04 06 08 17 02 04 06 0% 1

Ficure 12.14. FEM versus analytical solutions for load case |11 of Example 12.1.

for load cases| and I, respectively. Solving givesthetipdeflectionsv, = ML?/(2El)andv,' = PL3/(3EI),
and thetip rotations 6, = ML/EI and 6,' = PL?/(2EI). These agree with the analytical values provided
by Bernoulli-Euler beam theory. Thus aone-element idealization is sufficient for exactness. Thereasonisthat
the analytical deflection profiles v(x) are quadratic and cubic polynomialsin x for cases| and I1, respectively.
Both areincluded in the span of the element shape functions. Displacementsv(x), rotations6 (x) and moments
M (x) expressed as functions of x also agree with the analytical solution, as may be expected.

Theresultsfor load case |11 are more interesting since now the exact deflection is a quartic polynomial, which
lies beyond the span of the FEM shape functions. A dimensionless parameter 0 < 8 < 1lisintroduced in the
reduced stiffness equations to study the effect of load lumping method on the solution:

El 12 —6L vg" ., 1
F[—GL 4|_2H92"']—zq'-[_%ﬁ|_]- (12.23)
Setting B = 1 gives the energy consistent load lumping (12.21) whereas g8 = 0 gives the EbE (here same
as NbN) load lumping f}'' = 1qL with zero fixed-end moments. The solution of (12.23) is v}'' =

qL*4— B)/(24El)and 6)'"" = q L33 — B)/(12El). From this one recovers the displacement, rotation
and bending moment over the beam as

L(6—8) — 2x

| LE=H =3 iy _ 9k
24El

111 — L22
v () =glLx 2El 12

0" (x) =qLx (L(6-B) — 6x).

(12.24)
The analytical (exact) solution is

x?(3L2—3Lx+Xx?)
o' 00 = 3 24E| L 0=

g X (6L%2—4Lx+x?)
6EI ’

Mi' 0 =1q(L —x)? (12.25)

The FEM and analytical solutions (12.24)-(12.25) are graphically compared in Figure 12.14. Deflectionsand
rotations obtained with the consistent load lumping 8 = 1 agree better with the analytical solution. Inaddition
the nodal values are exact (a superconvergence result further commented upon in the next Example). For the
bending moment the values provided by the EbE lumping 8 = 0 are nodally exact but over the entire beam
the B = 1 solution gives a better linear fit to the parabolic function M} (x).

Example 12.2. The second example involves asimply supported beam under uniform line load g, depicted in
Figure 12.15(a). It isprismatic with constant rigidity E 1, span L, and discretized with two elements of length
Li=L(l4+a)andL, =L —L; = L(1/2 — «), respectively. (Ordinarily two elements of the same length
1/2L would be used; the scalar & € (—1/2, 1/2) isintroduced to study the effect of unequal element sizes.)
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(@
AV g (uniform) pyv (b)
‘TTTTT?TTTT‘ e N W e W O O

N

\ A
L | L LELG+a) | LrLg-a))
! | |

éilr B }§—>X O 2 @ 3

Ficure 12.15. SS beam problem for Example 12.2: (a) structure,
(b) two-element FEM idedlization.

Using (12.20) and (12.21) toformthe stiffnessand consi stent forcesfor both elements, assembling and applying
the support conditions v; = vs = 0, provides the reduced stiffness equations

- 8L? —24L 4.2 0o )
1+2a (1+20)2 T+2a LA+2a)°
—24L 192(1+12¢%) 192l 24L 61 214
El | G120? ~ (1-4e®)° (1-40®? (-2 ||v2|_0L (12.26)
L3 4L° 192L« 16L2 4.2 0, 2 _L_:g : :
1420 (1—4a®)? 1—4a? 12« 05 )
0 241 412 8L2 _ LA 20)
i (1—20)? T2« 120 - 24

Solving for the lateral displacement of node 2 gives v, = qL*(5 — 24a? + 16a*)/(384E1). The exact
deflection is v(x) = qL*(¢ — 223 + ¢%)/(24El) with ¢ = x/L. Replacingx = L; = L(1/2 + «) yields
vt = qL*(5 — 24a® 4 16a*)/(384E1), which is the same as the FEM result. Likewise 6, is exact.

The result seems prima facie surprising. First, since the analytical solution is a quartic polynomial in x we
have no reason to think that a cubic element will be exact. Second, one would expect accuracy deterioration
as the element sizes differ more and more with increasing «. The fact that the solution at nodes is exact for
any combination of element lengthsisan illustration of superconvergence, aphenomenon already discussedin
§11.5. A general proof of nodal exactnessisgivenin 813.7, but it does require advanced mathematical tools.
Note that displacements and rotations inside elements will not agree with the exact one; this can be observed
in Figure 12.14(a,b) for load case |11 of the previous example.

Ty,v @ q(xX)=—w constant
¢¢¢¢¢¢¢ ¢¢¢¢¢¢¢¢Hr¢¢¢¢¢
AF—»X E
<L=ilasl~—L=1L(1-0) —|«— L=1L(1- a)——|<L ILas
L/2 L/2
L

dyv (b) - (©)

=

bV bbb bbb bbb ey &
1—>x@ P2 @ 3 1
4 | 0.7
SLEglaslo LA —~ o a
. L/2 . 701 02 03 04 05
FiGUuRE 12.16. Continuum beam problem for Example 12.3,

(a@: structure, (b) two-element FEM model of half beam, (c)
scaled external energy of FEM model as function of «.

o
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Example 12.3. (Adapted from a driven-tank experiment by Patrick Weidman). This example displays the
advantages of symbolic computation for solving a problem in geometric design: optimal location of supports.
The prismatic continuous beam shown in Figure 12.16(a) is free at ends A and E, and simply supported at B,
C and D. The beam has total span L and constant bending rigidity EIl. It isloaded by a uniform distributed
load q(x) = —w. Support C is at midspan whereas B and D are at distancesL; = L4 = %La from the left
and right free ends, respectively. Here0 < o < 1isadesign parameter to be determined as discussed | ater.

Since the problem is symmetric about midspan C only one half of the structure, say AC, need to be discretized.
Thefinite element model of this portionisshownin Figure 12.16(b). It hastwo beam elements and three nodes
placed at A, B and C, respectively. Element lengths depend on the design parameter «, which is carried along
asavariable. The six degrees of freedom are collected inu = [v; 61 vo 6, vz 63]". The master stiffness
equations are

- 24 6L 24 6L _
24 6L _2 5L 0 0
063 0[2 063 O[2
2 2 — —
a a P —Lo 0
24 6L 24(1-30¢) 6LA-20) 24 6L ' 12 r
wiL I e <R I I DU f2
=— | L2a=1) |+
L | 6L L2 6L(A—20) 212 6L L2 6, 4 | =g 0
ot o’a? ol o« U3 —& f3
0 0 —2—4 —2—'5 %‘ —2—5 | 65 | L& | m,
o o 8 L2 el 2’
L &2 o &2 a -

(12.27)
inwhich & = 1 — «. Note that reaction forces are carefully segregated in (12.27) to simplify application of
the general recovery technique discussed in 83.4.3. The support BCs are v, = v3 = 63 = 0, where the latter
comes from the symmetry condition at C. Removing those freedoms provides the reduced stiffness equations

24 6L 6L
O(3 062 062 V1 —
4EI | 6L 2L% L2 wl —La?
6L L2 2.2 6> La-1)
@ X ad 12
Solving yields
wlL? wl3 w3
= 1+a)®-2), 6, = 1+@)3=2), 6, = & (1— 20 —5a?). (12.29
= —zepy @ (1+0°=2). b= 2t (A+a)®-2). 0= zpy 8 (1-20-5a"). (1229)

The complete solutionisu =[v; 61 0 6, 0 0]". Inserting into (12.27) and solving for reactions gives

wL 34 20 + o? wlL 5— 100 — o? wl? 2

whence the support reactions follow as Rg = f,, and Rc = 2f,3. It remainsto find the best «. Of course
“best” depends on the optimality criterion. Four choices are examined below.

Minimum External Energy. The external energy at equilibriumis W(a) = " u = w?L5W(a)/ (18432 El),
inwhich W(a) = 1 — 5a — 20 4 260 + 5a* + 3°. Minimizing W with respect to « may be interpreted
as finding the stiffest structure (in the energy sense) under the given load vector f. A plot of W(«) over
O<ac< % clearly displaysaminimum at « =~ 0.27 as shown in Figure 12.16(c). Solving the quartic equation
dW/da = 0 gives one positive real root in therange « € [0, 1), which to 5 placesis apes; = 0.26817.
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Equal Reactions. A second choice isto require that supports at B and C take the same load: Rz = R¢ (note
that, because of symmetry, Rp = Rg). Setting f,, = 2f,3 with their expressions taken from (12.30), yields
3420 +a? = 10— 200 — 202, or 7 — 220 — 3w? = 0. This quadratic hastheroots o = £(—11 + +/142).
The positive real root apest = 0.30546 makes Rg = Rc = Rp = wlL /3, as may be expected.

Minimum Relative Deflection. Consider two sections located at x; and X;, in which {x;, x;} € [0, %L], with
lateral displacements v; = v(x) and v; = v(X;), respectively. The maximum relative deflection is defined as
v?i‘ax(oz) = max |vj; — v;| for afixed o. Weseek the € [0, 1) that minimizes v?i‘ax(a). The computations are
far more complex than for the previous two criteria and are the subject of Exercise 12.11. Result: the best o
isthe positive real root of 4 4+ 11o — 8la? — 49x° — 470* = 0, which to 5 placesis apess = 0.26681. If this
value is adopted, the relative deflection does not exceed v < w L4/(67674El).

Minimum Absolute Moment. Let M (X, @) denote the bending moment function recovered from the FEM
solution for afixed . The maximum absolute moment is M™*(«) = max |M(X, «)| for x € [0, %L]. We
seek an o € [0, 1) that minimizesit. Thisisthetopic of Exercise 12.12. This problem islesswell posed than
the previous one because M (X, «) varies linearly over each element, is nonzero at node 1 and discontinous at
node 2. On the other hand, the exact bending moment varies parabolically, is zero at node 1 and continuous
at node 2. Result: using the FEM-recovered M (X, «) and taking the average M at node 2, one finds that the
best « is the positive root of 2 — 4o — 15a? = 0, Or apet = 0.25540, for which M™* < 12/589. The
optimal solution using the exact moment distribution, however, isquitedifferent. Thisisan intrinsic weakness
of displacement-based FEM since internal forces are obtained by differentiation, which boosts errors. To get
a better result a finer mesh would be needed.

In summary, the optimal « from the foregoing criteria varies between 0.255 to 0.306. As a reasonable
compromise an engineer could pick apest &~ 0.28.

Notes and Bibliography

The Bernoulli-Euler (BE) beam model synthesizes pioneer work by Jacob and Daniel Bernoulli aswell asthat
of Leonhard Euler in the XVl Century. Although the model wasfirst enunciated by 1750, it was not applied
in structural design and analysis until the second half of the XIX Century. While Galileo Galilei is credited
with first attempts at a theory, recent studies [43] argue that Leonardo da Vinci made crucia observations a
century before Galileo. However, da Vinci lacked Hooke's law and cal culus to compl ete the theory.

A comprehensive source of stiffnessand mass matricesof planeand spatial beamsisthe book by Przemieniecki
[603]. The derivation of stiffness matricesis carried out there using differential equilibrium equations rather
than energy methods. Thiswas in fact the common practice before 1962, as influenced by the use of transfer
matrix methods [578] on the limited memory computers of the time. Resultsfor prismatic elements, however,
areidentical.

Energy derivations were popularized by Archer [35,36], Martin [473] and Melosh [490,491].

References
Referenced items have been moved to Appendix R.
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Chapter 12: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT

Homework Exercisesfor Chapter 12
Variational Formulation of Plane Beam Element

EXERCISE 12.1 [A/C:20] Use(12.17) to derive the element stiffness matrix K of aHermitian beam element
of variable bending rigidity given by the inertia law
X
Z =
1

Use of Mathematica or similar CAS tool is recommended since the integrals are time consuming and error
prone. Mathematica hint: write

100 = 11L= )+ 127 = 11 30— &) + 12 3 +6). (E12.1)

EI = EI1*x(1-£)/2 + EI2*(1+£)/2; (E12.2)

and keep ET inside the argument of Integrate. Check whether you get back (12.20) if EI=EI1=EI2. If you
use Mathematica, this check can be simply done after you got and printed the tapered beam Ke, by writing
ClearAl11[EI]; Ke=Simplify[ Ke/.{EI1->EI,EI2->EI}]; and printing this matrix.*

EXERCISE 12.2 [A/C:20] Use (12.18) to derive the consistent node force vector ¢ for a Hermitian beam
element under linearly varying transverse load q defined by

400 = QL= ) + G5 =G iA-§) + G IA+8). (E12.3)

Again use of a CASisrecommended, particularly since the polynomialsto be integrated are quarticin &, and
hand computations are error prone. Mathematica hint: write

q = qlx(1-£)/2 + q2x(1+£)/2; (E12.4)

and keep q inside the argument of Integrate. Check whether you get back (12.21) if g, = g, = q (See
previous Exercise for Mathematica procedural hints).

EXERCISE 12.3 [A:20] Obtain the consistent node force vector ¢ of a Hermitian beam element subject to
atransverse point load P at abscissax = a where 0 < a < ¢. Use the Dirac’s delta function expression
g(x) = P §(a) and the fact that for any continuous function f (x), f(f f(x)d(@a)dx = f(a)if 0<a <.
Check the special casesa =0anda = ¢.

EXERCISE 12.4 [A:25] Derive the consistent node force vector f¢ of a Hermitian beam element subject to a
linearly varying z-moment m per unit length, positive CCW, defined by thelaw m(x) = my(1—&)/2+my(1+
£)/2. Use the fact that the external work per unit length is m(x)8(x) = m(x) v'(x) = (u®)T (dN/dx)T m(x).
For arbitrary m(x) show that this gives

l T 1 T 1

N NT 2

o [ N axe [N 2h10e = [ NTme, (E12.5)
o X L E L2 L,

where Ng denote the column vectors of beam shape function derivatives with respect to £&. Can you see a
shortcut that avoids the integral altogether if m is constant?

EXERCISE 12.5 [A:20] Obtain the consistent node force vector ¢ of a Hermitian beam element subject to
a concentrated moment (“ point moment”, positive CCW) C applied at X = a. Use the Concentrated moment
load on beam element expression (E12.5) in which m(x) = C §(a), where §(a) denotes the Dirac’'s delta
function at X = a. Check the special casesa =0,a=f¢anda = ¢/2.

4 ClearAl1[EI] discardsthe previous definition (E12.2) of EI; the same effect can be achieved by writing EI=. (dot).
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Exercises

EXERCISE 12.6 [A/C:25] Consider the one-dimensional Gaussintegration rules.®

1
One point : / f(&)de = 2f(0). (E12.6)
-1
1
Two points: / f(&)de = f(—1/v/3) + f(1/v/3). (E12.7)
-1
_ ! .5 8 5
Three points: / f(&)de = 9 f(—+/3/5) + 5 f(0) + 9 f(4/3/5). (E12.8)
-1

Try each rule on the monomial integrals

1 1 1
/ds, /sdg, /szdg, (E12.9)
-1 -1 -1

until the rule fails. In this way verify that rules (E12.6), (E12.7) and (E12.8) are exact for polynomials of
degree up to 1, 3 and 5, respectively. (Labor-saving hint: for odd monomial degree no computations need to
be done; why?).

EXERCISE 12.7 [A/C:25] Repeat the derivation of Exercise 12.1 using the two-point Gauss rule (E12.7) to
evaluateintegralsin &. A CASisrecommended. If using Mathematica you may use a function definition to
save typing. For example to evaluate f_ll f (&) d& inwhich f (&) = 6% — 352 + 7, by the 3-point Gauss rule
(E12.8), say

f[£_]:=66"4-3§72+7; int=Simplify[(5/9)*(f[-Sqrt[3/5]]1+f[Sqrt[3/5]11)+(8/9)*£[0]];

and print int. To form an element by Gauss integration define matrix functions in terms of &, for example
Be [£_]1, or usethe substitution operator / . , whatever you prefer. Check whether one obtainsthe same answers
as with analytical integration, and explain why there is agreement or disagreement. Hint for the explanation:
consider the order of the & polynomials you are integrating over the element.

EXERCISE 12.8 [A/C:25] Asabove but for Exercise 12.2.

EXERCISE 12.9 [A/C:30] Derive the Bernoulli-Euler beam stiffness matrix (12.20) using the method of
differential equations. To do thisintegrate the homogeneous differential equation E1v”” = Ofour timesover a
cantilever beam clamped at node 1 over x € [0, £] to get v(x). The processyieldsfour constants of integration
C, through C4, which are determined by matching the two zero-displacement BCs at node 1 and the two force
BCsat node 2. Thisprovidesa 2 x 2 flexibility matrix relating forces and displacements at node j. Invert to
get adeformational stiffness, and expand to 4 x 4 by letting node 1 translate and rotate.

EXERCISE 12.10 [C:20] Using Mathematica, repeat Example 12.2 but using EbE lumping of the distributed
forceq. (It issufficient to set the nodal moments on the RHS of (12.26) to zero.) Is v, the same as the exact
analytical solution? If not, study the ratio v,/v$*® as function of «, and draw conclusions.

EXERCISE 12.11 [C:25] For the continuous beam of Example 12.3, verify the results given there for the
optimal o that minimizes the maximum relative deflection. Plot the deflection profile when o = e

EXERCISE 12.12 [C:25] For the continuous beam of Example 12.3, verify the results given there for the
optimal « that minimizes the absolute bending moment. Plot the moment diagram when o = e

5 Gaussintegration is studied further in Chapter 17.
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814.2 PLATE IN PLANE STRESS

§14.1. Introduction

We now pass to the variational formulation of two-dimensional continuum finite elements. The
problem of plane stress will serve as the vehicle for illustrating such formulations. As narrated
in Appendix O, continuum-based structural finite elements were invented in the aircraft industry
(at Boeing during the early 1950s) to solve this kind of problem when it arose in the design and
analysis of deltawing panels[765].

The problem is presented here within the framework of the linear theory of elasticity.
§14.2. Platein Plane Stress

In structural mechanics, a flat thin sheet of material is called a plate.! The distance between the
plate faces is the thickness, denoted by h. The midplane lies halfway between the two faces.

Thedirection normal to the midplaneisthetransversedirection. Directionsparallel to the midplane
are called in-plane directions. The global axis z is oriented along the transverse direction. Axes X
and y are placed in the midplane, forming aright-handed Rectangular Cartesian Coordinate (RCC)
system. Thus the equation of the midplaneisz = 0. The +z axis conventionally defines the top
surface of the plate as the one that it intersects, whereas the opposite surface is called the bottom
surface. See Figure 14.1(a).

@ z Referral to () Midol M athematical e e
Top surface midplane aRane idealization

r x

Ficure 14.1. A plate structure in plane stress: (@) configuration; (b) referral to its midplane;
(c) 2D mathematical idealization as boundary value problem.

> = y
x}‘_’

814.2.1. Behavioral Assumptions
A plate loaded in its midplane is said to be in a state of plane stress, or a membrane state, if the
following assumptions hold:

1. All loads applied to the plate act in the midplane direction, and are symmetric with respect to
the midplane.

2. All support conditions are symmetric about the midplane.
In-plane displacements, strains and stresses can be taken to be uniform through the thickness.
4. Thenormal and shear stress components in the z direction are zero or negligible.

L If itisrelatively thick, asin concrete pavements or Argentinian beefsteaks, the term slab is also used but not usually for
plane stress conditions.
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In-planeinternal forces T f+ si_gr}[ cone\ﬂ/efntions
or internal forces,

stresses and strains
A
Afi—ydx—»f_)_)
2

In-plane body forces

A2
h
T

¥ Y _ o>y
X/ Oxx Y%y Oyx X/ by
In-plane strains In-plane displacements
A2 A2
h h
T gy >Y T u, >
X~ By =8 X~

FIGURE 14.2. Notationa conventions for in-plane stresses, strains,
displacements and internal forces of athin plate in plane stress.

The last two assumptions are not necessarily consequences of the first two. For the latter to hold,
the thickness h should be small, typically 10% or less, than the shortest in-plane dimension. If the
plate thicknessvariesit should do so gradually. Finally, the plate fabrication must exhibit symmetry
with respect to the midplane.

To these four assumptions we add the following restriction:

5. The plate is fabricated of the same material through the thickness. Such plates are called
transversely homogeneous or (in aerospace) monocodue plates.

Thelast assumption excludeswall constructions of importancein aerospace, in particular composite
and honeycomb sandwich plates. The development of mathematical modelsfor such configurations
requires a more complicated integration over the thickness as well as the ability to handle coupled
bending and stretching effects, and will not be considered here.

Remark 14.1. Selective relaxation from assumption 4 leads to the so-called generalized plane stress state, in
which z stresses are accepted. The plane strain state is obtained if strains in the z direction are precluded.
Although the construction of finite element modelsfor those states has many common pointswith plane stress,
we shall not consider those models here. For isotropic materials the plane stress and plane strain problems
can be mapped into each other through afictitious-property technique; see Exercise 14.1.

Remark 14.2. Transverseloading on aplate produces plate bending, which is associated with amore complex
configuration of internal forces and deformations. This subject is studied in [255].

814.2.2. Mathematical Model

The mathematical model of the plate in plane stressis set up as a two-dimensional boundary value
problem (BVP), in which the plate is projected onto its midplane; see Figure 14.1(b). Thisallows
to formulate the BV P over a plane domain 2 with aboundary T, asillustrated in Figure 14.1(c).
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814.2 PLATE IN PLANE STRESS

In this idealization the third dimension is represented as functions of x and y that are integrated
through the plate thickness. Engineers often work with internal plate forces, which result from
integrating the in-plane stresses through the thickness. See Figure 14.2.

814.2.3. Problem Data

The following summarizes the givensin the plate stress problem.
Domain geometry. Thisis defined by the boundary T illustrated in Figure 14.1(c).

Thickness. Most plates used as structural components have constant thickness. If the thickness
does vary, in which case h = h(x, y), it should do so gradually to maintain the plane stress state.
Sudden changes in thickness may lead to stress concentrations.

Material data. Thisis defined by the constitutive equations. Here we shall assume that the plate
material islinearly elastic but not necessarily isotropic.

Secified Interior Forces. These are known forces that act in the interior 2 of the plate. There
are of two types. Body forces or volume forces are forces specified per unit of plate volume; for
example the plate weight. Face forces act tangentially to the plate faces and are transported to the
midplane. For example, the friction or drag force on an airplane skin is of thistype if the skinis
modeled to be in plane stress.

Soecified Surface Forces. These are known forces that act on the boundary I of the plate. In
elasticity they are called surface tractions. In actual applicationsit is important to know whether
these forces are specified per unit of surface area or per unit length. The former may be converted
to the latter by multiplying through the appropriate thickness value.

Displacement Boundary Conditions. These specify how the plate is supported. Points subject
to support conditions may be fixed, allowed to move in one direction, or subject to multipoint
constraints. Also symmetry and antisymmetry lines may be identified as discussed in Chapter 8 of
IFEM [257].

If no displacement boundary conditions are imposed, the plate is said to be free-free or floating.

§14.2.4. Problem Unknowns

Theunknown fieldsare displacements, strainsand stresses. Because of the assumed wall fabrication
homogeneity the in-plane components are assumed to be uniformthrough the plate thickness. Thus
the dependence on z disappears and all such components become functions of x and y only.

Displacements. The in-plane displacement field is defined by two components:

_ UX(X’ y)
ulx,y) = [uy(x, y)] (14.1)

The transverse displacement component u,(X, y, z) component is generally nonzero because of
Poisson’s ratio effects, and depends on z. However, this displacement does not appear in the
governing eguations.

Srains. The in-plane strain field forms a tensor defined by three independent components: ey,
eyy and ey. To allow stating the FE equations in matrix form, these components are cast to form a
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3 Displacement
Prescribed .
Serlarmats BCs Displacements Body forces
,l.\l J u=u u b
onfl, l. r
e=Du| kinematic Equilibrium | Do +b=0
inQ (aka Balance) inQ

Strains IConstitutive | Stresses I Force BCs | Prescribed

tractionst or

e o=Ee (0} oTn=t A
o o= Cg l l O Th=¢ forcesq

inQ onl;

Ficure 14.3. The Strong Form of the plane stress equations of linear elastostatics displayed as a
Tonti diagram. Yellow boxesidentify prescribed fields whereas orange boxes denote unknown fields.
The distinction between Strong and Weak Formsis explained in §14.3.3.

3-component “strain vector”

(14.2)

ex (X, Y)
eXx,y) = |: eyy(X,y) :|
264y (X, Y)
The factor of 2 in e,, shortens strain energy expressions. The shear strain components e,, and ey,
vanish. The transverse normal strain e,; is generaly nonzero because of Poisson’s ratio effects.
This strain does not enter the governing equations as unknown, however, because the associated
stress o, iszero. This eliminates the contribution of o,,€,, to the interna energy.

Sresses. The in-plane stress field forms a tensor defined by three independent components: oy,
oyy and oyy. Asin the case of strains, to allow stating the FE equations in matrix form, these
components are cast to form a 3-component “ stress vector”

oxx (X, Y) :|
(14.3)

o(X,y) = |:0"yy(x’ Y)
ny(xa )]

The remaining three stress components: o, oy, and oy, are assumed to vanish.

The plate internal forces are obtained on integrating the stresses through the thickness. Under the
assumption of uniform stress distribution,

Pxx = oxxh,  Pyy = oywh,  pxy = oxyh. (14.4)
These p’salso form atensor. They are called membrane forcesin the literature. See Figure 14.2.
814.3. Plane Stress Governing Equations

We shall develop plane stress finite elements in the framework of classical linear elasticity. The
necessary governing equations are presented below. They are graphically represented in the Strong
Form Tonti diagram of Figure 14.3.

14-6



814.3 PLANE STRESS GOVERNING EQUATIONS

814.3.1. Governing Equations

The three internal fields: displacements, strains and stresses (14.1)—(14.3) are connected by three
field equations: kinematic, constitutive and internal-equilibrium equations. If initial strain effects
are ignored, these equations read

M Eyx d/0X 0 y
eyy}=|: 0 3/3Yi|[ux:|,
| 2e,, 9/dy a/ax LY

[ Oxx Ein Ei2 Eis Exx
Oyy | = Er, Ex E23 €y |- (14 5)
| oxy Eiz Ex EzsdllZ2ey

[a/ox 0 a/ay | 7 by] [0
0 9/dy a/ax] [gz}+[by]_[o]

The compact matrix version of (14.5) is

e=Du, o=Ee Do +b=0, (14.6)

Here E = ET isthe 3 x 3 stress-strain matrix of plane stress elastic moduli, D is the 3 x 2
symmetric-gradient operator and its transpose the 2 x 3 tensor-divergence operator.?

If the plate material is isotropic with elastic modulus E and Poisson’s ratio v, the moduli in the
constitutive matrix E reduceto Eyy = Exp = E/(1—1?), Exs = 3E/(1+v) = G, Epp = vEp
and E;3 = Ey3 = 0. Seedso Exercise 14.1.

§14.3.2. Boundary Conditions

Boundary conditions prescribed on I' may be of two types. displacement BC or force BC (the
latter is also called stress BC or traction BC). To write down those conditions it is conceptually
convenient to break up I' into two subsets: I'y, and I'y, over which displacements and force or
stresses, respectively, are specified. See Figure 14.4.

Displacement boundary conditions are prescribed on I', in the form

(14.7)

Here U are prescribed displacements. Often 0 = 0. This happensin fixed portions of the boundary,
asthe onesillustrated in Figure 14.4.

Force boundary conditions (also called stress BCs and traction BCsin the literature) are specified
on I't. They take the form

on = t. (14.8)

Here t are prescribed surface tractions specified as a force per unit area (that is, not integrated
through the thickness), and o, is the stress vector shown in Figure 14.4.

2 The dependence on (x, y) has been omitted to reduce clutter.
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t
N
t
r + R n (unit exterior

N\

70=0
Boundary displacements U Boundary tractions t or Stress BC details
are prescribedon T, boundary forces § (decomposition of forces
(figure depictsfixity conditi on) are prescribed on I 6 would be similar)

FIGURE 14.4. Displacement and force (stress, traction) boundary conditions for the plane stress problem.

An alternative form of (14.8) usestheinternal plate forces:

Here p, = onh and § = th. This form is used more often than (14.8) in structural design,
particularly when the plate wall construction is inhomogeneous.

The componentsof o, in Cartesian coordinatesfollow from Cauchy’s stresstransformation formula

Oxx
on = oxxMNx + oxyNy | _ | Nx 0 ny oy | (14.10)

ny

in which ny and ny denote the Cartesian components of the unit normal vector n® (also called
the direction cosines of the normal). Thus (14.8) splits into two scalar conditions: fy, = o,y and
fy = ony. Thederivation of (14.10) is the subject of Exercise 14.4.

It is sometimes convenient to write the condition (14.8) in terms of normal n and tangentia t
directions:

Onn = fn’ Ont = ft (14.11)

Remark 14.3. The separation of " into I'y and T'; is useful for conciseness in the mathematical formulation,
such as the energy integrals presented below. It does not exhaust, however, al BC possibilities. Frequently
at points of I" one specifies a displacement in one direction and a force (or stress) in the other. An example
of these are roller and dliding conditions as well as lines of symmetry and antisymmetry. These are called
mixed displaceent-traction BC. To cover these situations one needs either a generalization of the boundary
split, inwhich ', and Ty are permitted to overlap, or to define another portion Iy, for* mixed conditions. Such
generalizations will not be presented here, as they become unimportant once the FE discretization is done.
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: Displacement
Prescribed .
displacements fl——BGS___|Displacements Bodly forces
A J u=u u b
u l
onfl, r

e=Du| y; ; Equilibrium | sn=0
ino Kinematic (weak) ino
o Force BCs ,
Strains | Constitutive SiEares (weak) tI‘F:C?ng:’::/?(j)r
e o=Ee l o d3N=0 A
O o= Cg on T forcesq
inQ

FI1GURE 14.5. The TPE-based Weak Form of the plane stress equations of linear el astostatics.
Weak links are marked with grey lines.

§14.3.3. Weak versus Strong Form

Weintroduce now some further terminology from variational calculus. The Tonti diagram of Figure
14.3is said to display the Srong Form of the governing equations because all relations are verified
point by point. These relations, called strong links, are shown in the diagram with black lines.

A Weak Form is obtained by relaxing one or more strong links, as brifley described in Chapter 11.
Those are replaced by weak links, which enforce relations in an average or integral sense rather
than point by point. Theweak links are then provided by the variational formulation chosen for the
problem. Because in general many variational forms of the same problem are possible, there are
many possible Weak Forms. On the other hand the Strong Form is unique.

The Weak Form associated with the Total Potential Energy (TPE) variational form is illustrated
in Figure 14.5. The interna equilibrium equations and stress BC become weak links, which are
drawn by gray lines. These equations are given by the variationa statement §IT = 0, where the
TPE functional IT is given in the next subsection. The FEM displacement formulation discussed
below is based on this particular Weak Form.

§14.3.4. Total Potential Energy
The Total Potential Energy functional for the plane stress problem is given by

| OI=U-W. | (14.12)

Theinternal energy can be expressed in terms of the strains only as

U:%/haﬁmQ:%/héEeML (14.13)
Q Q

in which %eT Eeisthe strain energy density. The derivation details are relegated to Exercise 14.5,
The external energy (potentia of the applied forces) is the sum of contributions from the given
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(@)

FIGURE 14.6. Finite element discretization and extraction of generic element.

interior (body) and exterior (boundary) forces:

Wz/hudeQ+ hu' tdr. (14.14)
Q

It

Note that the boundary integral over I' istaken only over I';. That is, the portion of the boundary
over which tractions or forces are specified.

§14.4. Finite Element Equations

The necessary equationsto apply thefinite element method to the plane stress problem are collected
here and expressed in matrix form. The domain of Figure 14.6(a) is discretized by afinite element
mesh as illustrated in Figure 14.6(b). From this mesh we extract a generic element labeled e with
n > 3 node points. In subsequent derivations the number n is kept arbitrary. Therefore, the
formulation is applicable to arbitrary two-dimensional elements, for example those sketched in
Figure 14.7.

To comfortably accommodate general element types, the node points will be labeled 1 through n.
These are called local node numbers. Numbering will always start with corners.

The element domain and boundary are denoted by € and I'®, respectively. The element has 2n
degrees of freedom. These are collected in the element node di splacement vector in anode by node
arrangement:

ue - [qu Uyl qu e an Uyn ]T . (14.15)

§14.4.1. Displacement Interpolation

The displacement field u®(x, y) over the element is interpolated from the node displacements. We
shall assume that the same interpolation functions are used for both displacement components.®
Thus

U (X, Y) = D NECL W) Ui Uy(X, ) = Y NE(X, y) Uy, (14.16)

3 Thisisthe so called element isotropy condition, which is studied and justified in advanced FEM courses.
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814.4 FINITE ELEMENT EQUATIONS

n=3 n=4 n=6

Ficure 14.7. Example plane stress finite elements, characterized by their number of nodes
n.

in which N°(x, y) are the element shape functions. In matrix form:

[N® 0 N O ... N ©

Ux(XaY)
~l 0 N® O N¢ ... O N¢

¢ =Nu® 14.17
Uy(X, y) ] ! N ( )

ux,y) = |:

This N (with superscript e omitted to reduce clutter) is called the shape function matrix. It has
dimensions 2 x 2n. For example, if the element has 4 nodes, N is2 x 8.

Theinterpolation condition on the element shape function N°(x, y) statesthat it must takethevalue
one at the it" node and zero at al others. This ensures that the interpolation (14.17) is correct at
the nodes. Additional requirements on the shape functions are stated in later Chapters.

Differentiating the finite element displacement field yields the strain-displacement relations:

INJ INS ONE
aX 0 aX 0 8xn 0
e e e
ex,y)=1| 0 88'\;,1 0 aa'\)'f ... 0 88'\;,” u® = Bu®. (14.18)
ONT ON7 ON; ONJ aNS  IN?
ay X ay ax 9y X

ThisB = D N is called the strain-displacement matrix. It isdimensioned 3 x 2n. For example, if
the element has 6 nodes, B is 3 x 12. The stresses are given in terms of strains and displacements
by o = E e = EBU®, which is assumed to hold at all points of the element.

814.4.2. Element Energy

To obtain finite element stiffness equations, the variation of the TPE functional is decomposed into
contributions from individual elements:

STI® = sU® — sWe = 0. (14.19)
in which
ue=gf haTedQez%/ he'EedQ® (14.20)
Qe Qe
and
We= | hu'bdQ®+ | hu'tdre (14.21)
Qe re
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Chapter 14: THE PLANE STRESS PROBLEM

Note that in (14.21) I'f has been taken equal to the complete boundary I'® of the element. Thisis
a consequence of the fact that displacement boundary conditions are applied after assembly, to a
free-free structure. Consequently it does not harm to assume that all boundary conditions are of
stress type insofar as forming the element equations.

814.4.3. Element Stiffness Equations

Inserting the relations u = Nu®, e = Bu® and o = Ee into I1° yields the quadratic form in the
nodal displacements

e = JueTKeu® — u'fe (14.22)

Here the element stiffness matrix is

Ke=/ hBTEB dQ®, (14.23)
Qe

and the consistent € ement nodal force vector is

f€= | hN'bdQ®+ | hNTtdre. (14.24)

Qe re

In the second integral of (14.24) the matrix N is evaluated on the element boundary only.

The caculation of the entries of K€ and ° for several elements of historical or practical interest is
described in subsequent Chapters.

Notes and Bibliography

The plane stress problem is well suited for introducing continuum finite elements, from both historical and
technical standpoints. Some books use the Poisson equation for this purpose, but problems such as heat
conduction cannot illustrate features such as vector-mixed boundary conditions and shear effects.

Thefirst continuum structural finite elementswere developed at Boeing in the early 1950sto model delta-wing
skin panels [146,765]. A plane stress model was naturally chosen for the panels. The paper that gave the
method its name [137] used the plane stress problem as application driver.

Thetechnical aspects of plane stress can be found in any book on elasticity. A particularly readable oneisthe
excellent textbook by Fung [289], which is unfortunately out of print.

References
Referenced items have been moved to Appendix R.

14-12



Exercises

Homework Exercisesfor Chapter 14
The Plane Stress Problem

EXERCISE 14.1 [A+C:15] Suppose that the structural material is isotropic, with eastic modulus E and
Poisson’sratio v. The in-plane stress-strain relations for plane stress (o, = oy, = oy, = 0) and plane strain
(e = e = &y, = 0) asgiven in any textbook on elasticity, are

B OXX ] E l Vv 0 exx
plane stress: oy | =127 1 0 ey |,

1—v
00 28
2 i (E14.1)

" oyx | E 1-v v 0 €x
plane strain: oy | = 75— v o 1-v 0 ey |-
o] AFWE=20] g 0 la-2v) |2,

Show that the constitutive matrix of plane strain can be formally obtained by replacing E by a fictitious
modulus E* and v by afictitious Poisson’sratio v* in the plane stress constitutive matrix. Find the expression
of E* and v* intermsof E and v.

You may also chose to answer this exercise by doing the inverse process. go from plane strain to plain stress
by replacing afictitious modulus and Poisson’s ratio in the plane strain constitutive matrix.

This device permits “reusing” a plane stress FEM program to do plane strain, or vice-versa, as long as the
material isisotropic.

Partial answer to go from plane stressto plane strain: v* = v/(1 — v).

EXERCISE 14.2 [A:25] Inthefinite element formulation of near incompressible isotropic materials (aswell
as plasticity and viscoelasticity) it is convenient to use the so-called Lamé constants A and 1 instead of E and
v in the congtitutive equations. Both A and . have the physical dimension of stressand arerelated to E and v

by

vE E
A ————————— =G=—"—. E14.2
Trna—2) “~°~ 203y (El4.2
Conversely
A+ 2 A
E = M’ V= — (E14.3)
A+ 2(A + )

Substitute (E14.3) into both of (E14.1) to expressthe two stress-strain matricesin termsof A and . Then split
the stress-strain matrix E of plane strain as

E=E, +E, (E14.4)

inwhich E,, and E; contain only n and X, respectively, with E,, diagonal and E; 33 = 0. Thisisthe Laméor
{1, u} splitting of the plane strain constitutive equations, which leads to the so-called B-bar formulation of
near-incompressible finite elements.* Express E, andE; asointermsof E and v.

For the plane stress case perform a similar splitting in which where E; contains only L = 2hu/(h + 2u) with
B3 = 0, and E,, isadiagonal matrix function of . and ».°> ExpressE, and E; alsointermsof E and v.

4 Equation (E14.4) is sometimes referred to as the deviatoric+volumetric splitting of the stress-strain law, on account of
its physical meaning in plane strain. That interpretation is not fully accurate, however, for plane stress.

5 For the physical significance of A see [688, pp. 254ff].
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Chapter 14: THE PLANE STRESS PROBLEM

EXERCISE 14.3 [A:20] Includethermoelastic effectsinthe planestressconstitutivefield equations, assuming
a thermally isotropic material with coefficient of linear expansion «. Hint: start from the two-dimensional
Hooke's law including temperature;

1 1
ex = E(axx —voy) +a AT, ey = E(ayy —voxx) +a AT, 26y = 0xy/G, (E14.5)

inwhich AT = AT(X,y) and G = %E/(l + v). Solve for stresses and collect effects of AT in one vector
of “thermal stresses.”

EXERCISE 14.4 [A:15] Derive the Cauchy stress- tyA n(ny=dx/ds, ny=dy/ds)
to-traction equations (14.10) using force equilibrium y Y
ty

. . ’[ o
aong x and y and the geometric relations shown X XXE Idy\‘s

in Figure E14.1. (This is the “wedge method” in AxX
Mechanics of Materials.) Oxy = Oy~
Hint: t, ds = oxx dy + oy dX, €tc. Yoy

FIGURE E14.1. Geometry for deriving (?).

EXERCISE 14.5 [A:25=5+5+15] A linearly elastic plateisin planestress. It isshown in coursesin elasticity
that the internal strain energy density stored per unit volume of the plate expressed in terms of stresses and
strains is the bilinear form

1 1 1T
U = 5(0xx€x + Oyy€yy + OxyExy + TyxEyx) = 5(0xx€xx + Oyy€yy + 20%yEy) = 50 € (E14.6)

(@) Show that (E14.6) can be written in terms of strains only as
U=3€e Ee (E14.7)

thus justifying the strain energy density expression given in (14.13) for the plane stress problem.
(b) Show that (E14.6) can be written in terms of stresses only as

U=1c"Co, (E14.8)

inwhich C = E~! isthe elastic compliance (strain-stress) matrix.

(c) Suppose you want to write (E14.6) in terms of the extensional strains {e,y, ey,} and of the shear stress
oyxy = Oyx. Thisisknown as a mixed representation, which is used in finite elements formulated with
mixed variational principles. Show that

€xx T All A12 A13 €x
U=3ley| | Az Ax Ax || ey |, (E14.9)
A13 A23 A33

Oxy Oxy

and explain how the entries A;; of the kernel matrix A that appearsin (E14.9) can be calculated® interms
of the elastic moduli E;;.

Hint. Parts (a,b) are easy. Part (c) is more difficult. It can be symbolically done by the Mathematica script

6 The process of computing A is an instance of “partia inversion” of the elasticity matrix E. It is closely related to the
Schur complement concept covered in Appendix P.
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ClearAll [exx,eyy,gxy,sxx,syy,sxy,E11,E22,E33,E12,E13,E23] ;
Emat={{E11,E12,E13},{E12,E22,E23},{E13,E23,E33}};

s={sxx,syy,sxy}; e={exx,eyy,gxy}; m={exx,eyy,sxyl};
eqs={sxx==El1l*exx+E12*eyy+E13*gxy, syy==E12*exx+E22*eyy+E23*gxy,

sxy==E13*exx+E23*eyy+E33*gxy};
sol=Simplify[Simplify[Solve[eqs,{sxx,syy,gxy}11];
Print[sol]l; U=Simplify[(e.Emat.e/2)/.sol[[1]]1];

fac[i_,j_] =If [i==j ,1,1/27;
A=Table[fac[i,jl*Coefficient[U,m[[i]]*m[[j]1]1],{1,1,3},{j,1,3}];
Print["A=",A//MatrixForm] ;

If you use this solution, make sure to explain what is going on.

Exercises

Note: the following Table list relations between commonly used moduli for isotropic linear elastic material.
Here K is the bulk modulus whereas M is the P-wave modulus used in seismology. Tha table is useful for

Exercise 14.2.
A, ) (E, w) A, v) (i, v) (E,v) (K, E)
- 2u _ Ep 1tv 2u(1+v) E
K= M3 335 A3 30—2v) 3T-2v)
E = ﬁf\ﬁ“ AAVA=2) 5 (140) 3K (1—2v)
3= E—2u 2uv Ev 3K(BK-E)
= “3a—E 1—2v d+v)(1=2v) TOK—E
e K—2 9K A(1—2v) (1—2v)
n=0G6= A=K 3K+a > 3K 5T
b= A 3K —2u 3K—E
= 20410 26K+ 6K
_ 4u—E 1—v 2—2v E(1-v) 1—v 3K+E
M= A2 nuz —¢ A5 K1=2,  Trod—2» K1y Kok—E
(ET4.10

14-15



15

Three-Node
Plane Stress
Triangles



Section 15: THREE-NODE PLANE STRESS TRIANGLES

TABLE OF CONTENTS

Page

815.1 Imtroduction . . . . . . . . . . . . . . . . . . . . . 153
815.2 Background . . . Coe e e 153
§15.2.1  Parametric Representatlon of Functlons coe . . o . ... 153

81522 Geometry . . . e e e 154

§15.2.3  Triangular Coordi nates e e . ... ... ... 154

§15.24  Linear Interpolation . . . . . . . . . . . . . . . 15-5

§15.25  Coordinate Transformations T [ )

8§15.2.6  Patial Derivatives . . Co 156

§15.2.7  *Homogeneous Polynomi als in Tr| angular Coord| nates .. . 157

815.2.8  *Interesting PointsandLines . . . . . . . . . . . . 15-7

815.3 The Turner Triangle S e . . . . . . . . . . 158
815.3.1  Strain-Displacement Equatlons C e e e 15-8

81532  Stress-StrainEquations . . . . . . . . . . . . . . 158

§15.3.3  The Stiffness Matrix . C e e 15-9

815.34  The Consistent Nodal Force Vector .. . . . . . . . . 159

81535 Implementation . . . . . . . . . . . . . . . . 1510

§15.3.6  *Consistency Verification . . . . . . . . . . . . . 1511

815.3.7 *Checking Continuity . . . . . . . . . . . . . . 1511

8§15.3.8 *Checking Completeness . . . . . . . . . . . . . 1512

81539 *Tonti Matrix Disgram . . . . . . . . . . . . . . 1512

815.4  *Derivation Using Natural Strains and Stresses N |
815.4.1  *Natura StrainsandStresses . . . . . . . . . . . . 1512

815.4.2  *Covariant Node Displacements . . . . . . . . . . . 1513

815.4.3  *The Natura Stiffness Matrix . |

815.5  *The Veubeke Equilibrium Triangle . . . . . . . . . . . . . 1514
81551 *KinematicRelations . . . . . . . . . . . . . . 1514

81552  *StiffnessMatrix . . . . . . . . . . . . . . . . 1515

81553  *Implementation . . . C e . . . . . . . . . . 1515

81554  *Spurious Kinematic Modes . e . . . . . . . . . . 1516

815.6  *Shear Locking in Turner Triangles e S ¥4
§15.6.1 *ThelnplaneBendingTest . . . . . . . . . . . . . 1518

§156.2 *Energy Ratios . . . .. . .. . .. . 1518

815.6.3 *Convergence asMeshis Ref| ned N L )

815. Notes and Bibliography . . . . . . . . . . . . . . . . . 1520
815. References . . . . . . . . . . . . . . . . . . . .. .1521
815. Exercises . . . . . . . . . . . . . . . . . . .. ... 152
815. Solutions to Exercises . . . . . . . . . . . . . . . . . . 1527

15-2



815.2 BACKGROUND

§15.1. Introduction

This Chapter derives element stiffness equations of three-node triangles constructed with linear
displacements for the plane stress problem formulated in Chapter 14. These elements have six
displacement degrees of freedom, which are placed at the connection nodes. There are two main
versions that differ on where the connection nodes are located:

1. TheTurner triangle has connection nodes located at the corners.
2. The Veubeke equilibrium triangle has connection nodes located at the side midpoints.

The triangle geometry is defined by the corner locations or geometric nodes in both cases. Of the
two versions, the Turner triangleis by far the most practically important one in solid and structural
mechanics.! Thus most of the material in this Chapter is devoted to it. It enjoys several important
properties:

(i) It belongsto both theisoparametric and subparametric element families, which are introduced
in the next Chapter.

(if) It allows closed form derivations for the stiffness matrix and consistent force vector without
need for numerical integration.

(ii1) 1t cannot be improved by the addition of internal degrees of freedom.

Properties (ii) and (iii) are shared by the Veubeke equilibrium triangle. Since this model israrely
used in structural applicationsit is covered only as advanced material in §15.5.

The Turner triangleis not agood performer for structural stressanalysis. It isstill used in problems
that do not require high accuracy, as well as in non-structural applications such as thermal and
electromagnetic analysis. One reason is that triangular meshes are easily generated over arbitrary
two-dimensional domains using techniques such as Delaunay triangulation.

§15.2. Background
815.2.1. Parametric Representation of Functions

The concept of parametric representation of functions is crucial in modern FEM. Together with
multidimensional numerical integration, it is a key enabling tool for developing elements in two
and three space dimensions.? Without these tools the devel oper would become lost in an algebraic
maze as element geometry and shape functions get more complicated. The essentials of parametric
representation can be illustrated through a simple example. Consider the following alternative
representations of the unit-circle function, x? + y? = 1:

) y=+v1-x2 (1) x=cos® andy = siné. (15.1)

Thedirect representation (1) fitsthe conventional function notation, i.e., y = f (x). Givenavalue of
X, it returns one or more y. On the other hand, the parametric representation (I1) isindirect: both x

1 Thetriangle was one of the two plane-stress continuum elements presented by Turner, Clough, Martin and Topp in their
1956 paper [786]. This publication is widely regarded as the start of the present FEM. The derivation was not done,
however, with assumed displacements. See Notes and Bibliography at the end of this Chapter.

2 Numerical integration is not useful for the triangular elements covered here, but essential in the more complicated iso-P
models covered in Chapters 16ff.
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Section 15: THREE-NODE PLANE STRESS TRIANGLES

and y are given in terms of one parameter, the angle 6. Elimination of 6 through the trigonometric
identity cos® 6 + sin?@ = 1 recovers x? + y? = 1. But there are situations in which working with
the parametric form throughout the development is more convenient. Continuum finite elements
provide a striking illustration of this point.

815.2.2. Geometry

The geometry of the 3-node triangle shown in
Figure 15.1(a) is specified by the location of its @ 30040 (b) 3
three corner nodes on the {x, y} plane. Nodes 37 Q
are labelled 1, 2, 3 while traversing the sides

.
in counterclockwise fashion. Their location is
defined by their Cartesian coordinates: {x;, V;} 2 (%, ) 14 o
fori =1, 2, 3. -
The Turner triangle has six degrees of freedom, y S

defined by the six corner displacement compo- 1(%1.y1) 1

nents { Ui, Uyi }, fori = 1,2, 3. The interpo- X

lation of the internal displacements { uy, Uy } Z up, toward you

from these six values is StUd_ied in §15.3, after Ficure 15.1. The three-node, linear-displacement

triangular coordinates are introduced. The plane stresstriangular element: (a) geometry; (b) area

triangle area can be obtained as and positive boundary traversal.
1 1 1

2A = det |:X1 X2 Xs} = (X2Y3 — X3Y2) + (X3y1 — X1Y3) + (X1Y2 — X2¥1). (15.2)

Yyi Y2 V3

The area given by (15.2) isa signed quantity. It is positive if the corners are numbered in cyclic
counterclockwise order (when looking down from the +z axis), as illustrated in Figure 15.1(b).
This convention is followed in the sequel.

§15.2.3. Triangular Coordinates

Points of the triangle may also be located in terms of a parametric coordinate system:

{1, 82, L. (15.3)

In the literature these 3 parameters receive an astonishing number of names, as the list collected
in Table 15.1 shows. In the sequel the name triangular coordinates will be used to emphasize the
close association with this particular geometry.

Equations
¢ = constant (15.4)

represent aset of straight linesparallel tothesideoppositetothei t" corner, asdepictedin Figure 15.2.
The equations of sides 2-3, 3-1 and 12 are &; = 0, ¢ = 0 and ¢3 = O, respectively. The
three corners have coordinates (1,0,0), (0,1,0) and (0,0,1). The three midpoints of the sides have
coordinates (3, 3, 0), (0, 3, 3) and (3, 0, 3), the centroid has coordinates (1, £, %), andsoon. The
coordinates are not independent because their sum is unity:

G1+&+i=1 (15.5)
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815.2 BACKGROUND

3
®

FI1Gure 15.2. Triangular coordinates ¢1, ¢2, ¢3.

Table 15.1 Names of element parametric coordinates

Name Applicableto

natural coordinates al elements

isoparametric coordinates isoparametric elements

shape function coordinates isoparametric elements
barycentric coordinates simplices (triangles, tetrahedra, ...)
M ©bius coordinates triangles

triangular coordinates all triangles

area (also written “areal”) coordinates straight-sided triangles

Triangular coordinates normalized as per ¢ + ¢ + ¢3 = 1 are often

qualified as “homogeneous’ in the mathematical literature.

Remark 15.1. In pre-1970 FEM publications, triangular coordinates were often called area coordinates, and
occasionally areal coordinates. This comes from the following interpretation: ¢ = Aji/A, where Ay isthe
area subtended by the subtriangle formed by the point P and corners j and k, in which j and k are 3-cyclic
permutations of i. Historically this was the way coordinates were defined in 1960s papers. However this
relation does not carry over to general isoparametric triangles with curved sides and thusit is not used here.

§15.2.4. Linear Interpolation

Consider a function f(x, y) that varies linearly over the triangle domain. In terms of Cartesian
coordinates it may be expressed as

f(X,y) =a+ a;x + a,y, (15.6)

where a,, a, and a, are coefficients to be determined from three conditions. In finite element work
such conditions are often the nodal valuestaken by f at the corners:

fl, f27 f3- (15.7)
The expression in triangular coordinates makes direct use of those three values:

¢ f
f(§1» §2» fg) = f1§'1+ f2§'2+ f3§3 = [ fl f2 f3] |:§2i| = [§1 §2 53] |: f2i| . (15-8)
{3 fa

Formula (15.8) is called alinear interpolant for f.
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8§15.2.5. Coordinate Transfor mations

Quantities that are closely linked with the element geometry are best expressed in triangular co-
ordinates. On the other hand, quantities such as displacements, strains and stresses are usually
expressed in the Cartesian system {Xx, y}. Thuswe need transformation equations through which it
Is possible to pass from one coordinate system to the other.

Cartesian and triangular coordinates are linked by the relation

1 1 1 1 &1
|:Xi|:|:X1 Xo X3i| |:§2i| (15.9)
y Yi Y2 YsdL{3

The first equation says that the sum of the three coordinates is one. The next two express x and
y linearly as homogeneous forms in the triangular coordinates. These are obtained by applying
the linear interpolant (15.8) to the Cartesian coordinates. X = X381 + X2l + X3¢z and y =
Y181 + Y282 + Ya¢3. Assuming A # 0, inversion of (15.9) yields

{1 1 [XeY3—X3Y2 Y2—Y¥3 X3—X[1 1 [2As Yz X1
|:§2i| = oA |:XSY1 —X1Y3 Y3—Y1 X1 — X3i| |:Xi| = oA |:2A31 Y31 X13i| |:Xi| .
{3 X1Y2 —X2y1 Yi—Y2 Xe—XidLy 2A, Yo X ALy
(15.10)
Here Xjk = X; — Xk, Yjk = ¥j — Yk, Alisthetriangle area given by (15.2) and Aji denotesthe area
subtended by corners j, k and the origin of the x—y system. If thisoriginistaken at the centroid of

the triangle, A23 = A31 = Ap = A/3

§15.2.6. Partial Derivatives

From equations (15.9) and (15.10) we immediately obtain the following relations between partial
derivatives:

X ay

—_— = i —_— = S 15.11
oG T (540
g 3¢

In (15.12) j and k denote the 3-cyclic permutations of i. For example, if i = 2, then | = 3 and
k = 1. The derivatives of afunction f (¢1, &2, £3) with respect to x or y follow immediately from
(15.12) and application of the chain rule:

of 1 of N of N of
X 2A 8§1y23 8523’31 8§3y12

af_1(afx+afx+afx>
dy ~ 2AN\3¢ F 8 B ag

(15.13)
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M3 H3
K 1

Ficure 15.3. Interesting points and lines of atriangle.

which in matrix formis

— 8f —
of oz,
ax _ 1 [y23 Ya1 ylz] of (15.14)
ot 2ALXp Xz X l| 0% .
ay of

| 3¢, |

With these mathematical ingredients in place we are now in a position to handle the derivation of
straight-sided triangular elements, and in particular the Turner and Veubeke triangles.

§15.2.7. *Homogeneous Polynomialsin Triangular Coordinates

Because ¢1, ¢» and ¢z are not independent, polynomial functionsin those variablesare not unique. For example
3—2¢1+ ¢ — 3¢z and ¢y + 42, areidentical, sincethey differ by 3 — 3(¢1 + ¢2 + ¢3)=0. To achieve uniqueness
it is necessary to write the function as a homogeneous polynomial, as in the second form of this example.

To reducethe general linear polynomial Coag + C100¢1 + Co10¢2 + Cao1£3 t0 homogeneous form, subtract cogo (1 —
{1 — &2 — ¢3), Whichis zero, to get Py = (Ci00 — Cooo)¢1 + (Coz0 — Cono) 2 + (Coor — Cooo) 3.

Toreducethe general quadratic polynomial Cooo+ C10041 +Co1082 + Co01£3 + C2004 2 + Conol s + Co2d2 + Cr10l182 +
Co1182¢3 + C101¢3¢1 10 homogeneous form, subtract (Cono + C100¢1 + Co1082 + Co1¢3) (1 — &1 — &2 — &a).

And so on. All polynomial expressions used in this book for triangles are expressed in homogeneous form.
§15.2.8. *Interesting Pointsand Lines

Some distinguished lines and points of a straight-sided triangle are briefly described here for use in other
developments as well as in Exercises. The triangle medians are three lines that join the corners to the
midpoints of the opposite sides, as pictured in Figure 15.3(a). The midpoint opposite corner i islabeled M;.

The medians 1-M1, 2-M, and 3—M3 have equations ¢, = 3, {3 = ¢y and 1 = &, respectively, in triangular
coordinates. They intersect at the centroid C of coordinates {1, 1, 2}. Other names for the centroid are
barycenter and center of gravity. If you make areal triangle out of cardboard, you can balance the triangle at
this point. It can be shown that the centroid trisects the medians, that is to say, the distance from a corner to

the centroid is twice the distance from the centroid to the opposite side of the triangle.

The altitudes are three lines that connect each corner with their projections onto the opposing sides, as
depicted in Figure 15.3(b). The projection of corner i isidentified H;, so the altitudes are 1-H;, 2-H, and
3-Hjs. Locations H; are called altitude feets. The atitudesintersect at the triangle orthocenter H. Thelengths
of those segments are the triangle heights. The triangular coordinates of H; and H, as well as the atitude
equations, are worked out in an Exercise.
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Ancther interesting point is the center O¢ of the circumscribed circle, or circumcircle. This is the unique
circlethat passesthrough the three corners, as shown in Figure 15.3(c). It can be geometrically constructed by
drawing the normal to each side at the midpoints. Those three lines, called the perpendicular side bisectors,
intersect at Oc. A famous theorem by Euler asserts that the centroid, the orthocenter and the circumcircle
center fall on a straight line, called the Euler line. Furthermore, C lies between O¢ and H, and the distance
Oc—H isthree times the distance H—C.

§15.3. TheTurner Triangle

The simplest triangular element for plane stress (and in general, for 2D problems of variational
index m = 1) is the three-node triangle with linear shape functions, with degrees of freedom
located at the corners. The shape functions are simply the triangular coordinates. That is, N = ¢
fori = 1, 2, 3. When applied to the plane stress problem, this element is called the Turner triangle.

For the plane stress problem we select the linear interpolation (15.8) for the displacement compo-
nents uy and uy at an arbitrary point P (1, {2, £3):

The interpolation is illustrated in Figure 15.4. The two

expressionsin (15.15) can be combined in amatrix form - Uxy by linear
that befits the expression (14.17) for an arbitrary plane Uyap  |P(L1.82.85) { uy} interpol ation
stress element:
Uy
uyl
|:Ux] _ |:§1 0 ¢ 0 & 0] Ux2 | _ NIt
Uy 0 & 0 & 0 &Gfupe ’
Ux3
L Uys
(15.16)
where N is the matrix of shape functions. FIGURE 15.4. Displacement

interpolation over triangle.
815.3.1. Strain-Displacement Equations

The strains within the elements are obtained by differentiating the shape functions with respect to
x and y. Using (15.14), (15.16) and the general form (14.18) we get

Uy
1[Y3 O yun 0 y» O Eyl
e:DNuezﬁ[O X2 0 X3 O xm} UXZ = BuS, (15.17)
X32 Y23 X13 Y Xo1 Y12 uy2
X3
_Uy3_

in which D denotes the symbolic strain-to-displacement differentiation operator given in (14.6),
and B isthe strain-displacement matrix. Note that the strains are constant over the element. Thisis
the origin of the name constant strain triangle (CST) given it in many finite element publications.

1538



815.3 THE TURNER TRIANGLE

815.3.2. Stress-Strain Equations
The stressfield o isrelated to the strain field by the elastic constitutive equation in (14.5), whichis
repeated here for convenience:

Oxx E; Ep Eg Ex

Oxy Eis Ex EgpldlZey

where E;; are plane stress elastic moduli. The constitutive matrix E will be assumed to be constant
over the element. Because the strains are constant, so are the stresses.

815.3.3. The StiffnessMatrix
The element stiffness matrix is given by the general formula (14.23), which is repeated here

K= | hBTEB d®, (15.19)

Qe
where Q¢ isthe triangle domain, and h the plate thickness that appearsin the plane stress problem.
Since B and E are constant, they can be taken out of the integral:

Ke = BTEB/ hdQ (15.20)
Qe

If h isuniform over the element the remaining integral in (15.20) issimply hA, and we obtain the
closed form

Y3 0 X3
0 Xz Yo3

E,, E,, E Y3 0 yuu 0 yio O
h 11 B2 EBg3
Ke = AhBTEB = E\ ygl XO );/13 |:E12 E22 E23i| |: 0 X 0 xi3 O X21i| .
13 73l Ei; Exy E X32 Y23 X13 Y31 X21 Y12

L 0 X21 Y12
(15.21)
Exercise 15.1 deals with the case of alinearly varying plate thickness.
815.3.4. The Consistent Nodal Force Vector
For simplicity we consider here only internal body forces® defined by the vector field
b= [bx ] (15.22)
by

which is specified per unit of volume. The consistent nodal force vector f€ is given by the general
formula (14.23) of the previous Chapter:

fe:/ hNdesz:f hl% 9lp4a. (15.23)
e Qe

3 For consistent force computations corresponding to distributed boundary |0ads over a side, see Exercise 15.4.
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Tri g3Tur ner Menbr aneSti f f ness[ ncoor _, Emat _, h_, nuner _] : =Modul e[ {
x1, x2,x3,y1,y2,y3,x21, x32,x13,y12,y23,y31, A Be, Ke},
{{x1,yl1}, {x2,y2}, {x83, y3}}=ncoor;
A=Si mpl i fy[ (x2*y3-x3*y2+(x3*yl-x1*y3) +(x1*y2-x2*y1))/ 2];
{x21, x32,x13,y12,y23,y31} ={x2-x1, x3-x2, x1-x3,yl-y2,y2-y3,y3-yl};
Be={{y23,0,y31,0,y12, 0}, {0, x32, 0, x13, 0, x21},
{x32,y23, x13,y31, x21,y12}}/ (2*A);
I f [numer, Be=N[Be]]; Ke=A*h*Transpose[ Be].Emat. Be;
Return[ Ke] ];

F1Gure 15.5. Implementation of Turner triangle stiffness matrix calcul ation as a Mathematica module.

The simplest caseiswhen the body force components (15.22) aswell asthe thickness h are constant
over the element. Then we need the integrals

ndQ=| dQ= [ de=:3A (15.24)

Qe Qe Qe

which replaced into (15.23) gives

Ah

This agrees with the simple element-by-element force-lumping procedure, which assigns one third
of thetotal force along the {x, y} directions: Ahb, and Ahby, to each corner.

Remark 15.2. Theintegrals (15.24) are particular cases of the general integration formula of monomiasin
triangular coordinates:

injrkt . .
i>0,j>0k>O0. (15.26)

15253 (i+j+k+21" —

2A o

which can be derived through the Beta function. Herei, j, k are integer exponents. This formula only holds
for triangleswith straight sides, and thus does not apply for higher order elementswith curved sides. Formulas
(15.24) are obtained by setting exponentsi = 1, j = k = 0in (15.26), and permuting {i, j, k} cyclicaly.

815.3.5. Implementation

The implementation of the Turner triangle in any programming language is very simple. A Mathe-
matica module that returns K © is shown in Figure 15.5. The module needs only 8 lines of code. It
isinvoked as

Ke=Trig3TurnerMembraneStiffness[ncoor,Emat,h,numer] ; (15.27)
The arguments are
ncoor Element node coordinates, arranged asalist: { {x1,y1},{x2,y2},{x3,y3}}.
Emat A two-dimensional list storing the 3 x 3 plane stress matrix of elastic moduli as
{{E11,E12,E13},{E12,E22,E23},{E13,E23,E33} }.
h Plate thickness, assumed uniform over the triangle.
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815.3 THE TURNER TRIANGLE

ncoor={{0, 0}, {3, 1},{2,2}}; Emat=8*{{8,2,0},{2,8,0},{0,0,3}};

Ke=Tri g3Tur ner Menbr aneSti f f ness[ ncoor, Emat, 1, Fal se] ;

Print["Ke=",Ke//MtrixForn;

Print["eigs of Ke=", Chop[Ei genval ues[NJKe]ll];

Show Gr aphi cs[ RGBCol or[ 1, 0, 0]], G aphi cs[ Absol ut eThi ckness|[ 2]],
G aphi cs[ Pol ygon[ ncoor] ], Axes->True] ;

1 5 -10 -2 -1 -3 2
5 11 2 10 -7 -21 15
Ke=| “10 2 44 -20 -34 18 '
-2 10 -20 44 22 -54 1
-1 -7 -34 22 35 -15 o5
-3 -21 18 -54 -15 75 '
eigs of Ke = {139.33, 60., 20.6704, 0, 0, 0} 05 1 15 2 25 3
FicUure 15.6. Test statements to exercise the module of Figure 15.5, and outputs.
numer A logical flag: True to request floating-point computation, else False.

This module is exercised by the statements listed at the top of Figure 15.6, which form atriangle
with corner coordinates { {0,0},{3,1},{2,2}}, isotropic material matrix with E;; = Ez, = 64,
E1, = 16, Ez3 = 24, others zero, (that is, E = 60 and v = %) and unit thickness. The results are
shown at the bottom of Figure 15.6. The computation of stiffness matrix eigenvalues is always a
good programming test, since 3 eigenvalues must be exactly zero and the other 3 real and positive,
as explained in Chapter 19. The last test statement draws the triangle (this plot was moved to the
right of the numeric output to save space.)

§15.3.6. *Consistency Verification

It remains to check whether the interpolation (15.15) for element displacements meets the compl eteness and
continuity criteria studied in Chapter 19 for finite element trial functions. Such consistency conditions are
sufficient to insure convergence toward the exact solution of the mathematical model as the mesh is refined.

The variational index for the plane stress problem ism = 1. According to the rules stated in §19.3, the trial
functions should be 1-complete, C° continuous, and C* piecewise differentiable.

§15.3.7. *Checking Continuity

Along any triangle side, the variation of uy and uy islinear and uniquely determined by the value at the nodes
on that side. For example, over side 1-2 of an individual triangle, which has equation ¢3 = O:

The variation of uy and uy over
Ux = Ux181 + Ux282 + Uxals = Uxad1 + Ux282, side 1-2 depends only on the nodal

(15.28)
Uy = Uy181 + Uy + Uyadz = Uya&r + Uyalo. values Uyg, Uy, Uyg and Uyp.

An identical argument holds for that side when it belongs
to an adjacent triangle, such as elements (el) and (€2)
shown in Figure 15.7. Since the node values on all
elementsthat meet at anode are the same, u, and u, match
along the side, and the trial function is C° interelement
continuous. Because the functions are continuous inside
the elements, it follows that the continuity requirement is
met.
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Ficure 15.7. Interelement continuity check.

§15.3.8. *Checking Completeness

The completeness condition for variational order m = 1 requires that the shape functions N; = ¢; be able to
represent exactly any linear displacement field:

Uy = ap + a1X + a2y, Uy = Bo + B1X + B1y. (15.29)

To check this we obtain the nodal values associated with the motion (15.29): uyi = ap + a1X + a2y and
Uyi = Bo+ BiXi + By fori =1, 2, 3. Replace thesein (15.16) and seeif (15.29) isrecovered. Here are the
detailed calculations for component uy:

Uy = Z Uxi §i = Z(Olo +a1X + a2y = Z(%G + a1Xi g + a2Yidi)

| ' (15.30)
= WOZG +o Z(Xifi) + a2 Z(Yifi) = g + a1X + agy.

Component u,, can be similarly verified. Consequently (15.16) satisfies the completeness requirement for
the plane stress problem — and in general, for any problem of variational index 1. Finaly, a piecewise
linear tria function is obviously C?! piecewise differentiable and consequently has finite energy. Thusthe two
completeness requirements are satisfied.

§15.3.9. *Tonti Matrix Diagram u - >| f
f=VB'EBu=Ku

For further developments covered in more advanced
courses, it is convenient to split the governing equations
of the element. In the case of the Turner triangle they are,

omitting element superscripts: e=Bu f=V BTO'
\
e=Bu, o=Ee f=AToe=VB'o. (1531 L
e — > O
HereV = hy,Aisthevolume of the element, hy, being the o=Ee

mean thickness. Theequations(15.31) may begraphically
represented with the diagram shown in Figure 15.8. This
isadiscrete Tonti diagram similar to those of Chapter 6.

Ficure 15.8. Tonti matrix diagram for
Turner triangle.

§15.4. *Derivation Using Natural Strainsand Stresses

The foregoing derivation of the Turner triangle uses Carte-
sian strains and stresses, as well as {x, y} displacements.
The only intrinsic quantities are the triangle coordinates.
This advanced section examines the derivation of the
dement stiffness matrix through natura strains, natural
stresses and covariant displacements.

Although the procedure does not offer obvious shortcuts
over the previous derivation, it becomes important in
the construction of more complicated high performance FIGURE 15.9. Geometry-intrinsic fieldsfor
elements. It also helps reading recent literature in assumed the Turner triangle: (a) natural strainse;, (b)
dtrain elements. natural stresses 7;.
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(b) 5
&

Ficure 15.10. Additional quantities appearing in natural strain and stress cal culations:
(a) side lengths, (b) side directions, (c) covariant node displacements.

§15.4.1. *Natural Strains and Stresses

Natural strains are extensional strains directed paralel to the triangle sides, as shown in Figure 15.10(a).
Natural strains are denoted by €1 = €3, €3 = €1, and €13 = €.

Similarly, natural stressesarenormal stressesdirected parallel tothetrianglesides, asshownin Figure 15.10(b).
Natural stresses are denoted by 707 = 13, T3> = 71, and 713 = 1.

Because both natural stresses and strains are constant over the triangle, no node val ue association is needed.

The natural strains can be related to Cartesian strains by the following tensor transformation®

€1 G st s Exx
e=|eal|l=|3 £ 50 ey |=To'e (15.32)
s

€3 C% Zexy

Here ¢; = Xs2/L1, St = Y32/L1, C2 = Xu3/L2, 2 = Y13/L2, C3 = Xo1/L3, and s3 = Y21 /L3, are sines and
cosines of the side directions with respect to {x, y}, asillustrated in Figure ?(a,b). Theinverse of thisrelation

IS

ey 1 Va1 L2 Yi2Ya2L 3 Y23Y13L3 €

e= Eyy = m X31X21 L% X12X32 L% X23X13 Lg €2 | = Tee.
28yy (YarXaz2 + X13Y21) L2 (YioXos + Xo1Ya2) L3 (Y3Xar + Xa2Y13) L3 €3

(15.33)

Note that T, is constant over the triangle. From the invariance of the strain energy density o'e = 7€ it
follows that the stressestransform as T = Teo and o = T_ 7. That strain energy density may be expressed as

U=1e"Ee= 1e"E,e, E,=T.ETe. (15.34)

Here E, isastress-strain matrix that relates natural stressesto natural strainsas = E,¢. It may be therefore
called the natural constitutive matrix.

§15.4.2. *Covariant Node Displacements

Covariant node displacements d; are directed along the side directions, as shown in Figure ?(c), which defines

4 Thisisthe“straingage rosette” transformation studied in Mechanics of Material's books.

15-13



Section 15: THREE-NODE PLANE STRESS TRIANGLES

the notation used for them. They are related to the Cartesian node displacements by

d; ¢z s 0 0 0O O Uyx1
d2 ¢, s 0 0 0 O Uy
_ d3 _ 0 0 Gt S 0 0 Uxo _
d= @|=l0 0 ¢ s 0 0 Uyz = Tgqu. (15.35)
d5 0 0 0 0 C Ux3
ds 0O 0 0 0 ¢ s Uys
Theinverserelation is
U1 Layss Loyar O 0 0 0 dy
Uy1 L3X13 L2X12 0 0 0 0 d2
|ue | 1 0 0 Liyz L3y O 0 ds | _ +1
1= Upo | 2A 0 0 LiXar LaXzs 0 0 ds =Tad (15.36)
Uxs 0 0 0 0 Loy Liyis ds
Uys 0 0 0 0 LoXs, LiXsp de

The natural strains are evidently given by the relations ¢; = (dg — d3) /L1, €2 = (d; — ds)/L, and €3 =
(d4 — dy)/L3. Collecting thesein matrix form:

dy
d,
€1 0 0 —1/L1 0 0 1/L1 d
e=|e | = 0 1/L, 0 0 -1/L, O d3 = B.d. (15.37)
€3 -1/L; O 0 1/Ls 0 0 d“
5
ds
§15.4.3. *The Natural StiffnessMatrix
The natural stiffness matrix for constant thickness h is
K¢ = (Ah)B/E.B.,, E,=T.ET. (15.38)
The Cartesian stiffness matrix is
Ke=TgiKnTq. (15.39)
Comparing with K& = (Ah) BT E B we see that
B =TeB.Tq, B. =T.'BT . (15.40)

§15.5. *The Veubeke Equilibrium Triangle

The Veubeke equilibrium triangle® differs from the Turner triangle in the degree-of-freedom configuration.
Asillustrated in Figure 15.11, those are moved to the midpoints {4, 5, 6} while the corner nodes {1, 2, 3} still
define the geometry of the element. In the FEM terminology introduced in Chapter 6, the geometric nodes
{1, 2, 3} and the connection nodes {4, 5, 6} nho longer coincide. The node displacement vector collects the
freedoms shown in Figure 15.11(b):

ue:[ux4 Uyg Uxs Uys Uxs Uye]T. (1541)

The quickest way to formul ate the stiffness matrix of this element isto relate 15.41 to the node displacements
of the Turner triangle, renamed for convenience as

U} =[Uaq Ups Ue Up Ug Ugl . (15.42)

5 The qualifier equilibrium distinguishes this element from others created by Fraeijs de Veubeke, including the 6-node
plane stress comforming triangle. See Notes and Bibliography for the original derivation from an equilibrium field.
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(@ 3(Xs,¥s) (b) (©
5 Uys
6 2 (XZ !y2) 6 7
y
4
1 Xl’yl)

X

FiGure 15.11. The Veubeke equilibrium triangle: (a) geometric definition; (b) degree-
of-freedom configuration; (c) element patch showing how triangles are connected at the
midpoints.

§15.5.1. *Kinematic Relations

The node freedom vectors 15.41 and 15.42 are easily related since by linear interpolation along the sides one
obviously has uy, = %(uxl + Ux2), Uys = %(uyl + uyy), etc. Expressing those links in matrix form gives

Uxas 1 01000 Uy1 Uy1 1 0-1 0 1 O Uya

Uya 010100 Uy1 Uy1 0 1 0-1 0 1 Uya

Uxs | 1 0 01 010 Uyo Uyo _ 1 01 0-1 O Uxs

us| 20 0 0 1 0 1|]|up]|’ u | | 0 1 0 1 0-1]|]ugs

Uxe 1 00010 Uy3 Uy3 -1 0 1 0 1 O Uxe

Uye 010001 Uys Uys 0-1 0 1 0 1 Uys
(15.43)

In compact form: u® = Tyr u§ and u§ = Tyy U, with Tyt = T;\l,. The shape functions are

Ng=01+8—83, Ns=—-01+8+8, Ne=8o— 0+ (15.44)

Renaming the Turner triangle strain-displacement matrix of (15.17) as B+, the corresponding matrix that
relates e = B u® in the Veubeke equilibrium triangle becomes

1[Yr O ¥y 0 y O
B=BrTrv=—|[ 0 X 0 xs 0 Xz

A (15.45)
X1z Y1 X3 Y2 Xs1 Vi3

§155.2. *StiffnessMatrix

Theelement stiffnessmatrix isgiven by the general formula(14.23). For constant plate thicknessh one obtains
the closed form

Yo 0 X

0 x
h |y 62 3:21 Eyy Ep Egg Ya 0 y» 0 vyi3 O
Ke = Ah BT EB=— 32 23 E E E 0 X12 0 X23 0 Xa1 |- (1546)
Al 0 Xz Yy 12 E22 B3
yiz 0 Xa Eis By E Xiz Y1 X23 Ya2 Xa1 Vi3

0 Xs1 Vi3

The computation of consistent body forcesis |eft as an Exercise.
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Tri g3VeubekeMenbr aneSti f f ness[ ncoor _, Emat _, h_, numer _] : =Modul eJ {
x1, x2,x3,y1,y2,y3,x12, x23, x31, y21,y32,y13, A Be, Te, Ke},
{{x1,y1}, {x2,y2}, {x3,y3}}=ncoor;
A=Si mpl i fy[ (x2*y3-x3*y2+(x3*yl- x1*y3) +(x1*y2-x2*y1))/ 2] ;
{x12, x23, x31, y21, y32, y13} ={ x1- x2, x2-x3, x3-x1,y2-y1,y3-y2,yl-y3};
Be={{y21, 0,y32,0,y13,0}, {0,x12,0, x23, 0, x31},
{x12,y21, x23,y32,x31, y13}}/ A
If [numer, Be=N Be]]; Ke=A*h*Transpose[Be].Emat. Be;
Ret urn[ Ke] ] ;

FI1Gure 15.12. Implementation of Veubeke equilibrium triangle stiffness matrix as a Mathematica module.

§15.5.3. *Implementation

The implementation of the Veubeke equilibrium triangle as a Mathematica module that returns K€ is shown
in Figure 15.12. It needs only 8 lines of code. It isinvoked as

Ke=Trig3VeubekeMembraneStiffness[ncoor,Emat,h,numer] ; (15.47)

The arguments have the same meaning as those of the module Trig3TurnerMembraneStiffness described
in 815.3.6.

ncoor={{0,0},{3,1},{2,2}}; Emat=8*{{8,2,0},{2,8,0},{0,0,3}};
Ke=Tri g3VeubekeMenbr aneSti f f ness[ ncoor, Emat, 1, Fal se];
Print["Ke=", Ke//MtrixForn;

Print["eigs of Ke=", Chop[Ei genval ues[NNKe]l]ll;

140 -60 -4 -28 -136 88
-60 300 -12 -84 72 -21

-4 -12 44 20 -40 -8

-28 -84 20 44 8 40
-136 72 -40 8 176 -80

88 -216 -8 40 -80 176

Ke=

eigs of Ke={557.318, 240., 82.6816, 0, 0, O}

FIGURE 15.13. Test statements to exercise the module of Figure 15.12, and outputs.

Thismoduleis exercised by the statements listed at the top of Figure 15.13, which form atriangle with corner
coordinates { {0,0},{3,1},{2,2}}, isotropic material matrix with Ey; = Ex» = 64, Ejp = 16, Ezz = 24,
others zero, and unit thickness. The results are shown at the bottom of Figure 15.13. Thisisthe sametriangle
used to test module Trig3TurnerMembraneStiffness in §15.3.6. Note that the element isrank sufficient.

§15.5.4. *Spurious Kinematic Modes

Although anindividual Veubeke equilibrium triangleis rank sufficient, assemblies are prone to the appearance
of spurious mechanisms. That is, kinematic modes that produce no strain energy although they are not rigid
body modes. These will be illustrated by studying the three macroelements pictured in Figure 15.14. For
simplicity the macroelements are of rectangular shape, but the conclusions apply to more general geometries.

Type | macroelement is built with two triangles. It hasfour geometric nodes: 14, five connection nodes. 5-9,
and 10 degrees of freedom. The eigenvalue analysis of the assembled stiffness K is given as an Exercise. It
shows that K has 4 zero eigenvalues. Since there are 3 rigid body modesin 2D, oneis spurious. It is easily
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4 4 3
Typel 8@6 Spurious mode:
16— 2

Thickness h/2

Spuriousmode: 9 7

F1GURE 15.14. Threemacroelement assembliesfabricated with Veubeke equilibrium
triangles to investigate spurious kinematic modes. Red-filled and white-filled circles
mark geometric and connection nodes, respectively.

shown that the spurious mode corresponds to the relative rotation of the two triangles with center node 9 as
pivot, as pictured to the right of the macroelement.

Type Il macroelement is built with four crisscrossed triangles of thickness h/2 asillustrated in the Figure. It
has four geometric nodes. 14, six connection nodes: 5-10, and 12 degrees of freedom. (Note that although
9 and 10 occupy the same location for this geometry, they should be considered as two separate nodes.) The
eigenvalue andysis of the assembled stiffnessK isgiven asan Exercise. It showsthat K has 3 zero eigenvalues
and therefore this macroelement has no spurious modes.

Type Il macroelement is of Union-Jack type and is built with 4 triangles. It has five geometric nodes. 1-5,
eight connection nodes: 6-13, and 16 degrees of freedom. The eigenvalue analysis of the assembled stiffness
K is given as an Exercise. It shows that K has 4 zero eigenvalues and conseguently one spurious mode.
This correspond to the triangles rotating about the midpoints 6-9 as pivots, as pictured to the right of the
macroel ement.

These examples show that this element, when used in a stiffness code, is prone to spurious pivot modes where
sidesof adjacent trianglesrotaterel atively from each other about the midpoint connector. Thisisaconsequence
of the element being nonconforming: full determination of linearly varying side displacements requires two
nodes over that side, and thereisonly one. Even if arank sufficiently macroelement mesh unit such as Typell
of Figure 15.14 can be constructed, there is no guarantee that spurious pivot modes will not occur when those
mesh units are connected. For this reason this element israrely used in DSM-based structural programs, but
acquires importance in applications where flux conservation is important.

§15.6. *Shear Lockingin Turner Triangles

A well known deficiency of the 3-node Turner triangle isinability to follow rapidly varying stressfields. This
is understandabl e since stresses within the element, for uniform material properties, are constant. But its 1D
counterpart: the 2-node bar element, is nodally exact for displacements under some mild assumptions stated
in Chapter 11, and correctly solves |oaded-at-joints trusses with one element per member. On the other hand,
the triangle can be arbitrarily way off under unhappy combinations of loads, geometry and meshing.
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3 M

4
T a2 saction

Th| ckness h/2 h

Typel: CrlsscrossedN ]/I % Type Il: Union-Jack

Ficure 15.15. The bending test with two macroelement types.

|<— U—>|

What happensin going from 1D to 2D? New effects emerge, notably shear energy and inplane bending. These
two can combineto produce shear locking: €longated triangles can become extraordinarily stiff under inplane
bending because of spurious shear energy.® The bad news for engineers is that wrong answers caused by
locking are non-conservative: deflections and stresses can be so grossly underestimated that safety margins
are overwhelmed.

To characterize shear locking quantitatively it is convenient to use macroelements in which triangles are
combined to form a 4-node rectangle. This simplifies repetition to form regular meshes. The rectangle
response under in-plane bending is compared to that of a Bernoulli-Euler beam segment. It iswell known that
the latter is exact under constant moment. The response ratio of macroelement to beam is a good measure of
triangle performance under bending. Such benchmarks are technically called higher order patch tests. Test
results can be summarized by one number: the energy ratio, which gives a scalar measure of relative stiffness.

§15.6.1. *Thelnplane Bending Test

Thetest is defined in Figure 15.15. A Bernoulli-Euler plane beam of thin rectangular cross-section of height
b and thickness h is bent under applied end moments M. The beam is fabricated of isotropic material with
elastic modulus E and Poisson’sratio v. Except for possible end effectsthe exact solution of the beam problem
(from both the theory-of-elasticity and beam-theory standpoints) is a constant bending moment M(x) = M
along the span. The associated curvature isk = M/(El,) = 12M/(Eb%h). The exact energy taken by a
beam segment of length @ is Upeam = 5Mka = 6M2a/(Eb%h) = - Eb*h«?a = - Eb*ho2/a. In the latter
0s = kaisthe relative rotation of two cross sections separated by a.

To study the bending performance of triangles the beam is modeled with one layer of identical rectangular
macroel ementsdimensioned a x b and made up of triangles, asillustratedin Figure 15.15. Therectangle aspect
ratioisy = a/b. All rectangles undergo the same deformations and thus it is enough to study aindividual
macroelement 1-2-3-4. Two types are considered here:

Crisscrossed (CC). Formed by overlaying triangles 1-2-4, 3-4-2, 2-3-1 and 4-1-2, each with thickness h/2.
Using 4 trianglesinstead of 2 makesthe macroelement geometrically and physically symmetric since2 triangles
are attached to each corner.

Union-Jack (UJ). Formed by placing afifth node at the center and dividing therectangleinto 4 triangles: 1-2-5,
2-3-5, 3-4-5, 4-1-5. By construction this element is al'so geometrically and physically symmetric.

6 The deterioration can be even more pronounced for its spatial counterpart: the 4-node tetrahedron element, because shear
effects are even more important in three dimensions.
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815.6 *SHEAR LOCKING IN TURNER TRIANGLES
—I%IZ %!]2

§15.6.2. *Energy Ratios

The assembled macroelement stiffnesses are K¢c and
K{,, of orders 8 x 8 and 10 x 10, respectively. For the
latter theinternal node5isstatically condensed producing
an 8 x 8 stiffness K. To test performance we apply four
alternating corner loads as shown in Figure 15.16. The Ficure 15.16. Bending a macroelement by
resultant bending moment isM = Pb. applying arelative edge rotation.

Although triangles cannot copy curvatures pointwise,” macroelement edges can rotate since constituent tri-
angles can expand or contract. Because of symmetries, the rotations of sides 1-2 and 3-4 are —6,/2 and
6./2, asillustrated in Figure 15.16. The corresponding corner x displacements are +h6,/4 whereas the y
displacements are zero. Assemble these into a node displacement 8-vector uy,.

Mm=13b0[-1 0 1 0 -1 0 1 O] (15.48)

Theinternal energy taken by a macroelement of 8 x 8 stiffnessK , under (15.48) isUy, = %u[,l KmUm, which
can be expressed as afunction of E, v, a, b, h and §,.8

ClearAll[a, b, Emh,y];
b=al/y; 1z=h*b”3/12; Ubean¥Si nplify[(1/2)*EnmI|z*6ar2/a];
Emat =En*{{1, 0, 0}, {0, 1, 0}, {0, 0, 1/ 2} };
nc={{-a,-b},{a, -b}, {a b}, {-a, b}, {0,0}}/2
enCC={{1, 2,4},{3,4,2},{2,3,1},{4,1,3}};
enW={{1, 2,5},{2,3,5},{3, 4,5}, {4 1,5}}; r={0,0};
For [mel, nxk=2, mt+, ntype={"CC',"UW"}[[mM];
nF={8,10}[[n]]; K=Tabl e[O0, {nF} {nF}]; f=Table[O0,{nF}];
For [e=1, e<=4, e++,
If [mype=="CC', enl=enC([e]], enl=enUJ[[e]]];
{n1, n2, n3}=enl ; encoor ={nc[[n1]],nc[[n2]],nc[[n3]]};
ht=h; If [rnype "CC', ht=h/2];
Ke=Tri g3Tur ner Menbr aneSt i f f ness[ encoor, Emat, ht, Fal se];
eft={2*nl1-1, 2*nl, 2*n2- 1, 2*n2, 2*n3- 1, 2*n3};
For [i=1,i<=6,i++, For [j=1,j<=6,]j++, ii=eft[[i]];
ji=eft[[j1]; KI[ii,jjll+=Ke[[i,j]] 11;
]1; KMeK= Slrrpllfy[K]'
If [nmtype=="UJ

{K, f}= Si npl | fy[ CondenselLast Freedon{ K, f]];

{KM f}=Si nplify[ CondenselLast Freedon{ K, f]]1];
Print["KM=", KM/ MatrixForn;
uM={1,0,-1,0,1,0,-1, 0} *6a*h/ 4;

UM=uM KM uM 2; r M=Sinplify[ UM Ubeani ;
Print["rM", rM; r[[m]=rM

I
Pl ot[ Eval uate[r],{y, 0, 10}];

Ficure 15.17. Script to compute energy ratios for the two macroelements of Figure 15.15.

Theratio ry = Uy /Upeam IS caled the energy ratio. If ry > 1 the macroelement is stiffer than the beam
because it take more energy to bend it to conform to the same edge rotations, and the 2D model is said to be
overstiff. Results for zero Poisson’s ratio, computed with the script of Figure 15.17, are

31+ y??

3
fecc =34 -2 ryy=—" "7 15.49
cc 21/, uJ 2+ 42 ( )

7 That is the reason why they can be so stiff under bending.
8 Theload P could be recovered viaK pupm, but this value is not needed to compute energy ratios.
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Section 15: THREE-NODE PLANE STRESS TRIANGLES

If for example y = a/b = 10, which is an elongated rectangular shape of 10:1 aspect ratio, rcc = 153
and the crisscrossed macroelement is 153 times stiffer than the beam. For the Union-Jack configuration
ru; = 10201/134 = 76.13; about twice better but still way overstiff. If y = 1, rcc = 45andry; = 2
overstiff but not dramatically so. The effect of a nonzero Poisson’sratio is studied in Exercise 15.10.

§15.6.3. *Convergence as Mesh is Refined

Notethat if y = a/b — 0,rcc — 3andry; — 1.5. So even if the beam of Figure 15.15 is divided into
an infinite number of macroelements along x the solution will not converge. It is necessary to subdivide also
aong the height. If 2n (n > 1) identical macroelement layers are placed along the beam height while y is
kept fixed, the energy ratio becomes

220 1 4@ rd—1
@) _ —
P = e =l (15.50)

where r @ is the ratio (15.49) for one layer. If r® = 1,r@ = 1for al n > 1, so bending exactness is
maintained asexpected. If n = 1 (twolayers),r @ = (3+r®)/4andif n = 2 (four layers),r® = (7+r®)/8.

Ifn — oo, r@ — 1, but convergence can be slow. For example, supposethat y = 1 (unit aspect ratioa = b)
andthat r® = reec = 4.5. To get within 1% of the exact solution, 1 4+ 3.5/2" < 1.01. Thisis satisfed if
n > 5, meaning 10 layers of elementsalong y. If the beam span is 10 times the height, 1000 macroelements
or 4000 triangles are needed for this simple problem, which is exactly solvable by one beam element.

The stress accuracy of trianglesis examined in Chapter 28.

Notes and Bibliography

As a plane stress structural element, the Turner triangle was first developed in the 1956 paper by Turner
et. al. [786]. The target application was modeling of delta wing skin panels. Arbitrary quadrilaterals were
formed by assembling triangles as macroel ements. Because of its geometric flexibility, the element was soon
adopted in aircraft structural analysis codes in the late 1950°'s. 1t moved to Civil Engineering applications
through the research and teaching at Berkeley of Ray Clough, who gave the method its namein [138].

The derivation method of [786] would look unfamiliar to present FEM practicioners used to the displacement
method. It was based on assumed stress modes. More precisaly: the element, referred to alocal Cartesian
system {x, y}, is put under three constant stress states: oyx, oy and oy, collected in array o. Lumping the
stress field to the nodes gives the node forces: f = Lo. The strain field computed from stressesise = E~o.
Thisisintegrated to get adeformation-displacement field, to which 3 rigid-body modes are added asintegration
constants. Evaluating at the nodes produces e = Au, and the stiffness matrix follows on eliminating o and
e: K = LEA. For constant thickness and material propertiesit happensthat L = VAT andsoK = VATEA
happily turned out to be symmetric. ThisA isthe B of (15.17) times 2A, so in the end the stiffness matrix (for
constant plate thickness) turns out to be the same as (15.21).

The derivation from assumed displacements evolved later. It is not clear who worked it out first, although
it is mentioned in [138,830]. The equivalence of the two forms, through energy principles, had been noted
by Gallagher [297]. Early displacement derivations typically started from linear polynomials in Cartesian
coordinates. For example Przemieniecki [619] begins with

Uy = X+ CY +C3, Uy = CsX + CsY + Cs. (15.51)

Here the ¢; play the role of generalized coordinates, which have to be eventually eliminated in favor of node
displacements. The same approach is used by Clough in a widely disseminated 1965 article [140]. Even
for this simple element the approach is unnecessarily complicated and leads to long hand computations. The
elegant derivation in triangular coordinates was popularized by Argyris[28].
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815. Notes and Bibliography

The idea of using piecewise linear interpolation over atriangular mesh actually precedes [786] by 13 years.
As noted in Chapter 1, it appears in an article by Courant [156], where it is applied to a Poisson’s equation
modeling St. Venant'storsion. Theideadid not influence early work in FEM, however, since as noted above
the derivation in [786] was not based on displacement interpol ation.

The Veubeke equilibrium triangle appears in [283, p. 170] and is further elaborated in [284, p. 176]. It
is constructed there as an equilibrium element, that is, the stress field inside the triangle is assumed to be
oxx = P1, oyy = P2 and oy, = B3, Where {B1, B, B3} are stress parameters. (A field of constant stresses
satisfiesidentically the plane-stress differential equilibrium equationsfor zero body forces.) Stress parameters
can be uniquely expressed in terms of generalized edge loads, which turn out to be virtual-work conjugate to
midside displacements.® The direct displacement derivation given here asa“ Turner triangle mapping” is new.
As previously noted, this element is rarely used in structural mechanics because of the danger of spurious
kinematic modes discussed in §15.5.4. It has importance, however, in some non-structural applications.

The completeness check worked out in §15.4.2 is a specialization case of a genera proof developed by Irons
inthemid 1960s (see[411, 83.9] and referencestherein) for general isoparametric elements. The check works
because the Turner triangle is isoparametric.

What are here called triangular coordinates were introduced by Mobius in his 1827 book [512].1° They are
often called barycentric coordinates on account on the interpretation discussed in [158]. Other names are
listed in Table 15.1. Triangles possess many fascinating geometric properties studied even before Euclid. An
exhaustive development can be found, in the form of solved exercises, in [711].

Itisunclear when the monomial integration formula (15.26) wasfirst derived. Asan expression for integrands
expressed in triangular coordinatesit was first stated in [211].

The natural strain derivation of §15.4 is patterned after that developed for the so-called ANDES (Assumed
Natural Deviatoric Strain) elements [509]. For the Turner triangle it provides nothing new aside of fancy
terminology. Energy ratios of the form used in 815.6 were introduced in [89] as away to tune up the stiffness
of Free-Formulation elements.

References
Referenced items have been moved to Appendix R.

9 Theinitial step of assuming stresses exactly mimics that of [786] a decade earlier. What is fundamentally different in
Fraeijs de Veubeke's derivation is the use of energy theorems (in this case, PV W) to pass from generalized edge loads to
mean edge displacements. The approach is characteristic of FEM Generation 2.

10 Heis better remembered for the “Mobius stri p” or “Mobius band,” the first one-sided 3D surface in mathematics.
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Section 15: THREE-NODE PLANE STRESS TRIANGLES

Homework Exercisesfor Chapter 15
TheLinear Plane Stress Triangle

EXERCISE 15.1 [A:15] Assumethat the 3-node plane stress triangle has variabl e thickness defined over the
element by the linear interpolation formula

N(¢1, &0 &3) = h1la + hato + hads, (E15.1)

where hy, h, and hs are the thicknesses at the corner nodes. Show that the element stiffness matrix is still
given by (15.21) but with h replaced by the mean thickness h,,, = (h; + h, + h3)/3. Hint: use (15.20) and
(15.26).

EXERCISE 15.2 [A:20] The exact integrals of triangle-coordinate monomials over a straight-sided triangle
are given by the formula (15.26), where A denotes the area of the triangle, and i, | and k are nonnegative
integers. Tabulate the right-hand side for combinations of exponentsi, j and k suchthati + j + k < 3,
beginning withi = j = k = 0. Remember that 0! = 1. (Labor-saving hint: don’t bother repeating exponent
permutations; for examplei =2, j =1,k =0andi = 1, ] = 2, k = 0 are permutations of the same thing.
Hence one needsto tabulate only casesin whichi > j > k).

EXERCISE 15.3 [A/C:20] Compute the consistent node force vector f® for body loads over a Turner triangle,
if the element thickness varies as per (E15.1), by = 0, and by = by1¢1 + by2¢2 + bysgs. Check that for
hy = h, = hs3 = hand by; = by, = bys = by you recover (15.25). For areaintegrals use (15.26). Partial
result: fyl = (A/60)[by1(6h1 + 2h, + 2h3) + by2(2h1 + 2h, + h3) + by3(2h1 +hy + 2h3)]

EXERCISE 15.4 [A/C:20] Derive the formula for the
consistent force vector f¢ of a Turner triangle of constant
thicknessh = 1, if side 1-2 (¢3 = 0, £, = 1 — 1), issubject
to alinearly varying boundary force q = ht such that

qx = C|x1§1 + QX2§2 — QXl(l - {2) + QXZQ,
Oy = Qy181 + Oy282 = Ay1(1 — &2) + Qy202.

Thi_s“ line boundary force” g has dimension of force per unit T O —F0= A (1-G)+ 0,0,
of side length.
Procedural Hint. Usethelasttermof thelineintegral (14.21),

in which t is replaced by g/h, and show that since the
contribution of sides 2-3 and 3-1 to the line integral vanish,

4qy= Gn(1-%)+ 0,0,

(E152) Y Gy

Ficure E15.1. Lineforceontriangleside 1-2
for Exercise 15.4.

1
We = (u®)" fé = / u'qdre :/ u'q Ly deo, (E15.3)
re 0

where L »; isthelength of side 1-2. Replace uy ($2) = Ux1(1—¢2) 4+ Uxaso; likewisefor uy, gy and gy, integrate
and identify withtheinner product shown asthesecondtermin (E15.3). Partial result: fy; = L1 (20x1+0x2)/6,
fxs = fys =0.

Note. The following Mathematica script solves this Exercise. If you decide to useit, explain the logic.

ClearAll [uxl,uyl,ux2,uy2,ux3,uy3,z2,L12];

ux=uxl*(1-z2)+ux2*z2; uy=uyl*(1-z2)+uy2*z2;

qx=qx1* (1-22)+qx2%z2; qy=qyl*(1-22)+qy2*z2;
We=Simplify[L12*Integrate [qx*ux+qy*uy,{z2,0,1}1];
fe=Table[Coefficient [We,{uxl,uyl,ux2,uy2,ux3,uy3}[[11]1],{i,1,6}];
fe=Simplify[fe]; Print["fe=",fel;

15-22



Exercises

EXERCISE 15.5 [C+N:15] Compute the entries of K® for the following plane stress triangle:

X1=0,y1=0,%=3 Yo=1 X3=2, y3=2,

100 25 O (E15.4)
E=|25 100 O |, h=1
0 0 50

Thismay be done by hand (it is agood exercise in matrix multiplication) or (more quickly) using the script of
Figure 15.5. Partial result: K;; = 18.75, Kgg = 118.75.

EXERCISE 15.6 [A+C:15] Show that the sum of the rows (and columns) 1, 3 and 5 of K® aswell asthe sum
of rows (and columns) 2, 4 and 6 must vanish, and explain why. Check it with the foregoing script.

EXERCISE 15.7 [A:10]. Consider two triangles T and T*, both with positive area. The corner coordinates
of TLare {{xy, y1},{X2, ¥2},{Xs, y3}} and those of T2 are { { X7, y1 },{x3, ¥5 },{X3, y3 }}. A point P in
T has Cartesian coordinates { x, y } and triangular coordinates { {1, {2, £3}. A point P* in T* has Cartesian
coordinates { x*, y* } and the same triangular coordinates. Show that { x*, y* } and { x, y } are connected by

the affine transformation
1 1 1 1 1 1 171'r
X* =X X5 X3 X1 X2 X3 X (E15.5)
y* Yi Y Y3 Yi Y2 V3 y

(Theindicated inverse existsif T has positive area, as assumed.)

EXERCISE 15.8 [A:15]. Let point P have triangular coordinates
¢}, &), ¢F}, asshownin Figure E15.2. Find the distances hpy, hp;
and hp; of P tothethreetrianglesides, and thetriangular coordinates
of points Py, P, and P; shown in the Figure (P, is projection on the
side opposite to corner i.) Show that hpi = ¢pi hi = 2¢pi A/Ly,
fori =1,2,3, ] =23, 1andk = 3, 1, 2, inwhich L ;; denotesthe
length of the sidethat joinscornersi and j and h; isthedistancefrom
corner i to the opposite side, asillustrated in Figure E15.2. (Note:
the distances {hp1, hp,, hps} are called the trilinear coordinates of
a point P with respect to the vertices of the triangle. They were
introduced by Plicker in 1835. They are essentially scaled versions
of the triangular coordinates.)

Ficure E15.2. Distances of arbi-
trary point P to three triangle sides.

EXERCISE 15.9 [A:10]. Expressthe distances from the triangle centroid to the 3 sidesin term of thetriangle
areaand thesidelengths. Answer: 2A/L21, A/Lg and 5 A/L 13, where Aisthe areaof thetriangle assumed
positive and L ;; is the length of side that joins cornersi and j, cf. Figure E15.2, Hint: the area of each
subtriangle subtended by the centroid and two cornersis % A.

EXERCISE 15.10 [A:20] Find the triangular coordinates of the altitude feet points H,, H, and Hs pictured
in Figure 15.3. Once these are obtained, find the equations of the atitudes in triangular coordinates, and the
coordinates of the orthocenter H. Answer for Hs: ¢y = 1 + (L3, — L%,)/(2L2), where Lj; isthe length of
side that joins cornersi and j; cf. Figure E15.2.

EXERCISE 15.11 [C+D:20] Let p(¢1, &2, £3) represent a polynomial expression in the natural coordinates.
Theintegra

/ P(¢1, &2, £3) AQ (E15.6)
Qe
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over astraight-sided triangle can be computed symbolically by the following Mathematica module:

IntegrateOverTriangle[expr_,tcoord_,A_,max_]:=Module [{p,i,j,k,z1,z2,z3,c,s=0},
p=Expand[expr]; {z1,z2,z3}=tcoord;
For [i=0,i<=max,i++, For [j=0,j<=max,j++, For [k=0,k<=max,k++,
c=Coefficient [Coefficient[Coefficient[p,z1,i],z2,j],23,k];
s+=2xcx (1 1*jxk!)/((i+j+k+2)!);
111;
Return[Simplify[Axs]] ];

Thisisreferenced as int=IntegrateOverTriangle[p,{z1,z2,z3},A,max]. Herep isthe polynomial to
beintegrated, z1, z2 and z3 denotethe symbol sused for thetriangular coordinates, A isthetriangleareaand max
the highest exponent appearing in atriangular coordinate. The module namereturnstheintegral. For example,
if p=16+5*bxz2"2+2z1"3+2z2%2z3%* (z2+z3) thecal int=IntegrateOverTriangle[p,{z1,z2,2z3},4A,3]
returns int=A* (97+5*b) /6. Explain how the module works.

EXERCISE 15.12 [C+D:25] Explainthelogic of the script listed in Figure 15.17. Then extend it to account
for isotropic material with arbitrary Poisson’sratio v. Obtain the macroelement energy ratios as functions of
y and v. Discuss whether the effect of a nonzero v makes much of adifferenceif y >> 1.

EXERCISE 15.13 [A/C:25] Verify the conclusions of §15.5.4 as regards rank sufficiency or deficiency of the
three Veubeke macroelement assemblies pictured in Figure 15.14. Carry out tests with rectangular macroele-
ments dimensioned a x b, constant thickness h, elastic modulus E and Poisson’s ratio 0.

EXERCISE 15.14 [C+D:25] To find whether shear is the guilty party in the poor performance of elongated
triangles (as alledged in §15.6) run the script of Figure 15.17 with a zero shear modulus. This can be done by
setting Emat=Em*{{1,0,0},{0,1,0},{0,0,0}}inthethirdline. Discusstheresult. CanEm besubsequently
reduced to asmaller (fictitious) value so that r = 1 for all aspect ratios y ? Is this practical ?

Honmogeni zedLi nTri gCoor Funct i on[ expr _, {{1_, (2_, {(3_}]: =Modul e[
{f =expr, repl0, @}, repl0={1->0,2->0,3->0};
CO=Si mplify[f/.repl0]; f=Sinplify[f-CO(1l-1-2-(3)];
Return[f]];

Honogeni zedQuadTr i gCoor Functi on[ expr_, {1 ,C2 ,C3 }]:=Modul e[
{f,repC0, C0, C1, C2, C3}, repl0={C1->0, 2->0,3->0};
f =Honogeni zedLi nTri gCoor Functi on[ expr, {1, (2, (3}];
Cl=Coefficient[f,(1l]/.repl0; C2=Coefficient[f,2]/.replO;
C3=Coefficient[f,(3]/.repl0; {C1,C2,C3}=Sinplify[{Cl, C2,C3}];
f=Si npl i fy[ Expand[f-(CLl*{1+C2*{2+C3*{3) (1-{1-12-13)]1];
Return[f]];

FiGureE E15.3. Two Mathematica modulesthat homogenizelinear and quadratic polynomials
expressed in triaangular coordinates.

EXERCISE 15.15 [C:15] The two Mathematica modules listed in Figure E15.3 homogenize linear and
guadratic polynomials, respectively, expressed in triangular coordinates. Explain their logic.
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EXERCISE 15.16 [C+D:25] Accessthefile Trig3PlaneStress.nb from the course Web site by clicking
on the appropriate link in Chapter 15 Index. This is a Mathematica Notebook that does plane stress FEM
anaysis using the 3-node Turner triangle.

Download the Notebook into your directory. Load into Mathematica. Execute thetop 7 input cells (which are
actually initialization cells) so the necessary modules are compiled. Each cell is preceded by a short comment
cell which outlines the purpose of the modules it holds. Notes: (1) the plot-module cell may take a while
to run through its tests; be patient; (2) to get rid of unsightly messages and silly beeps about similar names,
initialize each cell twice.

After you are satisfied everything works fine, run the cantilever beam problem, which is defined in the last
input cell.

After you get afeel of how thiscode operate, study the source. Prepareahierarchical diagram of themodules,'*
beginning with the main program of the last cell. Note which calls what, and briefly explain the purpose of
each module. Return this diagram as answer to the homework. You do not need to talk about the actual run
and results; those will be discussed in Part I11.

Hint: ahierarchical diagram for Trig3PlaneStress.nb beginslike

Main program in Cell 8 - drives the FEM analysis
GenerateNodes - generates node coordinates of regular mesh
GenerateTriangles - generate element node lists of regular mesh

EXERCISE 15.17 [A:10] Consider the Veubeke triangle with 3 midside nodes 4, 5 and 6. Show that three
possible shape functionsare 1 — 2¢3, 1 — 2¢; and 1 — 2¢5,, respectively. Show that these functions satisfy the
interpolation and completeness conditions, but fail the compatibility condition.

11 A hierarchical diagramis alist of modules and their purposes, with indentation to show dependence, similar to the table
of contents of abook. For example, if module AAAA callsBBBB and CCCC, and BBBB calld DDDD, the hierarchical diagram
may look like:

AAAA - purpose of AAAA
BBBB - purpose of BBBB
DDDD - purpose of DDDD
CCCC - purpose of CCCC
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Hint on Exercise 15.3 (added October 19, 2011)
If doing this Exercise by hand, you should process as follows.
First, multiply N™ by b:

& 0
0 &
Thw_| % O 0
N*-b= 0 & |:byl§l + byads + by3§3]
&z 0
0 &

to get a 6-vector. Entries 1,3 and 5 are zero. Entry 2 is (by1¢1 + by2¢2 4 bysgs) ¢, and so on for entries 4 and
6. Next, scalethisvector by h = hy¢; + hygo + hags. Entries 1,3 and 5 remain zero, whereas entries 2, 4 and
6 become cubic polynomialsin the ¢;. For example, the second entry is

(h1&1 + hato + hagz) (by1dy + byt + byata) &y
Expand these in term of cubic monomials. For example, the expanded second entry becomes
hy bys ¢3 + hy by, 22 ¢, + 7 more terms

Next, collect the ¢ monomials that appear in entries 2, 4 and 6. The 10 possible monomias are ¢2, ¢3, ¢3,
200, £28s, £201, £20s, £201, £280, and £122¢3. Move all monomial coefficients such as by, hy, etc., outside the
areaintegral, and apply the formula (15.26) to the monomial integrals. Three cases:

A
§3d9=f §3d9=f 2do = —
/S;e ! Qe 2 Qe 3 10

A
/{f;de:/ §12§3d9:/ gfgldQ:...:%
Qe Qe Qe

_A
. $18283 = 60

Finally, collect the common factor A, collect the h factors of the by; asin (E15.2) and you are done. Well, not
quite. Itisinstructive to check your results for the specia cases h; = h, = hz = h (constant thickness), and
by» = by, = bys = by (constant body force). If both the thickness h and the body force by are constant, the
total force on the element, which isthen by, h A, should divide equally in 3 for each node. Thiswould agree
with the element-by-element force lumping recipe of Section 7).

If you are good in Mathematica, the result can be obtained in milliseconds, but you need to use the module
listed under Exercise 15.11.
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816.2 ISOPARAMETRIC REPRESENTATION

§16.1. Introduction

The procedure used in Chapter 15to formulate the stiffness equations of the linear triangle can
be formally extended to quadrilateral elements as well as higher order triangles. But one quickly
encounters technical difficulties:

1. The construction of shape functions that satisfy consistency requirements for higher order
elements with curved boundaries becomes increasingly complicated.

2. Integrals that appear in the expressions of the element stiffness matrix and consistent nodal
force vector can no longer be evaluated in smple closed form.

Thesetwo obstacl es can be overcomethrough the concepts of i soparametric elementsand numerical
guadrature, respectively. The combination of thesetwo ideastransformed thefield of finite element
methods in the late 1960s. Together they support a good portion of what is presently used in
production finite element programs.

In the present Chapter the concept of isoparametric representation is introduced for two dimen-
sional elements. This representation is illustrated on specific elements. In the next Chapter these
techniques, combined with numerical integration, are applied to quadrilateral elements.

§16.2. |soparametric Representation

816.2.1. Motivation

Thelinear triangle presented in Chapter 115is an isoparametric element although was not originally
derived as such. The two key equations are (15.10), which defines the triangle geometry, and
(15.16), which defines the primary variable, in this case the displacement field. These equations
are reproduced here for convenience:

1 1 1 1 l1
[x:|=|:x1 X2 x3:| [52] (16.1)
y Yi Y2 Yad L3

e e e
Ux = Uy Ny + U Ny + UygNg = Uy &y + Uyp8, + Uxals,

Uy = Uy NF + Uy, N7 + UygNg = U8 + Uyplp + Uyals. (162
The interpretation of these equations is as follows.
Thetriangular coordinates define the element geom-
etry via (16.1). The displacement expansion (16.2) Triangular EeriEiy
is defined by the shape functions, which are in turn C‘zordz'“atzes — 1Lxy
expressed in terms of thetriangular coordinates. For v s
the linear triangle, shape functions and triangular
coordinates coal esce. i
These relations are diagrammed in Figure 16.1. S D o
Evidently geometry and displacements are not functions > interpolation
treated equally. If we proceed to higher order N© Uy, Uy

triangular elements while keeping straight sides,
only the displacement expansion is refined whereas
the geometry definition remains the same.

FIGURE 16.1. Superparametric rep-
resentation of triangular element.
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Geometry
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FIGURE 16.2. |soparametric representation of triangular elements.

Elements built according to the foregoing prescription are called superparametric, a term that
emphasizes that unequal treatment.

§16.2.2. Equalizing Geometry and Displacements

On first ingpection (16.2) and (16.1) do not look aike. Their inherent similarity can be displayed,
however, if the second one is rewritten and adjoined to (16.1) to look as follows:

1 1 1 1 1 1 1

X Xy X2 X3 & X1 X2 X3 N

Y |=| Y1 Y2 ¥3 [ C2:| =l Y1 Y2 V3 |: Nze} . (16.3)
Ux Uyp Uy Uy {3 Uyp Uyxo Uy Ng

Uy Uy Uy U Uy Uy Uy

Thisform emphasizes that geometry and displacements are given by the same parametric represen-
tation, as shown in Figure 16.2.

The key ideaisto use the shape functions to represent both the element geometry and the problem
unknowns, whichin structural mechanicsaredisplacements. Hencethe nameisoparametric el ement
(“is0” means equal), often abbreviated to iso-P element. This property may be generalized to
arbitrary elements by replacing the term “triangular coordinates’ by the more general one “natural
coordinates” Thisgeneraizationisillustrated in Figure 16.3.

Geometry
/ 1, X,y
Shape
Natural _
coordinates | =P func’ill.(%gls
1

\ Displacement

interpolation
Uy, Uy

FIGURE 16.3. Isoparametric representation of arbitrary two-dimensional
elements: triangles or quadrilaterals. For 3D elements, expand the geometry
list to {1, X, y, z} and the displacements to {uyx, Uy, uz}.
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816.4 TRIANGULAR ELEMENTS

Under this generalization, natural coordinates (triangular coordinates for triangles, quadrilateral
coordinates for quadrilaterals) appear as parameters that define the shape functions. The shape
functions connect the geometry with the displacements.

Remark 16.1. The terms isoparametric and superparametric were introduced by Irons and coworkers at
Swansea in 1966. See Notes and Bibliography at the end of this Chapter. There are also subparametric
elements whose geometry is more refined than the displacement expansion.

816.3. General | soparametric Formulation

Thegeneralization of (16.3) to an arbitrary two-dimensional element with n nodesisstraightforward.
Two set of relations, one for the element geometry and the other for the el ement displacements, are
required. Both sets exhibit the same interpolation in terms of the shape functions.

Geometric relations;

n n n
1= Z N x = Z xiNE, y= Z yi NE. (16.4)
i=1 i=1 i=1

Displacement interpolation:

n n
UX - Z uXi Nie, Uy - Z Uy| Nie. (165)
i=1 i=1
These two sets of equations may be combined in matrix form as
1 1 1 ... 1°[N:
Ne
X X; Xp ... X, 2
Y =Y Y .. VY Do (16.6)
Uy Ug Uy ... Uy,
Uy Uyl uy2 PPN Uyn Nr?

The first three scalar equations in (16.6) express the geometry definition, and the last two the
displacement expansion. Note that additional rows may be added to this matrix expression if more
variables are interpolated by the same shape functions. For example, suppose that the thickness h
and atemperaturefield T are both interpolated from the n node values:

17 r1 1 ... 17
Ne
X Xp X X, N%*
y Yi Y2 - Wn 2
Uy | = | Uy Ugp ... Uy, : (16.7)
Uy Uy Uy ... Uy,
h hl h2 oo hn Nﬁ
L T4 LT, T, T, 4

Note that the column of shape functions does not change.

To illustrate the use of the isoparametric concept, we take a look at specific 2D isoparametric
elements that are commonly used in structural and non-structural applications. These are separated
into triangles and quadrilaterals because different natural coordinates are used.

16-5



Chapter 16: THE ISOPARAMETRIC REPRESENTATION

§16.4. Triangular Elements
816.4.1. ThelLinear Triangle

The three-noded linear triangle, studied in Chapter 15 and
pictured in Figure 16.4, may be presented as an isoparametric
element:

1 1 1 1

X X, Xy Xg \bg

Y= Y1 Y2 ¥ |: N7 } : (16.8)
Ux Uyp  Uxo  Uyg N??

Uy Uy Uy Ug

The shape functions are simply the triangular coordinates:

Nf = 21, N5 = ¢,

1

F1GURE 16.4. The 3-node linear triangle.

NS = &s.

(16.9)

Thelinear triangle is the only triangular element that is both superparametric and isoparametric.

816.4.2. The Quadratic Triangle

Thesix nodetriangleshownin Figure 16.5isthe next
complete-polynomial member of the isoparametric @
triangle family. The isoparametric definition is

5

- NS 6

1 1 1 1 1 1 1 NE

2

Y= Y1 Y2 Y3 Y4 Y5 Y6 Ng 1

Ux Uyg Uyo Uyz Uyy Uys Uyg Ng

Uy Uy Uy Uyg Uyy Uys Uyg NE FIGURE 16.5. The 6-node quadratic triangle:
116.10 (a) the superparametric version, with straight
(16.10) sides and midside nodes at midpoints; (b) the

isoparametric version.
The shape functions are

N{ = 61(250 — 1),
N; = 44182,

Ng = 4283,

NS = £2(2¢, — 1),
Ng = 4¢3l1.

NS = ¢3(23 — 1), (16.11)

The element may have parabolically curved sides defined by thelocation of the midnodes4, 5and 6.
The triangular coordinates for a curved triangle are no longer straight lines, but form a curvilinear
system as can be observed in Figure 16.5(b).

§16.4.3. *The Cubic Triangle

The cubic triangle hasten nodes. This shape functions of thiselement are the subject of an Exercisein Chapter
18. Theimplementation is studied in Chapter 24.
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816.5 QUADRILATERAL ELEMENTS
§16.5. Quadrilateral Elements
§16.5.1. Quadrilateral Coordinatesand Iso-P Mappings

Before presenting examples of quadrilateral

elements, we must introduce the appropriate L

natural coordinate systemfor that geometry. n=1

The natural coordinates for a triangular £=—1 &=1
element are the triangular coordinates ¢, g

¢ and ¢3. The natura coordinates for a
quadrilateral element are & and n, which are
illustrated in Figure 16.6 for both straight
sided and curved side quadrilaterals. These
are called quadrilateral coordinates.

Fi1GURE 16.6. Quadrilateral coordinates.

These coordinates vary from —1 on one side to +1 at the other, taking the value zero over the
quadrilateral medians. This particular variation range (instead of taking, say, O to 1) was chosen by
Irons and coworkers to facilitate use of the standard Gauss integration formulas. Those formulas
are discussed in the next Chapter.

Remark 16.2. In some FEM derivations it is convenient to visualize the quadrilateral coordinates plotted as
Cartesian coordinatesin the {§, n} plane. Thisis called the reference plane. All quadrilateral elementsin the
reference plane become a square of side 2, called the reference element, which extendsover € € [—1, 1], n €
[—1, 1]. The transformation between {¢, n} and {X, y} dictated by the second and third equations of (16.4),
is called the isoparametric mapping. A similar version exists for triangles. An important application of this
mapping is discussed in §16.6; see Figure 16.9 there.

816.5.2. TheBilinear Quadrilateral

The four-node quadrilateral shown in Figure 16.7 is the
simplest member of the quadrilateral family. It is defined by

1 1 1 1 1 N
X X, X X3 X, Nle 1
y = yl y2 y3 y4 Né':‘ . (16 12) r]:—l 2
EX Exl SXZ 3x3 3x4 NZ.‘
y yl y2 y3 y4 FIGURE 16.7. The 4-node

bilinear quadrilateral.

The shape functions are

Nf=70-5A-m, N7=3z0+860-n),

e 1 ! (16.13)
Ny =2(1+8&@Q+n), Ny =3z(1-&€A+n).

These functions vary linearly on quadrilateral coordinate lines& = const and n = const, but are
not linear polynomials as in the case of the three-node triangle.
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Chapter 16: THE ISOPARAMETRIC REPRESENTATION

(b) X‘ 3
4 n=1V

6
8 SR
&=-1 £=1
17 n=-1lg
2

FIGURE 16.8. Twowidely used higher order quadrilaterals: (a) thenine-node biquadratic
quadrilateral; (b) the eight-node “serendipity” quadrilateral.
§816.5.3. TheBiquadratic Quadrilateral

Thenine-nodequadrilateral showninFigure16.8(a) isthe next complete member of the quadrilateral
family. It has eight external nodes and one internal node. It is defined by

1 1 1 1 1 1 1 1 1 1[N

X X1 Xy X3 X4 Xg Xe X Xg Xq NZe

Y=Y Y2 Y3 Ya Y5 Y5 Y72 Ys Yo Sl (16.14)
Ux Uyp  Uyxo ux3 Uys ux5 L'|x6 Uy7 ux8 ux9

Uy uyl uy2 uy3 uy4 uy5 uy6 uy7 uy8 uy9 N9e

This element is often referred to as the Lagrangian quadrilateral in the FEM literature, a term
explained in the Notes and Bibliography. Its shape functions are

Nf= 2(1—-&A-mnén, NE=—-31—-EHA—nn,
NS =—-31+&6HA—mén, Ne= 3A+8A—-ndE, Ng=(1-§91-n?) (1615

Thesefunctionsvary quadratically along the coordinatelinesé = const and n = const. The shape
function associated with the internal node 9 is called a bubble function because of its geometric
shape, which is pictured in §18.4.2.

Figure 16.8(a) depicts awidely used eight-node variant called the “serendipity” quadrilateral. (A
name that originated from circumstances surrounding the element discovery.) Theinterna nodeis
eliminated by kinematic constraints as worked out in an Exercise of Chapter 18.

816.6. Completeness Propertiesof 1so-P Elements

Some general conclusions as regards the range of applications of isoparametric elements can be
obtained from a completeness analysis. More specifically, whether the general prescription (16.6)
that combines(16.4) and (16.5) satisfiesthe completenesscriterion of finiteelement trial expansions.
Thisisone of the conditions for convergence to the analytical solution. The requirement is treated
generaly in Chapter 19, and is stated here in recipe form.
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816.6 COMPLETENESS PROPERTIES OF ISO-P ELEMENTS

§16.6.1. *Completeness Analysis

The plane stress problem has variational index m = 1. A set of shape functionsis complete for this problem
if they can represent exactly any linear displacement motions such as

Ux = o + X + a2y, Uy = Bo + BiX + BzYy. (16.16)
To carry out the check, evaluate (16.16) at the nodes
U = ap + a1X + a2y Uy, = Bo + BiXi + B2Vi, i=1 ...n (16.17)

Insert this into the displacement expansion (16.5) to see whether the linear displacement field (16.16) is
recovered. Here are the computations for the displacement component uy:
n
Uy = Z (op + o1 Xi + azyi) N = o Z NS+ a1 Z Xi NE + oz Z ViN® = ag + a1X + apy. (16.18)
i i i i

i=1

For the last step we have used the geometry definition relations (16.4), reproduced here for convenience:

n n n
1=) N&, x=) xN° y=) yN° (16.19)
i=1 i=1 i=1

A similar calculation may be madefor uy. It appearsthat the isoparametric displacement expansion represents
(16.18) for any element, and consequently meets the completeness requirement for variational order m = 1.
The derivation carries without essential change to three dimensions.!

Can you detect a flaw in this conclusion? The fly in the cintment is the last replacement step of (16.18),
which assumesthat the geometry relations (16.19) areidentically satisfied. Indeed they arefor all the example
elements presented in the previous sections. But if the new shape functions are constructed directly by the
methods of Chapter 18, a posteriori checks of those identities are necessary.

816.6.2. Completeness Checks

Thefirst check in (16.19) is easy: the sum of shape functions must be unity. Thisisaso called the
unit sum condition. It can be easily verified by hand for simple elements. Here are two examples.

Example 16.1. Check for the linear triangle: directly from the definition of triangular coordinates,

NP+ N;+N5 =&+ o+=1 (16.20)

1 This derivation is dueto B. M. Irons. See for example [397, p. 75]. The property was known since the mid 1960s and
contributed substantially to the rapid acceptance of iso-P elements.
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Chapter 16: THE ISOPARAMETRIC REPRESENTATION

&-n plane good mapping bad mapping
- on—o (compatible) (incompatible)
2

(el) ¢
-+— lo——2? 1

FIGURE 16.9. Good and bad isoparametric mappings of 4-node quadrilateral
fromthe {&, n} reference plane onto the {Xx, y} physical plane.

Example 16.2. Check for the 4-node bilinear quadrilateral:

NF+Ns+Ns+ Ny =2(L—&—n+&n+1L+E—n—E&n

. . (16.21)
+7A+&E+n+ép+;A-E+n—-én=1

For more complicated elements see Exercises 16.2 and 16.3.

The other two checks are less obvious. For specificity consider the 4-node bilinear quadrilateral.
The geometry definition equations are

4 4
X = Zl: X N8, m), y= le yi N2, n). (16.22)

Given the corner coordinates, {x;, i} and a point P(X, y) one can try to solve for {&, n}. This
solution requires nontrivial work because it involves two coupled quadratics, but can be done.
Reinserting into (16.22) simply gives back x and y, and nothing is gained.?

The correct gquestion to pose is. is the correct geometry of the quadrilateral preserved by the
mapping from {&, n} to {x, y}? In particular, are the sides straight lines? Figure 16.9 illustrate
these questions. Two side-two sgquares. (el) and (e2), contiguousin the {&, n} reference plane, are
mapped to quadrilaterals (el) and (€2) in the {x, y} physical plane through (16.22). The common
side 1-2 must remain a straight line to preclude interelement gaps or interpenetration.

Wearethereforelead to consider geometric compatibility upon mapping. Butthisisequivalenttothe
guestion of interelement displacement compatibility, which is stipulated asitem (C) in §18.1. The
statement “the displacement along a side must be uniquely determined by nodal displacements on
that side” trandlatesto “ the coordinates of aside must be uniquely determined by nodal coordinates
on that side” Summarizing:

2 This tautology is actually a blessing, since finding explicit expressions for the natural coordinates in terms of x and y
rapidly becomes impossible for higher order elements. See, for example, the complications that already arise for the
bilinear quadrilateral in §23.3.
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816. References

Unit-sum condition + interelement compatibility — completeness. (16.23)

This subdivision of work significantly reduces the labor involved in el ement testing.

§16.6.3. *Completenessfor Higher Variational | ndex

The completeness conditions for variational index 2 are far more demanding because they involve quadratic
motions. No simple isoparametric configurations satisfy those conditions. Consequently isoparametric for-
mulations have limited importance in the finite el ement analysis of plate and shell bending.

§16.7. 1so-P Elementsin Oneand Three Dimensions

The reader should not think that the concept of isoparametric representation is confined to two-
dimensional elements. It applieswithout conceptual changesto one and threedimensionsaslong as
the variational index remains one.®> Three-dimensional solid elements are covered in an advanced
course. The use of the isoparametric formulation to construct a 3-node bar element is the topic of
Exercises 16.4 through 16.7.

Notes and Bibliography

A detailed presentation of the isoparametric concept, with annotated references to the original 1960 papers
may be found in the textbook [397].

This matrix representation for isoparametric elements used here was introduced in [204].

Theterm Lagrangian element in the mathematical FEM literatureidentifies quadril ateral and hexahedra (brick)
elements that include all polynomial terms £'n! (in 2D) or &' 5l u* (in 3D) withi < n, j < nandk < n,
as part of the shape function interpolation. Such elements have (n + 1)? nodes in 2D and (n + 1) nodesin
3D, and the interpolation is said to be n-bicomplete. For example, if n = 2, the biquadratic quadrilateral with
(2+ 1)?> = 9 nodes is Lagrangian and 2-bicomplete. (The qualifier “Lagrangian” in this context refers to
Lagrange's interpolation formula, not to Lagrange multipliers.)

References
Referenced items have been moved to Appendix R

3 A limitation explained in §16.6.3.
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Chapter 16: THE ISOPARAMETRIC REPRESENTATION

Homework Exercisesfor Chapter 16
The I soparametric Representation

EXERCISE 16.1 [D:10] Whatisthephysical interpretation of the shape-function unit-sum condition discussed
in 816.6? Hint: the element must respond exactly in terms of displacements to rigid-body trandationsin the
x and y directions.

EXERCISE 16.2 [A:15] Check by algebra that the sum of the shape functions for the six-node quadratic
triangle (16.11) is exactly one regardless of natural coordinatesvalues. Hint: show that the sum is expressable
as2S — S, where S = 41 + 42 + 3.

EXERCISE 16.3 [A/C:15] Completethetable of shapefunctions(16.23) of the nine-node biquadratic quadri-
lateral. Verify that their sum is exactly one.

EXERCISE 16.4 [A:20] Consider athree-node bar element referred to the natural coordinate &. Thetwo end
nodes and the midnode are identified as 1, 2 and 3, respectively. The natural coordinates of nodes 1, 2 and 3
aeté = —1,& =1and & = 0, respectively. The variation of the shape functions Ny (£), N2(¢) and N3(&) is
sketched in Figure E16.1. These functions must be quadratic polynomialsin &:

NF(E) = 8o + &g + @  N3(§) = bo+big +b8?  N3(§) = Co + C1§ + CoE . (E16.1)
e
N (®) N(®) ) Jl L®
3 02 lo 3 02

3 2
F=-1 £=0 g1 &1 =0 £=1 %2—1 320 £21

FicUurke E16.1. Isoparametric shape functions for 3-node bar element (sketch). Node 3 has been
drawn at the 1-2 midpoint but it may be moved away from it, asin Exercises E16.5 and E16.6.

Determinethe coefficientsag, through ¢, using the node val ue conditionsdepicted in Figure E16.1; for example
Ny =1,0andOfor £ = —1, 0and 1 at nodes 1, 3 and 2, respectively. Proceeding this way show that

NF(§) = —36(1— ), N3 (&) = 361+ ), N5(§) = 1— &2 (E16.2)
Verify that their sum isidentically one.

EXERCISE 16.5

[A/C:15+10+15+5] A 3-node straight bar element is defined by 3 nodes: 1, 2 and 3, with axial coordinates
X1, X2 and Xs, respectively, as illustrated in Figure E16.2. The element has axial rigidity EA and length
£ = Xy — X;. The axia displacement is u(x). The 3 degrees of freedom are the axial node displacements u,,
U, and uz. The isoparametric definition of the element is

1 1 1 1 \by
X=X X X3 NS |, (E16.3)
u Uy Us Uz N3

in which Nf(&) are the shape functions (E16.2) of the previous Exercise. Node 3 lies between 1 and 2 but is
not necessarily at the midpoint x = %Z. For convenience define

X1 =0, Xo = £, Xs = (3 + o)L, (E16.4)
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Exercises

axia rigidity EA
O > X, U
f f
1(&=-1) 3(8=0) 2(&=1)
X1=0 Xg=L2+0l  Xp=1{

—— £=L® —

FIGURE E16.2. The 3-node bar element initslocal system.

where —% <a< % characterizes the location of node 3 with respect to the element center. If « = 0 node 3

islocated at the midpoint between 1 and 2. See Figure E16.2.

(& From (E16.4) and the second equation of (E16.3) get the Jacobian J = dx/d¢ intermsof ¢, « and &.
Show that: (i) if —3 < a < 7 then J > 0 over thewhole element —1 < & < 1; (i) if = 0, J = ¢/2
is constant over the element.

(b) Obtain the 1 x 3 strain-displacement matrix B relating e = du/dx = Bu€, where u® is the column
3-vector of node displacements u;, U, and us. The entries of B are functions of ¢, « and £&. Hint:
B = dN/dx = J"1dN/d&, whereN = [ N; N, N3] and J comes from item (a).

() Show that the element stiffness matrix is given by

l 1
Kezf EABTde:f EAB'B Jdé¢. (E16.5)
0 -1

Evaluate the rightmost integral for arbitrary o but constant E A using the 2-point Gauss quadrature rule
(E13.7). Specialize the result to « = 0, for which you should get Ky; = Ky = 7TEA/(30), Kzz =
16EA/(3¢), K1z = EA/(3¢) and Ki3 = Ky = —8EA/(3¢), with eigenvalues {8EA/¢, 2EA/¢, 0}.
Note: use of a CASisrecommended for thisitem to save time.

(d) What isthe minimum number of Gauss points needed to integrate K ® exactly if « = 0?
EXERCISE 16.6 [A/C:20] ThisExerciseisacontinuation of the foregoing one, and addresses the question of

why K © was computed by numerical integrationinitem (c). Why not use exact integration? The answer isthat
the exact stiffness for arbitrary « is numerically useless. To see why, try the following script in Mathematica:

ClearAll[EA,L,alpha,xi]; (* Define J and B={{B1,B2,B3}} here *)

Ke=Simplify[Integrate [EA*Transpose[B] .BxJ,{xi,-1,1},
Assumptions->alpha>0&&alpha<1/4&&EA>0&&L>0]] ;

Print["exact Ke=",Ke//MatrixForm];

Print["exact Ke for alpha=0",Simplify[Ke/.alpha->0]//MatrixForm];

Keseries=Normal [Series[Ke,{alpha,0,2}]];

Print["Ke series about alpha=0:",Keseries//MatrixForm];

Print["Ke for alpha=0",Simplify[Keseries/.alpha->0]//MatrixForm];

At the start of this script define J and B with the results of items (a) and (b), respectively. Then run the script.
Theline Print ["exact Ke for alpha=0",Simplify[Ke/.alpha->0]//MatrixForm] will trigger er-
ror messages. Comment on why the exact stiffness cannot be evaluated directly at « = 0 (look at the printed
expression before this one). A Taylor series expansion about « = 0 circumvents these difficulties but the
2-point Gauss integration rule gives the correct answer without the gyrations.
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Chapter 16: THE ISOPARAMETRIC REPRESENTATION

EfEL load fzﬁ
———— > X U
i T %
1(&=-1) 3(8=0) 2(&=1)
x1=0 Xa=2+al  xp=1¢

—— =L°® ——

Fi1cURE E16.3. The 3-node bar element under a“box” axial load g.

EXERCISE 16.7 [A/C:20] Construct the consistent force vector for the 3-node bar e ement of the foregoing
exercise, if the bar isloaded by a uniform axial force g (given per unit of x length) that extendsfrom & = &_
through & = &g, and is zero otherwise. Here —1 < & < &g < 1. See Figure E16.3. Use

ER
fe = f gqNT Jdg, (E16.6)
—&L

with the J = dx/dé found in Exercise 16.5(a) and analytical integration. The answer is quite complicated
and nearly hopeless by hand. Speciadizetheresulttoa =0, = —1and ér = 1.
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817.2 PARTIAL DERIVATIVE COMPUTATION

§17.1. Introduction

In this Chapter the isoparametric representation of element geometry and shape functions discussed
in the previous Chapter is used to construct quadrilateral elements for the plane stress problem.
Formulas given in Chapter 14 for the stiffness matrix and consistent load vector of general plane
stresselementsare of course applicableto theseelements. For apractical implementation, however,
we must go through more specific steps.

1. Construction of shape functions.
2. Computations of shape function derivatives to form the strain-displacement matrix.
3. Numerical integration over the element by Gauss quadrature rules.

The first topic was dealt in the previous Chapter in recipe form, and is systematically covered in
the next one. Assuming the shape functions have been constructed (or readily found in the FEM
literature) the second and third items are combined in an algorithm suitable for programming any
isoparametric quadrilateral. The implementation of the algorithm in the form of element modules
is partly explained in the Exercises of this Chapter, and covered more systematically in Chapter 23.

We shall not deal with isoparametric triangles here to keep the exposition focused. Triangular coor-
dinates, being linked by a constraint, require “special handling” techniques that would complicate
and confuse the exposition. Chapter 24 discusses isoparametric triangular elementsin detail.

§17.2. Partial Derivative Computation

Partial derivatives of shape functions with respect to the Cartesian coordinates x and y are required
for the strain and stress cal culations. Because shape functions are not directly functionsof x and y
but of the natural coordinatesé and r, the determination of Cartesian partial derivativesisnot trivial.
The derivative calculation procedure is presented below for the case of an arbitrary isoparametric
quadrilateral element with n nodes.

§17.2.1. The Jacobian

In quadrilateral element derivations we will need the Jacobian of two-dimensional transformations
that connect the differentials of {x, y} to those of {&, n} and vice-versa. Using the chain rule:

oX 0X & o€
51-[5 wliE-r18) 210 2|m-ls
dy dy dy | [dn dn |’ |dn an  dn || dy dy |’
3 oy ax  dy

(17.1)
Here J denotes the Jacobian matrix of (x, y) with respect to (&, 1), whereas J~! is the Jacobian
matrix of (&, n) with respect to (X, y):
ox 9y 0§ om
_ 9y | 98 95 | _ [ €M _fox ox | _ 1] J —do
(&, n) ax dy 1 Iz |’ (X, y) 9§ an J
an 0 ay o
U y oy 17.2)
where J = |J| = det(J) = J13Jo — J12Jx. INFEM work J and J~* are called simply the Jacobian
and inverse Jacobian, respectively; the fact that it isamatrix being understood. The scalar symbol

—J1 I
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Chapter 17: ISOPARAMETRIC QUADRILATERALS

J is reserved for the determinant of J. In one dimension J and J coaesce. Jacobians play a
crucial rolein differential geometry. For the general definition of Jacobian matrix of a differential
transformation, see Appendix D.

Remark 17.1. Observe that the matrices relating the differentials in (17.1) are the transposes of what we
cal J and J71. The reason is that coordinate differentials transform as contravariant quantities: dx =
(0x/0&)dé + (0x/an) dn, etc. But Jacobians are arranged as in (17.2) because of earlier use in covariant
transformations. d¢/dx = (0&/9X)(0¢/9&) + (dn/3X) (3¢ /dn), asin (17.5) below.

The reader is cautioned that notations vary among application areas. As quoted in Appendix D, one author
putsit thisway: “When one does matrix calculus, one quickly finds that there are two kinds of peoplein this
world: those who think the gradient is a row vector, and those who think it is a column vector.”

Remark 17.2. To show that J and J~* arein fact inverses of each other we form their product:

ox 9§ , 9xdn 9y dE | 9y dn ax dy
31— 0§ 0X = dnox 950X ~ dnox [ | ax OX _[l O] 17.3)
= | ox2€ | oxon oyoe  oyon | T |ax oy [Tlo 1l -
dEdy ' anody 0d&ay ' anay ay ay

where we have taken into account that x = x(&, n), y = y(&, n) and the fact that x and y are independent
coordinates. This proof would collapse, however, if instead of {&, n} we had the triangular coordinates
{¢1, &2, £3} because rectangular matrices have no conventional inverses. This case requires special handling
and is covered in Chapter 24.

§17.2.2. Shape Function Derivatives

The shapefunctionsof aquadrilateral e ement areexpressedintermsof the quadrilateral coordinates
& and n introduced in 816.5.1. The derivatives with respect to x and y are given by the chain rule:

aNiezaNieg_'_aNiea_n’ 8Nie:8Nie§ aNiea_n. (17.4)
X 0& oXx an odXx ay & oy an ay
This can be put in matrix form as
ON? 9§ an ON® IN? IN?
ax | | ax ax ot | 9. | ag | 4| o¢
ONF | = | 98 9n INE | 7 a0, y) | ONE | ) INE | (79
ay ay ay an on an

where J~! isdefined in (17.2). The computation of J is addressed in the next subsection.

§17.2.3. Computing the Jacobian Matrix

To compute the entries of J at any quadrilateral location we make use of the last two geometric
relationsin (16.4), which are repeated here for convenience:

n n
X = Z X; N, y= Z y, NS (17.6)
i—1 i—1
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817.2 PARTIAL DERIVATIVE COMPUTATION

Differentiating with respect to the quadrilateral coordinates,

X <~ ON® 9y <~ ON® X <~ ON® Y <~ ONE
_— = X: i I s _— = -—l s _— = X: ! . - = t I. .
0§ ; o0& 0g ;y 08 on ; Lon T om ;y TR

because the x; and y; do not depend on & and . In matrix form:

3_)( g ONT  ONJ INg X, Y

| Jo| | 08 | oy | 0& 9 9 X, Y,
J_[le 322]_ ox dy =PX= INS  9NS INE S (17.8)

dn  an am om0 an dLlx oy,

Given aquadrilateral point of coordinates&, n we calculatetheentriesof J using (17.8). Theinverse
Jacobian J1 is then obtained by numerically inverting this 2 x 2 matrix.

Remark 17.3. The symbolic inversion of J for arbitrary &, n in general leads to extremely complicated
expressions unless the element has a particularly simple geometry, (for example rectangles as in Exercises
17.1-17.3). This was one of the difficulties that motivated the use of Gaussian numerical quadrature, as
discussed in §17.3 below.

§17.2.4. The Strain-Displacement Matrix

The strain-displacement matrix B that appears in the computation of the element stiffness matrix is
given by the general expression (14.18), which is reproduced here for convenience:

NS NS NS

Byx X Oe X Oe X Oe
_ _ ONy N, oN e o€
e=| ey |=| O 3y 0 3y 0 ay” u® = Bu". (17.9)
28xy INS  ONE  ONS ONS INE  9NE
ay X ay ax oy X

Thenonzero entries of B are partials of the shape functions with respect to x and y. The calculation
of those partials is done by computing J via (17.8), inverting and using the chain rule (17.5).

Quad4l soPShapeFunDer [ ncoor _, qcoor _]: = Mdul e[

{Nf, dNx, dNy, dN§, dNn, i ,J11, 312,321, J22, Jdet, &, n, X, Y},

{&, n}=qcoor;
NF={(1-&)*(1-n), (1+§)*(1-n), (1+&) *(1+n), (1-&)*(1+n)}/ 4
dNe ={-(1-n), (1-n),(1+n),-(1+n)}/4;
dNn= {-(1-&),-(1+8), (1+&), (1-&)}/4;
x=Tabl e[ ncoor[[i,1]],{i,4}]; y=Table[ncoor[[i,2]],{i,4}];
J11=dN¢. x; J12=dNg.y; J21=dNn.x; J22=dNn.y;

Jdet =Si npl i fy[ J11*J22-J12*J21];

dNx= ( J22*dN¢-J12*dNn)/Jdet; dNx=Si nplify[dNx];
dNy= (-J21*dNg+J11*dNn)/Jdet; dNy=Sinmplify[dNy];
Ret ur n[ { Nf , dNx, dNy, Jdet }]

FIGURE 17.1. A shape function module for the 4-node bilinear quadrilateral.
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Chapter 17: ISOPARAMETRIC QUADRILATERALS

§17.2.5. *A Shape Function Implementation

To make the foregoing discussion more specific, Figure 17.1 shows the shape function module for the 4-node
bilinear quadrilateral. This is a code fragment that returns the value of the shape functions and their {Xx, y}
derivatives at a given point of quadrilateral coordinates {&, n}. The moduleisinvoked by saying

{Nf,Nfx,Nfy, Jdet }=Quad4IsoPShapeFunDer [ncoor,qcoor] (17.10)

where the arguments are

ncoor Quadrilateral node coordinates arranged in two-dimensional list form:

{{x1,y1},{x2,y2},{x3,y3},{x4,y4}}.

gcoor Quadrilateral coordinates { &, n} of the point.
The module returns:

Nf Value of shape functions, arranged aslist { Nf1,Nf2,Nf3,Nf4 }.

Nfx Value of x-derivatives of shape functions, arranged aslist { Nfx1,Nfx2,Nfx3,Nfx4 }.

Nfy Vaue of y-derivatives of shape functions, arranged aslist { Nfy1,Nfy2,Nfy3,Nfy4 }.

Jdet Jacobian determinant.

Example 17.1. Consider a 4-node bilinear quadrilateral shaped as an axis-aigned 2:1 rectan-
gle, with 2a and a as the x and y dimensions, respectively. The node coordinate array is
ncoor={{0,0},{2*a,0},{2*a,a},{0,a}}. The shape functions and their {x, y} derivatives are to be
evaluated at the rectangle center ¢ = n = 0. The appropiate cal is

{Nf,Nfx,Nfy, Jdet }=Quad4IsoPShapeFunDer [ncoor,{0,0}]

ThisreturnsNf={1/8,1/8,3/8,3/8}, Nfx={ -1/(8*a) ,1/(8*a) ,3/(8*a) ,-3/(8*a) },
Nfy={-1/(2xa),-1/(2*a),1/(2xa),1/(2*a) } and Jdet=a"2/2.

§17.3. Numerical Integration by Gauss Rules

Numerical integration is essential for practical evaluation of integrals over isoparametric element
domains. The standard practice has been to use Gaussintegration because such rulesuseaminimal
number of sample points to achieve a desired level of accuracy. This economy is important for
efficient element calculations, since a matrix product is evaluated at each sample point. The fact
that the location of the sample pointsin Gauss rulesis usually given by non-rational numbersis of
no concern in digital computation.

817.3.1. One Dimensional Rules

The classical Gauss integration rules are defined by

1 P
| Fede~Y ure. (17.10)
- i=1

Here p > 1isthe number of Gauss integration points (also known as sample points), w; are the
integration weights, and &; are sample-point abcissaeintheinterval [—1,1]. Theuseof thecanonical
interval [—1,1] is no restriction, because an integral over another range, say from a to b, can be
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817.3 NUMERICAL INTEGRATION BY GAUSS RULES

Table 17.1 - One-Dimensional Gauss Ruleswith 1 through 5 Sample Points

Points Rule

[ F(&) de ~ 2F(0)

JHF@E dE ~ F(=1/V3 + F/V3)

J1 F®) d& ~ 3F(~/3/5) + EF(0) + SF(V/3/5)

f,l1 F (&) dé ~ wiaF (614) + waaF (§22) + waaF (§34) + wasF (§a4)

f,ll F (&) dé ~ wisF (§15) + wasF (§25) + wasF (§35) + wasF (§45) + wssF (6s5)

a A W N PP

For the 4-point rule, &34 = —&24 = /(3 — 24/6/5)/7, é4s = —&14 = /(3 + 2./6/5)/7,
Wiy = Wy = % — %«/5/6, and Woq = W3zq = % + %«/5/6

For the 5-point rule, &5 = —&15 = %,/5+ 2/10/7, E45 = —&35 = %\/5 —2J10/7, &35 =0,
wis = wss = (322 — 134/70) /900, wos = was = (322 + 134/70) /900 and w5 = 512/900.

Ef—l . E=%:1
—@ ® p=2
o—e ® p=3
e o o p=4
o ° ® ) p=5

F1GURE 17.2. Thefirst five one-dimensional Gaussrules p = 1, 2, 3, 4, 5 depicted over the line segment
& € [-1,+1]. Sample point locations are marked with black circles. The radii of those circles are
proportional to the integration weights.

transformed to [—1, 4+1] viaasimple linear transformation of the independent variable, as shown
in the Remark below.

Thefirst five one-dimensional Gaussrules, illustrated in Figure 17.2, arelistedin Table 17.1. These
integrate exactly polynomialsin & of ordersup to 1, 3, 5, 7 and 9, respectively. In general a one-
dimensional Gauss rule with p points integrates exactly polynomials of order up to 2p — 1. This
is called the degree of the formula.

Remark 17.4. A more general integral, such as F(x) over [a, b] in which ¢ = b —a > 0, is transformed

to the canonical interval [—1, 1] through the mapping x = fa(l— &) + Ib(1+ &) = $(a+b) + 3¢¢, or
& =(2/0)(x — %(a+ b)). The Jacobian of thismapping is J = dx/d§ = 1/2¢. Thus

b 1 1
/ F(x)dx:/ F(s)st:/ F(&) ede. (17.12)
a - -1

1
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Li neGaussRul el nfo[ {rul e_, numer _}, poi nt _]:= Mdul e[
{g2={-1,1}/Sqrt[3],w3={5/9, 8/9, 5/ 9},
g3={-Sqrt[3/5],0,Sqrt[3/5]},
wA={(1/2)-Sqrt[5/6]/6, (1/2)+Sqrt[5/6]/86,
(1/2)+Sgrt[5/6]/6, (1/2)-Sgrt[5/6]/6},
g4={-Sqrt[(3+2*Sqrt[6/5])/7],-Sqrt[(3-2*Sqrt[6/5])/7],
Sqrt[(3-2*Sqrt[6/5])/7], Sqrt[(3+2*Sqrt[6/5])/7]},
g5={-Sqrt[5+2*Sqrt[10/7]],-Sqrt[5-2*Sqgrt[10/7]], O,
Sqrt[5-2*Sqrt[10/7]], Sqrt[5+2*Sqrt[10/7]]}/3,
ws={322-13*Sqrt[70], 322+13*Sqrt[ 70] , 512,
322+13*Sqrt [ 70], 322-13*Sqrt [ 70] }/ 900,

i =poi nt, p=rul e, i nfo={{Null,Null},0}},
If [p==1, info={0,2}];
If [p==2, info={g2[[i]], 1}];
If [p==3, info={g3[[i]].wa[[i]]}]:
If [p==4, info={ga[[i]].W[[i]]}]:
If [p==5, info={g5[[i]].we[[i]I}]:
If [nuner, Return[Ninfo]], Return[Sinplify[info]]];

l;

FIGURE 17.3. A Mathematica module that returns the first five one-dimensional Gauss rules.

Remark 17.5. Higher order Gauss rules are tabulated in standard manuals for numerical computation. For
example, the widely used Handbook of Mathematical Functions [2] lists (in Table 25.4) rules with up to 96
points. For p > 6 the abscissas and weights of sample points are not expressible as rational numbers or
radicals, and can only be given as floating-point numbers.

§17.3.2. Implementation of 1D Rules

The Mathematica module shown in Figure 17.3 returns either exact or floating-point information
for the first five unidimensional Gauss rules. To get information for theit" point of the pt" rule, in
whichl<i <pandp=1,2 3,45, cal themodule as

{xii,wi}=LineGaussRuleInfo[{p,numer},i] (17.13)

Logica flag numer is True to get numerical (floating-point) information, or False to get exact
information. The module returns the sample point abcissa & inxii and the weight w; inwi. If p
is not in the implemented range 1 through 5, the module returns { Nul1,0 }.

Example 17.2. {xi,w}=LineGaussRuleInfo[{3,False},2] returns xi=0 and w=8/9, whereas
{xi,w}=LineGaussRuleInfo[{3,True},2] returns(to 16 places) xi=0. and w=0.888888888888889.

§17.3.3. Two Dimensional Rules

The simplest two-dimensional Gaussrules are called product rules. They are obtained by applying
the one-dimensional rules to each independent variable in turn. To apply these rules we must first
reduce the integrand to the canonical form:

1 1 1 1
//F(S,n)dédn=/ dn/ F &, n) de. (17.14)
-1J-1 1 -1

Once thisis done we can process numerically each integral in turn:

1 1 1 1 0D
/1/1 F (¢, n)de dy = /1dn/1 Fende ~ 33 wuw F@on. (7.9

i—1 j=1
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817.3 NUMERICAL INTEGRATION BY GAUSS RULES

F1GURE 17.4. Thefirst four two-dimensional Gauss product rulesp =1,2, 3,4
depicted over astraight-sided quadrilateral region. Sample points are marked with
black circles. Theareas of thesecirclesare proportional to theintegration weights.

where p; and p, are the number of Gauss points in the & and n directions, respectively. Usually
the same number p = p1 = py ischosen if the shape functions are taken to be the same in the &
and n directions. Thisisin fact the casefor al quadrilateral elements presented here. Thefirst four
two-dimensional Gauss product ruleswith p = p; = p, areillustrated in Figure 17.4.

§17.3.4. Implementation of 2D Gauss Rules

The Mathematica module listed in Figure 17.5 implements two-dimensiona product Gauss rules
having 1 through 5 points in each direction. The number of points in each direction may be the
same or different. If the rule has the same number of points p in both directions the module is
caled in either of two ways:

{{xii,etaj},wij}=QuadGaussRuleInfo[{p, numer}, {i,j}]

{{xii,etaj},wij}=QuadGaussRuleInfo[{p, numer},k ] (17.16)

Thefirst form is used to get information for point {i, j} of the p x prule, inwhichl <i < pand
1 < j < p. Thesecond form specifiesthat point by a“visiting counter” k that runsfrom 1 through
p?; if so {i, j} areinternally extracted! as j=Floor [(k-1)/p]l+1; i=k-p*(j-1).

If the integration rule has p; pointsin the & direction and p, pointsin the » direction, the module
may be called also in two ways:

{{xii,etaj},wij}=QuadGaussRuleInfo[{{pl,p2}, numer},{i,j}]

{{xii,etaj},wij}=QuadGaussRuleInfo[{{pl,p2}, numer},k ] (17.17)

Themeaning of the second argumentisasfollows. Inthefirstformi runsfrom1to p; and j from1to
p2. Inthesecondformk runsfrom1to p; pp; if S0i and j areextractedby j=Floor [(k-1)/p1]l+1;

1 Indicesi and j are denoted by i1 and i2, respectively, inside the module.
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QuadGaussRul el nfo[{rul e_, nurmer _}, poi nt _]: = Mdul e[
{&n,pl,p2,i,j,wi,w2, minfo={{Null,Null},O0}},
If [Length[rule]==2, {pl,p2}=rule, pl=p2=rule];
I f [pl<0, Return[ QadNonProduct GaussRul el nf o[
{-pl, nuner}, point]]];
I f [Length[point]==2, {i,]j}=point, mepoint;
j=Floor[(m1)/pl] +1; i=mpl*(j-1) ];
{& wl}= LineGussRul el nfo[{pl, nuner},i];
{n, w2} = LineGaussRul el nfo[{p2, nuner},j];
info={{&, n}, wi*w2};
If [nuner, Return[Ninfo]], Return[Sinplify[info]]];
l;

FIGURE 17.5. A Mathematica module that returns two-dimensional product Gauss rules.

i=k-p1*(i-1). Inal four forms, logical flag numer is set to True if numerical information is
desired and to False if exact information is desired.

The modulereturns & and n; inxii and etaj, respectively, and the weight product wjw; inwij.
Thiscodeisused inthe Exercises at the end of the chapter. If theinputsare not in range, the module
returns { { Null,Null},0}.

Example 17.3. {{xi,eta},w}=QuadGaussRuleInfo[{3,False},{2,3}] returnsxi=0, eta=Sqrt [3/5]
and w=40/81.

Example 17.4. {{xi,eta},w}=QuadGaussRuleInfo[{3,True},{2,3}] returns (to 16-place precision)
xi=0., eta=0.7745966692414834 and w=0.49382716049382713.

817.4. The Stiffness Matrix

The stiffness matrix of a general plane stress element is given by the expression (14.23), which is
reproduced here:

Ke = hBTEBdQ® (17.18)

Qe

Of the termsthat appear in (17.18) the strain-displacement matrix B has been discussed previously.
The thickness h, if variable, may be interpolated via the shape functions. The stress-strain matrix
E is usualy constant in elastic problems, but we could in principle interpolate it as appropriate
should it vary over the element. To integrate (17.18) numerically by a two-dimensional product
Gauss rule, we have to reduce it to the canonical form (17.14), that is

1 1
Kezf / F(&, 1) d dn. (17.19)
-1J-1

If & and n are the quadrilateral coordinates, everything in (17.19) already fits this form, except the
element of area dQ2°.

To complete the reduction we need to express d2€ in terms of the differentials dé and dn. The
desired relation is (see Remark below)

dQe = dxdy = detJ dé dn = J dé dn. (17.20)
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an [ >»¢
| > X
ay
ag %

FIGURE 17.6. Geometric interpretation of the Jacobian-determinant
formula.

We therefore have
F(¢,n) = hBTEB detJ. (17.21)

This matrix function can be numerically integrated over thedomain —1 <& <+1,-1<np<+1
by an appropriate Gauss product rule.

Remark 17.6. To geometrically justify the area transformation formula (17.20), consider the element of area
OACB depicted in Figure 17.6. The area of this differential parallelogram can be computed as

dA = OB x OA = 8—Xd§' ﬂdn — a_xdn a_yds
€~ an an | OE

g_x g_x (17.22)
= afx 33 dé dn = |J| d& dn = detJd& dn.
aE Iy

This formula can be extended to any number of dimensions, as shown in textbooks on differential geometry;
for example [265,319,708].

§17.5. *Integration Variants

Several deviations from the standard integration schemes described in the foregoing sections are found in the
FEM literature. Two variations are described below and supplemented with motivation Exercises.

§17.5.1. *Weighted Integration

It is sometimes useful to form the element stiffness as a linear combination of stiffnesses produced by two
different integration rules Such schemes are known as weighted integration methods. They are distinguished
from the selective-integration schemes described in the next subsection in that the constitutive properties are
not modified.

For the 4-node bilinear element weighted integration is done by combining the stiffnesses K$_; and K3 _,
produced by 1x 1 and 2x 2 Gauss product rules, respectively:

KS = (1— BKS, 1+ BKS, ,. (17.23)

Here B isascaar intherange [0, 1]. If 8 = 0 or 8 = 1 one recovers the element integrated by the 1x1 or
2x 2 rule, respectively.?

2 For programming the combination (17.23) may be regarded as a 5-point integration rule with weights wy = 4(1—g) at
the samplepointaté = n = 0and w;j = B (i = 2, 3, 4, 5) at the four sample pointsat &§ = +1//3, n = £1//3.
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Theideabehind (17.23) isthat K, ; isrank-deficient and too soft whereas K35, is rank-sufficient but too stiff.
A combination of too-soft and too-stiff hopefully “balances’ the stiffness. An application of thisideato the
mitigation of shear locking for modeling in-plane bending is the subject of Exercise E17.4.

§17.5.2. *Selective Integration

In the FEM literature the term selective integration is used to described a scheme for forming K as the sum
of two or more matrices computed with different integration rules and different constitutive properties.®> We
consider here the case of atwo-way decomposition. Split the plane stress constitutive matrix E into two:

E—E +E, (17.24)

This is called a stress-strain splitting. Inserting (17.24) into (17.13) the expression of the stiffness matrix
becomes

Ke:/ hBTE|BdQe+/ hBTE BdQ® = KE+KE. (17.25)
Qe Qe

If these two integrals were done through the same integration rule, the stiffness would be identical to that
obtained by integrating h BT E B d2¢. Thetrick isto use two different rules: rule (1) for the first integral and
rule (1) for the second.

In practice selective integration is mostly useful for the 4-node bilinear quadrilateral. For this element rules
(I) and (I1) arethe 1x 1 and 2x 2 Gauss product rules, respectively. ExercisesE17.5-7 investigate stress-strain
splittings (17.24) that improve the in-plane bending performance of rectangular elements.

Notes and Bibliography

The 4-node quadrilateral has a checkered history. It was first derived as a rectangular panel with edge rein-
forcements (not included here) by Argyrisin his 1954 Aircraft Engineering series[22, p. 49 inthe Butterworths
reprint]. Argyris used bilinear displacement interpolation in Cartesian coordinates.

After much flailing, a conforming generalization to arbitrary geometry was published in 1964 by Taig and
Kerr [719] using quadrilateral -fitted coordinates already denoted as {£, n} but running from Oto 1. (Reference
[719] cites an 1961 English Electric Aircraft internal report as original source but [397, p. 520] remarks that
the work goes back to 1957.) Bruce Irons, who was aware of Taig's work while at Rolls Royce, changed the
{&, n} rangeto[—1, 1] tofit Gauss quadrature tables. He proceeded to create the seminal isoparametric family
as afar-reaching extension upon moving to Swansea [64,197,394,397].

Gauss integration is also called Gauss-Legendre quadrature. Gauss presented these rules, derived from first
principles, in 1814; cf. Sec 4.11 of [310]. Legendre’'s name is often adjoined because the abcissas of the 1D
sample points turned out to be the zeros of Legendre polynomials. A systematic descriptionisgiven in [706].
For references in multidimensional numerical integration, see Notes and Bibliography in Chapter 24.

Selective and reduced integration in FEM developed in the early 1970s, and by now thereis a huge literature.
An excellent textbook sourceis[385].

References
Referenced items have been moved to Appendix R.

3 Thistechnique is also called “selective reduced integration” to reflect the fact that one of the rules (the “reduced rule”)
underintegrates the element.

4 This work is probably the first derivation of a continuum-based finite element by assumed displacements. As noted in
81.7.1, Argyris was aware of the ongoing work in stiffness methods at Turner’s group in Boeing, but the plane stress
models presented in [758] were derived by interelement flux assumptions. Argyris used the unit displacement theorem,
displacing each DOF in turn by one. The resulting displacement pattern is now called a shape function.
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Exercises

Homework Exercisesfor Chapter 17

I soparametric Quadrilaterals

The Mathematica module Quad4IsoPMembraneStiffness listed in Figure E17.1 computes the element
stiffness matrix of the 4-node bilinear quadrilateral. This module is useful as a tool for the Exercises that
follow.

Quad4l soPMenbr aneSti f f ness[ncoor _, Emat _,th_, options_]: =
Modul e[ {i, k, p=2, nuner =Fal se, h=t h, qcoor, c, w, Nf,
dNx, dNy, Jdet , Be, Ke=Tabl e[ 0, {8}, {8}]},
If [Length[options]==2, {nuner, p}=options,{nuner}=options];
If [p<l||p>4, Print["p out of range"]; Return[Null]];
For [k=1, k<=p*p, k++,
{gcoor, w} = QuadGaussRul el nf o[ { p, nuner}, k] ;
{Nf, dNx, dNy, Jdet } =Quad4l soPShapeFunDer [ ncoor, gcoor ] ;
If [Length[th]==4, h=th.Nf]; c=w‘Jdet*h;

Be={Fl atten[ Tabl e[ {dNx[[i]], 0}, {i,4}]],
Fl at t en[ Tabl e[ {0, dNy[[i11},{i,4}11],
Flatten[ Tabl e[ {dNy[[i]],dNx[[i]]1},{i,4}]1};

Ke+=Si npli fy[ c*Transpose[ Be] . (Emat. Be) ] ;
]; Return[Sinplify[Ke]]

1;

Ficure E17.1. Mathematicamoduleto compute the stiffness matrix of a4-node bilinear
quadrilateral in plane stress.

The module makes use of the shape function module Quad4IsoPShapeFunDer listed in Figure 17.1, and of
the Gaussintegration modules QuadGaussRuleInfo and (indirectly) LineGaussRuleInfo, listed in Figures
17.5 and are included in the web-posted Notebook Quad4Stiffness.nb.®> The moduleisinvoked as

Ke=Quad4IsoPMembraneStiffness[ncoor,Emat,thick,options] (E17.1)
The arguments are:
ncoor Quadrilateral node coordinates arranged in two-dimensional list form:
{{x1,y1},{x2,y2},{x3,y3},{x4,y4}}.
Emat A two-dimensional list storing the 3 x 3 plane stress matrix of elastic moduli:
Ell E12 El3
E=|E, E, Ex (E17.2)
E13 E23 E33

arrangedas{ {E11,E12,E33},{E12,E22,E23},{E13,E23,E33} }. Must besymmetric. If
the materia isisotropic with elastic modulus E and Poisson’sratio v, this matrix becomes

E 1 v 0
E= 7| 1 0 (E17.3)
Y lo o fa-v
thick The plate thickness specified either asafour-entry list: {h1,h2,h3,h4} or asascaar: h.

5 ThisNotebook does not include scripts for doing the Exercises below, although it has sometext statements at the bottom
of the cell. You will need to enter the Exercise scripts yourself.
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Chapter 17: ISOPARAMETRIC QUADRILATERALS

The first form is used to specify an element of variable thickness, in which case the entries
are the four corner thicknesses and h is interpolated bilinearly. The second form specifies
uniform thickness.

options Processing options. Thislist may contain two items: { numer,p} or one: { numer }.

numer is alogical flag with value True or False. If True, the computations are done in
floating point arithmetic. For symbolic or exact arithmetic work set numer to False.®

p specifies the Gauss product rule to have p points in each direction. p may be 1 through 4.
For rank sufficiency, p must be 2 or higher. If p is 1 the element will be rank deficient by
two.” If omitted p = 2 is assumed.

The module returns Ke as an 8 x 8 symmetric matrix pertaining to the following arrangement of nodal
displacements:

Ue = [uxl uyl Ux2 uy2 Ux3 uy3 Ux4 uy4]T . (E174)

4T y n ? 3 Uniformthicknessh=1
. I sotropic material with elastic
: modulus E and Poisson'sratio v

b=av oo

|
+ —> X

1 | ! | 2

| a |

FIGURE E17.2. Element for Exercises 17.1to 17.3.

For the following three exercises we consider the specialization of the general 4-node hilinear quadrilateral
to arectangular element dimensioned a and b in the x and y directions, respectively, as depicted in Figure
E17.2. The element has uniform unit thickness h. The material is isotropic with elastic modulus E and
Poisson’sratio v and consequently E reducesto (E17.3). The stiffness matrix of this element can be expressed
in closed form.2 For convenience define y = a/b (rectangle aspect ratio), ¥, = (1 4+ v)y, ¥» = (1 — 3v)y,
Ya=2+ A -5 Ya=2y"+ 1=, ¥s=A -y =4 ys=A-v)y?’ =1L ¢y =4y* - (1 —-v)
and yg = y? — (1 — v). Then the stiffness matrix in closed form is

4z Y1 295 =32 —2¢3 31 —4Ys 3y |
4y Yo Mg =31 —2ys =3P —2Yy
eh Az —3Y1 M —3Y2 —2¢3 3
e g 2 —2¢7 Y1 —2Yq
T 24y (1—?) dys Y 2Ys =3y EL7S
Ay 2 Ays
dfr3 =3y
| symm 4y

6 The reason for this option is speed. A symbolic or exact computation can take orders of magnitude more time than a
floating-point evaluation. This becomes more pronounced as elements get more complicated.

7 Therank of an element stiffness is discussed in Chapter 19.
8 This closed form can be obtained by either exact integration, or numerical integration with a2 x 2 or higher Gaussrule.
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EXERCISE 17.1 [C:20] Exercise the Mathematica module of Figure E17.1 with the following script:

ClearAll[Em,nu,a,b,h]; Em=48; h=1; a=4; b=2; nu=0;
ncoor={{0,0},{a,0},{a,b},{0,b}};
Emat=Em/(1-nu~2)*{{1,nu,0},{nu,1,03},{0,0, (1-nu) /2}};
For [p=1, p<=4, p++,
Ke= Quad4IsoPMembraneStiffness[ncoor,Emat,h,{True,p}];
Print["Gauss integration rule: ",p," x ",pl;
Print["Ke=",Chop[Ke] //MatrixForm] ;
Print["Eigenvalues of Ke=",Chop[Eigenvalues[N[Ke]]]]
1;

Verify that for integration rulesp=2, 3, 4 the stiffness matrix does not change and has three zero eigenval ues,
which correspond to the three two-dimensional rigid body modes. On the other hand, for p = 1 the stiffness
matrix is different and displays five zero eigenvalues, which is physically incorrect. (This phenomenon is
analyzed further in Chapter 19.) Question: why does the stiffness matrix stays exactly the same for p > 2?
Hint: take alook at the entries of the integrand h BT EB J:for a rectangular geometry are those polynomials
in & and n, or rational functions? If the former, of what polynomia order in & and » are the entries?

EXERCISE 17.2 [C:20] Check the rectangular element stiffness closed form given in (E17.5). This may be
done by hand (takes a while) or (quicker) running the script of Figure E17.3, which calls the Mathematica
module of Figure E17.1.

ClearAlI[Emv,a,b,h ¥]; b=aly;

ncoor={{0, 0}, {a, 0}, {a, b}, {0, b}};

Emat =Em (1-v"2)*{{1,v,0},{v,1,0},{0,0, (1-v)/2}};

Ke= Quad4l soPMenbr aneSti f f ness[ ncoor, Emat, h, { Fal se, 2}];

scal edke=Si npl i fy[ Ke*(24*(1-v"2)*vy/ (Enrh))];

Print["Ke=", Enth/ (24*y*(1-v"2)),"*\n", scal edKe// Matri xFornj ;

Ficure E17.3. Script suggested for Exercise E17.2.

The scaling introduced in the last two linesis for matrix visualization convenience. Verify (E17.5) by printout
inspection and report any typos to instructor.

EXERCISE 17.3 [A/C:25=5+10+10] A Bernoulli-Euler plane beam of thin rectangular cross-section with
span L, height b and thickness h (normal to the plane of the figure) is bent under end moments M asillustrated
in Figure E17.4. The beam is fabricated of isotropic material with elastic modulus E and Poisson’s ratio
v. The exact solution of the beam problem (from both the theory-of-elasticity and beam-theory standpoints)
is a constant bending moment M aong the span. Consequently the beam deforms with uniform curvature
k = M/(El,), inwhich |, = 1—12hb3 is the cross-section second moment of inertia about z.

The beam ismodel ed with one layer of identical 4-nodeiso-P bilinear quadrilaterals through its height. These
are rectangles with horizontal dimension a; in the Figurea = L /4. The aspect ratio b/a is denoted by y. By
anaogy with the exact solution, all rectanglesin the finite element model will undergo the same deformation.
We can therefore isolate a typical element asillustrated in Figure E17.4.

The exact displacement field for the beam segment referred to the {x, y} axes placed at the element center as
shown in the bottom of Figure E17.4, are

U = —kXY, Uy = 2k(X*+ vy?), (E17.6)
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M M y
I
< b
Cross v
section —
=< L > —>|h |<—
M M
y
4 3
b=ya X
v 1 2

Ficure E17.4. Pure bending of Bernoulli-Euler plane beam of thin rectangular cross section,
for Exercises 17.3—-7. The beam ismodeled by onelayer of 4-nodeiso-P bilinear quadrilaterals
through its height.

where « is the deformed beam curvature M/E|. The stiffness equations of the typical rectangular el ement
are given by the close form expression (E17.5).

The purpose of this Exerciseisto compare thein-plane bending response of the 4-nodeiso-P bilinear rectangle
to that of a Bernoulli-Euler beam element (which would be exact for this configuration). The quadrilateral
element will be called x-bending exact if it reproduces the beam solution for all {y, v}. This comparison is
distributed into three items.

(@

(b)

(©)

Check that (E17.6), asaplanestress 2D e asticity solution, isinfull agreement with Bernoulli-Euler beam
theory. This can be done by computing the strains e,x = duy/0X, €,y = duy,/dy and 2e,, = duy/dX +
duy/dy. Then get the stresses oy, oyy and o,y through the plane stress constitutive matrix (E17.3) of
an isotropic material. Verify that both oy, and oy, vanish for any v, and that oyx = —Exy = —My/I,,
which agrees with equation (13.4) in Chapter 13.

Compute the strain energy Ugag = %(ubeam)T K ®Upeam absorbed by the 4-node element under nodal
displacements Upeam cONstructed by evaluating (E17.6) at the nodes 1,2,3,4. To simplify this calculation,
it is convenient to decompose that vector as follows:

Upeam = Ujepm + Upeam = 3kab[—1 010 -1 0 1 0]"

E17.7
+ k@ +vb»[01010101] ( )

Explain why K °uy,,,, must vanish and consequently
Uguad = 3 (Usearn) " K *Uleam- (E17.8)

Thisenergy can be easily computed by Mathematica by using thefirst 4 lines of the script of the previous
Exercise, except that here ncoor={{-a,-b},{a,-b},{a,b},{-a,b}}/2. If vector u},,, isformed
inu as aone-dimensional list, Uquad=Simplify[u.Ke.u/2]. This should come out as a function of
M, E, v, h,aand y becausex = M/(El,) = 12M/(Eha3y?).

From Mechanics of Materials, or equation (13.7) of Chapter 13, the strain energy absorbed by the
beam segment of length a under a constant bending moment M is Upeam = %an = M?a/(2El,) =
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6M?/(Eha?y?). Form the energy ratior = Ugyad/Upeam and show that it is a function of the rectangle
aspect ratio y = b/a and of Poisson’sratio v only:
1+2/y%2—v

r=r(y,v) 2D A=) (E17.9)
This happens to be the ratio of the 2D model solution to the exact (beam) solution. Hencer = 1 means
that we get the exact answer, that isthe 2D model is x-bending exact. If r > 1the 2D model is overstiff,
and if r < 1the 2D model is overflexible. Evidently r > 1foral y if 0 < v < % Moreover if
b<<a,r >>1forexampleifa=10band v = 0, r ~ 50 and the 2D model gives only about 2%
of the correct solution. This phenomenon is referred to in the FEM literature as shear locking, because
overstiffness is due to the bending motion triggering spurious shear energy in the element. Remedies
to shear locking at the element level are studied in advanced FEM courses. Draw conclusions as to the
adequacy or inadequacy of the 2D model to capture inplane bending effects, and comment on how you

might improve results by modifying the discretization of Figure E17.4.°

EXERCISE 17.4 [A+C:20] A naive remedy to shear locking can be attempted with the weighted integration
methodology outlined in §17.6.1. Let K¢, ; and K$_, denote the element stiffnesses produced by 1x1 and
2x 2 Gauss product rules, respectively. Take

K§ = (1= pKS + BKS, (E17.10)

where 8 is adjusted so that shear locking is reduced or eliminated. It is not difficult to find 8 if the element is
rectangular and isotropic. For the definition of x-bending exact please read the previous Exercise. Inserting
K into the test introduced there verify that

. B(L+ 2y —v)

== = 7 E17.11
/DA -7 (EL71D
Whence show that if 2121 2
_ 4y L-v
B = 11270 (E17.12)

thenr = 1 for al {y, v} and the element is x-bending exact. A problem with thisidea is that it does not
make it y-bending exact becauser (y) # r(1/y) if y # 1. Moreover the device is not easily extended to
non-rectangular geometries or non-isotropic material.

EXERCISE 17.5 [A+C:35] (Advanced) To understand this Exercise please begin by reading Exercise 17.3,
and the concept of shear locking. Thematerial isagain assumed i sotropic with elastic modules E and Poisson’s
ratio v. The 4-node rectangular element will be said to be bending exact if r = 1 for any {y, v} if the bending
test described in Exercise 17.3 is done in both x and y directions. A bending-exact element is completely
shear-lock-free.

The selective integration scheme outlined in 817.6.2 is more effective than weighted integration (covered in
the previous exercise) to fully eliminate shear locking. Let the integration rules (1) and (I1) be the 1x1 and
2x 2 product rules, respectively. However thelatter is generalized so the sample pointsarelocated at {—x, x },
{6, —x} {x, x}and {—x, x}, with weight 1.1° Consider the stress-strain splitting

E 1v O E ap O E l-o v—B8 0

E= v1 O = Ba O + v—=8 1-a 0 [ =E 4+ E, (E17.13)

1-v2 1—v 1-v2 1—v 1-v2

00 5 00 =~ 0 0 O

2

9 Note that even if wemakea — O and y = b/a — oo by taking an infinite number of rectangular elements along x,
the energy ratio r remains greater than oneif v > 0 sincer — 1/(1 — v?). Thus the 2D model would not generally

converge to the correct solution if we keep one layer through the height.

10 For arectangular geometry these sample points lie on the diagonals. In the case of the standard 2-point Gauss product
rule x = 1/4/3.
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_ iz E17.14)
*~V3a-o (B

theresulting element stiffness K} + K, isbending exact for any {«, 8}. Asacorollary show that that if o = 12,
which corresponds to the splitting

E 1v O E v B0 E 1-v2 v—8 0
E= 1 0 |= V2 0 -8B 1-v20|=E +E,, (E17.15
1-12 ]()) o 1-v 12 h 1—v + 1—2 |V p g B )

5 OOT 0 0 O

then x = 1/+/3 and rule (I1) becomes the standard 2x 2 Gauss product rule. What are two computationally
convenient settings for 8?2

where o and 8 are scalars. Show that if

EXERCISE 17.6 [A+C:35] (Advanced) A variation on the previous exercise on selective integration to make
the isotropic rectangular 4-node el ement bending exact. Integration rule (1) is not changed. However rule (11)
has four sample points located at {0, —x}, {x, 0}, {0, x} and {—x, O} each with weight 1.1* Show that if one
selects the stress-strain splitting (E17.13) and

2(1-v?)
=, /— E17.1
X =,/ 30— ( 6)
the resulting element stiffness K} + K} is bending exact for any {«, 8}. Discuss which choices of o reduce x
to 1/+/3 and /2/3, respectively.

EXERCISE 17.7 [A+C:40] (Advanced, research paper level, requiresa CASto betractable) Extend Exercise
17.5 to consider the case of general anisotropic material:

Eix Ei Eis
E=| E» Ex»n Ejx (E17.17)
Eizs Ex Es

The rules for the selective integration scheme are as described in Exercise 17.5. The appropriate stress-strain
splitting is

Eno E12,3 E13:| |: Enn(l—a1) Ep(l- B) 0j|
+ (E17.18)

E=E+Ei=| Enf Exay Ex Ex(1—-8) Ex(1—a2) O
Eis E,s Eags 0 0 0

in which g is arbitrary and
|E| 1 IE| 1
- 3x2E11(ExEx — EZ) - 3x2Cu1’ S 3x2Exn(EnEx — EX) - 3x%Cy’
|E| = det(E) = Eq1ExEs3 + 2E12E13Ep — EynE5; — EnEZ, — ExE3,
Cu = Eu(ExEss — ER)/IEl, Cxp = Exn(E1Es — EZ)/|E|.

1—0[1

(E17.19)
Show that the resulting rectangular element is bending exact for any E and x # 0. (In practice one would
select x = 1/+/3)

11 Thisis called a4-point median rule, since the four points are located on the quadrilateral medians.
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818.2 DIRECT FABRICATION OF SHAPE FUNCTIONS

§18.1. Requirements

This Chapter explains, through a series of examples, how isoparametric shape functions can be
directly constructed by geometric considerations. For aproblem of variational index 1, theisopara-
metric shapefunction N associated with nodei of element e must satisfy thefollowing conditions:

(A) Interpolation condition. Takesaunit value at nodei, and is zero at all other nodes.

(B) Local support condition. Vanishes over any element boundary (asidein 2D, afacein 3D) that
does not include nodei .

(C) Interelement compatibility condition. Satisfies C° continuity between adjacent elements over
any element boundary that includes nodei .

(D) Completeness condition. The interpolation is able to represent exactly any displacement field
whichisalinear polynomial in x and y; in particular, a constant value.

Requirement (A) follows directly by interpolation from node values. Conditions (B), (C) and (D)
are conseqguences of the convergence requirements discussed further in the next Chapter.! For the
moment these three conditions may be viewed as recipes.

One can readily verify that all isoparametric shape function setslisted in Chapter 16 satisfy thefirst
two conditions from construction. Direct verification of condition (C) is also straightforward for
those examples. A statement equivalent to (C) is that the value of the shape function over a side
(in2D) or face (in 3D) common to two elements must uniquely depend only on its nodal values on
that side or face.

Completenessisaproperty of all element isoparametric shape functions taken together, rather than
of an individual one. If the element satisfies (B) and (C), in view of the discussion in 816.6 it is
sufficient to check that the sum of shape functions is identically one.

§18.2. Direct Fabrication of Shape Functions

Contrary to the what the title of this Chapter implies, the isoparametric shape functions listed in
Chapter 16 did not come out of amagician’s hat. They can be derived systematically by ajudicious
Inspection process. By “inspection” it is meant that the geometric visualization of shape functions
playsacrucial role.

The method is based on the following observation. In all examples given so far the isoparametric
shape functions are given as products of fairly ssmple polynomial expressions in the natural coor-
dinates. Thisis no accident but a direct consequence of the definition of natural coordinates. All
shape functions of Chapter 16 can be expressed as the product of m factors:

Ne=cLily...Lm, (18.1)

where
L; =0, j=1,...m (18.2)

are the homogeneous equation of lines or curves expressed as linear functionsin the natural coor-
dinates, and ¢; is anormalization coefficient.

1 Convergence means that the discrete FEM solution approaches the exact analytical solution as the mesh is refined.
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@ 3 (b) 3
Q

Fi1cUure 18.1. Thethree-node linear triangle: (a) element geometry; (b) equation
of side opposite corner 1; (c) perspective view of the shape function Ny = ¢1.

For two-dimensional isoparametric elements, the ingredientsin (18.1) are chosen according to the
following fiverules.

R1 Select the L; asthe minimal number of lines or curves linear in the natural coordinates that
cross all nodes except the it node. (A sui generis*“crossthe dots’ game.) Primary choicesin
2D are the element sides and medians.

R2 Set coefficient ¢; so that N® has the value 1 at the i ™" node.
R3 Check that N vanishes over al element sides that do not contain nodei.

R4 Check the polynomial order over each side that contains nodei. If the order isn, there must
be exactly n 4+ 1 nodes on the side for compatibility to hold.

R5 If local support (R3) and interelement compatibility (R4) are satisfied, check that the sum of
shape functionsisidentically one.

The examples that follow show these rulesin action for two-dimensional elements. Essentialy the
same technique is applicable to one- and three-dimensional elements.

§18.3. Triangular Element Shape Functions

This section illustrates the use of (18.1) in the construction of shape functionsfor the linear and the
quadratic triangle. The cubic triangle is dealt with in Exercise 18.1.

818.3.1. The Three-Node Linear Triangle

Figure 18.1 shows the three-node linear triangle that was studied in detail in Chapter 15. Thethree
shape functionsare simply thetriangular coordinates: N; = ¢, fori = 1, 2, 3. Although thisresult
followsdirectly from the linear interpolation formulaof 815.2.4, it can be also quickly derived from
the present methodology as follows.

The equation of the triangle side opposite to nodei is L j-x = ¢ = 0, where j and k are the cyclic
permutations of i. Here symbol L j-x denotes the left hand side of the homogeneous equation of
the natural coordinate line that passes through node points j and k. See Figure 18.1(b) fori = 1,
j] = 2and k = 3. Hence the obvious guessis

uess

Ne 9= L. (18.3)
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@ 3

FIGURE 18.2. The six-node quadratic triangle: (a) element geometry; (b) lines
(in red) whose product yields N7; (c) lines (in red) whose product yields N

This satisfies conditions (A) and (B) except the unit value at node i; this holdsif ¢ = 1. The
local support condition (B) follows from construction: the value of ¢ is zero over side j—k.
Interelement compatibility follows from R4: the variation of ¢ along the 2 sides meeting at node
i islinear and that there are two nodes on each side; cf. 815.4.2. Completeness follows since
N7+ N5+ N§ = ¢1 + &2 + ¢3 = 1. Figure 18.1(c) depicts Ni = ¢1, drawn normal to the element
in perspective view.

818.3.2. The Six-Node Quadratic Triangle

The geometry of the six-node quadratic triangle is shown in Figure 18.2(a). Inspection revealstwo
types of nodes. corners (1, 2 and 3) and midside nodes (4, 5 and 6). Consequently we can expect
two types of associated shape functions. We select nodes 1 and 4 as representative cases.

For both cases we try the product of two linear functions in the triangular coordinates because we
expect the shape functions to be quadratic. These functions areillustrated in Figures 18.2(b,c) for
corner node 1 and midside node 4, respectively.

For corner node 1, inspection of Figure 18.2(b) suggests trying

NS =" ¢, Lo Las, (18.4)
Why is(18.4) expected towork? Clearly N; will vanish over 2-5-3and 4-6. Thismakesthefunction
zero at nodes 2 through 6, as is obvious upon inspection of Figure 18.2(b), while being nonzero at
node 1. This value can be adjusted to be unity if c; is appropriately chosen. The equations of the
lines that appear in (18.4) are

Log: &1 =0, Lss: $1—2=0. (18.5)
Replacing into (18.3) we get
N = ¢ &1t — 3), (18.6)

To find c;, evaluate N (¢1, &2, ¢3) a node 1. The triangular coordinates of this node are ¢; = 1,
¢2 = g3 = 0. We require that it takes a unit value there: N7(1,0,0) = ¢; x 1 x % = 1 whence
c; = 2andfindly

Nf = 201(61 — 3) = (20— 1), (18.7)
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FIGURE 18.3. Perspective view of shape functions Nf and N7 for the quadratic
triangle. The plot is done over a straight side triangle for programming simplicity.

aslisted in 816.5.2. Figure 18.3 shows a perspective view. The other two corner shape functions
follow by cyclic permutations of the corner index.

For midside node 4, inspection of Figure 18.2(c) suggests trying

Nf glﬁss Cqlos3li-g (18.8)

Evidently (18.8) satisfies requirements (A) and (B) if ¢4 isappropriately normalized. The equation

of sides L,-3 and L1-3 are &3 = 0 and ¢ = O, respectively. Therefore N;(¢1, {2, £3) = Ca {182

To find ¢4, evaluate this function at node 4, the triangular coordinates of whichare ¢, = ¢, = %

¢3 = 0. Werequire that it takes a unit value there: N§(3, 2,0) = ¢4 x 3 x 3 = 1. Hencec, = 4,
which gives

N = 4182 (18.9)

aslisted in 816.5.2. Figure 18.3 shows a perspective view of this shape function. The other two
midside shape functions follow by cyclic permutations of the node indices.

It remains to carry out the interelement continuity check. Consider node 1. The boundaries
containing node 1 and common to adjacent elements are 1-2 and 1-3. Over each one the variation
of Nf isquadraticin ¢;. Therefore the polynomial order over each sideis 2. Because there are
three nodes on each boundary, the compatibility condition (C) of 818.1 isverified. A similar check
can be carried out for midside node shape functions. Exercise 16.1 verified that the sum of the N;
isunity. Therefore the element is complete.

818.4. Quadrilateral Element Shape Functions

Threequadrilateral elements, with 4, 9 and 8 nodes, respectively, which are commonly used in com-
putational mechanics serve as examples to illustrate the construction of shape functions. Elements
with more nodes, such as the bicubic quadrilateral, are not treated as they are rarely used.

818.4.1. The Four-Node Bilinear Quadrilateral

The element geometry and natural coordinates are shown in Figure 18.4(a). Only one type of
node (corner) and associated shape function is present. Consider node 1 astypical. Inspection of
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FicUurke 18.4. Thefour-node bilinear quadrilateral: (a) element geometry; (b) sides (in red)
that do not contain corner 1; (c) perspective view of the shape function N7

Figure 18.4(b) suggeststrying

uess

NS 9= ¢ Lo Loy (18.10)

This plainly vanishes over nodes 2, 3 and 4, and can be normalized to unity at node 1 by adjusting
c;. By construction it vanishes over the sides 2-3 and 3—4 that do not belong to 1. The equation of
side2-3isé =1,0ré —1=0. Theeguation of side3-4isn = 1,0orn — 1 = 0. Replacing in
(18.10) yields

NI, m =cE - -1 =c(l-&A-n. (18.11)
Tofind ¢;, evaluate at node 1, the natural coordinates of whichareé = n = —1.
Ni(—1,-1) =c x2x2=4c¢ =1 (18.12)
Hencec, = %1 and the shape function is
NP =21-&)0 -, (18.13)

aslisted in 816.6.2. Figure 18.4(c) shows a perspective view.

For the other three nodes the procedure is the same, traversing the element cyclically. It can be
verified that the general expression of the shape functions for this element is

NE=2(1+&&@+nn. (18.14)

The continuity check proceeds as follows, using N; as example. Node 1 belongs to interelement
boundaries 1-2 and 1-3. Over side1-2, n = —1isconstant and Ny isalinear function of &. To see
this, replacen = —1in (18.13). Over side1-3, £ = —1isconstant and N7 isalinear function of ».
Consequently the polynomial variation order is 1 over both sides. Because there are two nodes on
each side the compatibility condition is satisfied. The sum of the shape functionsis one, as shown
in (16.21); thus the element is compl ete.
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Chapter 18: SHAPE FUNCTION MAGIC

FIGURE 18.5. Thenine-node biquadratic quadrilatera: (a) element geometry; (b,c,d): lines
(in red) whose product makes up the shape functions N7, N and Ng, respectively.

NS =2(1—£%n(n—1) (back view) Ng =@1—-£)1-7n?

FI1GURE 18.6. Perspective view of the shape functionsfor nodes 1, 5 and 9 of the nine-node
biquadratic quadrilateral.

188



818.4 QUADRILATERAL ELEMENT SHAPE FUNCTIONS

FIGURE 18.7. The eight-node serendipity quadrilateral: (a) element geometry; (b,c):
lines (in red) whose product make up the shape functions N7’ and N¢, respectively.

§18.4.2. The Nine-Node Biquadratic Quadrilateral

The element geometry is shown in Figure 18.5(a). This element has three types of shape functions,
which are associated with corner nodes, midside nodes and center node, respectively.

The lines whose product is used to construct three types of shape functions are illustrated in
Figure 18.5(b,c,d) for nodes 1, 5 and 9, respectively. The technigque has been sufficiently illustrated
in previous examples. Here we summarize the calculations for nodes 1, 5 and 9, which are taken
as representatives of the three types:

Ny = C;La-3Lla-4Ls-7Le-8 = C (€ — D)(nn — Dén. (18.15)
Ng = csLogli-aleslaa =C5 (6 — DE+Dn(n— 1) =5 (L — EHn(L—n). (18.16)

NS = CgLiologlaalar=Co¢E —D(n—DE+D(n+1) =cg(1—£3(L—1n?) (18.17)

Imposing the normalization conditions we find

I

and we obtain the shape functions listed in 816.6.3. Perspective views are shown in Figure 18.6.
Theremaining N;’s are constructed through a similar procedure.

Verification of the interelement continuity condition isimmediate: the polynomial variation order
of N over any side that belongs to node i is two and there are three nodes on each side. Exercise
16.2 checks that the sum of shape function is unity. Thus the element is complete.

818.4.3. The Eight-Node “ Serendipity” Quadrilateral

Thisis an eight-node quadrilateral element that results when the center node 9 of the biquadratic
guadrilateral iseliminated by kinematic constraints. The geometry and node configurationisshown
in Figure 18.7(a). This element has been widely used in commercial codes since the 70s for static
problems. Itisgradually being phased out infavor of the 9-node quadrilateral for dynamic problems.
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Chapter 18: SHAPE FUNCTION MAGIC

F1GURE 18.8. Node configurations for which the magic recipe does not work.

The 8-node quadrilateral has two types of shape functions, which are associated with corner nodes
and midside nodes. Lines whose products yields the shape functions for nodes 1 and 5 are shown
in Figure 18.7(b,c).

Herearethecal culationsfor shapefunctionsof nodes1 and 5, which aretaken again asrepresentative
cases.

Ni =cLoslaalse=c6 — D —DA+E+n =c1-EA—n+&+n), (1819

NE = Gslo-slsalar =6 —DE+ D — 1) =cs (L—E5(L— ). (18.20)
Imposing the normalization conditions we find

G=-%  C=3 (18.21)

The other shape functions follow by appropriate permutation of nodal indices. The interelement
continuity and completeness verification are similar to that carried out for the nine-node element,
and are relegated to exercises.

§18.5. Doesthe Magic Wand Always Work?

The “cross the dots” recipe (18.1)—18.2) is not foolproof. It fails for certain node configurations
although it is areasonable way to start. It runsinto difficulties, for instance, in the problem posed
in Exercise 18.6, which dealswith the 5-node quadrilateral depicted in Figure 18.8(a). If for node 1
one tries the product of side 2-3, side 34, and the diagonal 2-5-4, the shape function is easily
worked out to be N7 = —%(1 — &)1 —n)(& + n). Thissatisfies conditions (A) and (B). However,
it violates (C) along sides 1-2 and 4-1, because it varies quadratically over them with only two
nodes per side.

818.5.1. Hierarchical Corrections

A more robust technique relies on a correction approach, which employs a combination of terms
such as (18.1). For example, a combination of two patterns, one with m factors and one with n
factors, is

Ne=¢ LSLS ... LS 4+ LYLY ... LY, (18.22)

Here two normalization coefficients: ¢; and d;, appear. In practice trying forms such as (18.22)
from scratch becomes cumbersome. The development is best done hierarchically. Thefirst termis

18-10



818.5 DOES THE MAGIC WAND ALWAYS WORK?

taken to bethat of alower order element, called the parent element, for which the one-shot approach
works. The second term is then a corrective shape function that vanishes at the nodes of the parent
element. If thisisinsufficient one more corrective term is added, and so on.

The technique is best explained through examples. Exercise 18.6 illustrates the procedure for the
element of Figure 18.8(a). The next subsection works out the element of Figure 18.8(b).

§18.5.2. Transition Element Example

The hierarchical correction technique is useful for transition elements, which have corner nodes
but midnodes only over certain sides. Three examples are pictured in Figure 18.8(b,c,d). Shape
functions that work can be derived with one, two and three hierarchical corrections, respectively.

As an example, let us construct the shape function N7’ for the 4-node transition triangle shown in
Figure 18.8(b). Candidate lines for the recipe (18.1) are obviously the side 2-3: ¢; = 0, and the
median 3—4: ¢, = ¢». Accordingly we try

NS = i@ — &), Ni(L.0,0)=1=cy. (18.23)
This function N{ = ¢1(¢1 — &) satisfies conditions (A) and (B) but fails compatibility: over side
1-3 of equation ¢» = 0, because N£(¢1, 0, ¢3) = ¢2. Thisvaries quadratically but there are only 2
nodes on that side. Thus (18.23) is no good.

To proceed hierarchically we start from the shape function for the 3-node linear triangle: N = ¢3.
This will not vanish at node 4, so apply a correction that vanishes at all nodes but 4. From
knowledge of the quadratic triangle midpoint functions, that is obviously ¢3¢, times a coefficient
to be determined. The new guessis
NS %= o+ it (18.24)
Coefficient ¢, is determined by requiring that N vanishat 4: N&(3, 3, 0) = 1 + ¢, 7 = 0, whence
c; = —2 and the shape function is
Nf = &1 — 20182 (18.25)

Thisiseasily checked to satisfy compatibility on all sides. The verification of completenessis|left
to Exercise 18.8.

Note that since N; = ¢1(1 — 2¢2), (18.25) can be constructed as the normalized product of lines
¢1 = 0and ¢, = 1. Thelatter passesthrough 4 andisparallel to 1-3. Aspart of the opening moves
in the shape function game this would be alucky guessindeed. If one goes to a more complicated
element no obvious factorization is possible.
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Chapter 18: SHAPE FUNCTION MAGIC

Cell 18.1 Mathematica Moduleto Draw a Function over a Triangle Region

PlotTriangleShapeFunction[xytrig_,f_,Nsub_,aspect_]:=Modulel[

{Ni,1line3D={},poly3D={},zcl,zc2,zc3,xyfl,xyf2,xyf3,

xc,yc, x1,x2,x3,y1,y2,y3,21,22,23,iz1,iz2,iz3,d},

{{x1,y1,z1},{x2,y2,22},{x3,y3,23} }=Take [xytrig, 3] ;

xc={x1,x2,x3}; yc={yl,y2,y3}; Ni=Nsub*3;

Do [ Do [iz3=Ni-iz1-iz2; If [iz3<=0, Continue[]]; d=0;
If [Mod[iz1+2,3]==0&&Mod[iz2-1,3]==0, d= 1];
If [Mod[iz1-2,3]==0&&Mod[iz2+1,3]==0, d=-1];
If [d==0, Continuel[]l];
zcl1=N[{iz1+d+d,iz2-d,iz3-d}/Ni];
zc2=N[{iz1-d,iz2+d+d,iz3-d}/Ni];
zc3=N[{iz1-d,iz2-d,iz3+d+d}/Ni];
xyfi={xc.zcl,yc.zcl,f[zc1[[1]],2zc1[[2]],2zc1[[3]11};
xyf2={xc.zc2,yc.zc2,f[zc2[[1]1],zc2[[2]],2zc2[[3]1]1]};
xyf3={xc.zc3,yc.zc3,f[zc3[[1]1],2zc3[[2]],2zc3[[3]1]11};
AppendTo [poly3D,Polygon [{xyfl,xyf2,xyf3}]1];
AppendTo[line3D,Line [{xyfl,xyf2,xyf3,xyf1}]1],

{iz2,1,Ni-iz1}],{iz1,1,Ni}];

Show[ Graphics3D[RGBColor[1,0,0]],Graphics3D[poly3D],
Graphics3D[Thickness[.002]],Graphics3D[1ine3D],
Graphics3D[RGBColor[0,0,0]],Graphics3D[Thickness[.005]],
Graphics3D[Line[xytrig]] ,PlotRange->Al11,
BoxRatios->{1,1,aspect},Boxed->False]

1;

ClearAl1[f1,£f4];

xyc1={0,0,0}; xyc2={3,0,0}; xyc3={Sqrt[3],3/2,0};
xytrig=N[{xycl,xyc2,xyc3,xyc1}]; Nsub=16;
fi[zetal_,zeta2_,zeta3_]:=zetal*(2xzetal-1);
f4[zetal_,zeta2_,zeta3d_]:=4*zetal*zeta2;
PlotTriangleShapeFunction[xytrig,f1,Nsub,1/2];
PlotTriangleShapeFunction[xytrig,f4,Nsub,1/2.5];

§18.6. *Mathematica M odulesto Plot Shape Functions

A Mathematica module called P1otTriangleShape Functions, listedin Cell 18.1, has been developed to
draw perspective plots of shape functions N; (¢1, &2, £3) over atriangular region. The region is assumed to
have straight sidesto simplify thelogic. Thetest statementsthat follow the modul e produce the shape function
plotsshown in Figure 18.3 for the 6-node quadratic triangle. Argument Nsub controlsthe plot resolution while
aspect controls the xyz box aspect ratio. The remaining arguments are self explanatory.

Another Mathematica module called PlotQuadrilateralShape Functions, listed in Cell 18.2, has been
developed to produce perspective plots of shape functions N; (¢, n) over a quadrilateral region. The region
is assumed to have straight sides to simplify the logic. The test statements that follow the module produce
the shape function plots shown in Figure 18.6(a,b,d) for the 9-node biquadratic quadrilateral. Argument Nsub
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Cell 18.2 Mathematica Moduleto Draw a Function over a Quadrilateral Region

PlotQuadrilateralShapeFunction[xyquad_,f_,Nsub_,aspect_]:=Module[
{Ne,Nev,1line3D={},poly3D={},xyfl,xyf2,xyf3,i,j,n,ixi,ieta,
xi,eta,x1,x2,x3,x4,y1,y2,y3,y4,2z1,22,23,z4,xc,yc},
{{x1,y1,21},{x2,y2,22},{x3,y3,23},{x4,y4,z4}}=Take [xyquad,4] ;

xc={x1,x2,x3,x4}; yc={yl,y2,y3,y4};
Ne[xi_,eta_]:=N[{(1-xi)*(1-eta), (1+xi)*(1l-eta),
(1+xi)*(1+eta), (1-xi)*(1+eta)}/4]; n=Nsub;
Do [ Do [ ixi=(2*i-n-1)/n; ieta=(2*j-n-1)/n;
{xi,eta}=N[{ixi-1/n,ieta-1/n}]; Nev=Nel[xi,eta];
xyfl={xc.Nev,yc.Nev,f[xi,etal};
{xi,eta}=N[{ixi+1/n,ieta-1/n}]; Nev=Nel[xi,eta];
xyf2={xc.Nev,yc.Nev,f [xi,etal};
{xi,eta}=N[{ixi+1/n,ieta+1/n}]; Nev=Nel[xi,etal;
xyf3={xc.Nev,yc.Nev,f [xi,etal};
{xi,eta}=N[{ixi-1/n,ieta+1/n}]; Nev=Nel[xi,eta];
xyf4={xc.Nev,yc.Nev,f[xi,etal};
AppendTo [poly3D,Polygon [{xyf1,xyf2,xyf3,xyf4}1];
AppendTo[line3D,Line [{xyf1l,xyf2,xyf3,xyf4,xyf1}1],
{i,1,Nsub}],{j,1,Nsubl}];

Show[ Graphics3D[RGBColor[1,0,0]],Graphics3D[poly3D],
Graphics3D[Thickness[.002]],Graphics3D[1ine3D],
Graphics3D[RGBColor [0,0,0]],Graphics3D[Thickness[.005]],
Graphics3D[Line[xyquad]], PlotRange->All,
BoxRatios->{1,1,aspect},Boxed->False]

1;

ClearAll[f1,f5,f9];

xyc1={0,0,0}; xyc2={3,0,0}; xyc3={3,3,0}; xyc4={0,3,0};

xyquad=N[{xycl,xyc2,xyc3,xycd,xyc1}]; Nsub=16;

filxi_,eta_]:=(1/2)*(xi-1)*(eta-1)*xi*eta;
f5[xi_,eta_]:=(1/2)*(1-xi"2) *eta*(eta-1);
fO[xi_,eta_]:=(1-xi~2)*(1-eta"2);

PlotQuadrilateralShapeFunction[xyquad,f1,Nsub,1/2];

PlotQuadrilateralShapeFunction[xyquad,f5,Nsub,1/2.5];

PlotQuadrilateralShapeFunction[xyquad,f9,Nsub,1/3];

controlsthe plot resolution while aspect controlsthe xyz box aspect ratio. The remaining arguments are self
explanatory.
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Notes and Bibliography

The name “shape functions’ for interpolation functions directly expressed in terms of physical coordinates
(the node displacements in the case of isoparametric elements) was coined by Irons. The earliest published
reference seemsto be the paper [64]. Thiswas presented in 1965 at the first Wright-Patterson conference, the
first all-FEM meseting that strongly influenced the development of computational mechanics in Generation 2.
The key connection to numerical integration was presented in [394], although it is mentioned in prior internal
reports. A comprehensive exposition is given in the textbook by Irons and Ahmad [397].

The quick way of developing shape functions presented here was used in the writer's 1966 thesis [203] for
triangular elements. The qualifier “magic” arose from the timing for covering this Chapter in a Fall Semester
course: the lecture falls near Halloween.

References
Referenced items have been moved to Appendix R.
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Exercises

Homework Exercisesfor Chapter 18
Shape Function Magic

EXERCISE 18.1 [A/C:10+10] The complete cubic triangle for plane stress has 10 nodes located as shown in
Figure E18.1, with their triangular coordinates listed in parentheses.

(@

(b)

3(0,0,1)

O
1(1,0,0)

Ficure E18.1. Ten-node cubic triangle for Exercise 18.1. The left picture shows the
superparametric element whereas the right one shows the isoparametric version with curved sides.
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FIGURE E18.2. Perspective plots of the shape functions N7, N7 and N§
for the 10-node cubic triangle.

Construct the cubic shape functions N7, N7 and NS for nodes 1, 4, and O (the interior nodeislabeled as
zero, not 10) using the line-product technique. [Hint: each shape function is the product of 3 and only 3
lines.] Perspective plots of those 3 functions are shown in Figure E18.2.

Construct the missing 7 shape functions by appropriate node number permutations, and verify that the
sum of the 10 functionsisidentically one. For the unit sum check usethefactthat ¢; + ¢, + ¢3 = 1.

EXERCISE 18.2 [A:15] Find an aternative shape function N7 for corner node 1 of the 9-node quadrilateral
of Figure 18.5(a) by using the diagonal lines 5-8 and 2-9—4 in addition to the sides 2-3 and 3-4. Show that

the resulting shape function violates the compatibility condition (C) stated in §18.1.

EXERCISE 18.3 [A/C:15] Complete the above exercise for al nine nodes. Add the shape functions (use a
CAS and simplify) and verify whether their sum is unity.

EXERCISE 18.4 [A/C:20] Verify that the shape functions Ny and N of the eight-node serendipity quadri-
lateral discussed in §18.4.3 satisfy the interelement compatibility condition (C) stated in §18.1. Obtain al 8

shape functions and verify that their sum is unity.

EXERCISE 18.5 [C:15] Plot theshapefunctions N} and N¢ of the eight-node serendipity quadrilateral studied
in 818.4.3 using the module P1lotQuadrilateralShapeFunction listed in Cell 18.2.
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F1cure E18.3. Five node quadrilateral element for Exercise 18.6.

EXERCISE 18.6 [A:15]. A fivenodequadrilateral element hasthenodal configurationshowninFigureE18.3.
Perspective views of Nf and N¢ are shown in that Figure.? Find five shape functions N% i =123, 4 5tha
satisfy compatibility, and also verify that their sum is unity.

Hint: develop Ns(&, ) first for the 5-node quad using the line-product method; then the corner shape functions
Ni (¢, n) (i =1,2,3,4) for the 4-node quad (already given in the Notes); finally combine N; = N; + «Ns,
determining « so that al N; vanish at node 5. Check that N; + N, + N3 + N4 + Ns = lidentically.

EXERCISE 18.7 [A:15]. An eight-node “brick” finite ele-
ment for three dimensional analysis has three isoparametric
natural coordinatescalled &, n and . Thesecoordinatesvary
from —1 at one face to +1 at the opposite face, as sketched
in Figure E18.4.

Construct the (trilinear) shapefunction for node 1 (follow the
node numbering of the figure). The equations of the brick
faces are:

1485: € = -1  2376: & = +1

1265: n=—1  4378:n=+41

1234: p=-1 5678 =+1 FIGURE E18.4. Eight-node isoparametric
“brick” element for Exercise 18.7.

EXERCISE 18.8 [A:15]. Consider the 4-node transition triangular element of Figure 18.8(b). The shape
function for node 1, N; = ¢; — 2¢1¢, was derived in 818.5.2 by the correction method. Show that the others
are Ny = o — 28182, N3 = ¢z and Ny = 4¢1¢,. Check that compatibility and completeness are verified.

EXERCISE 18.9 [A:15]. Construct the six shape functions for the 6-node transition quadrilateral element of
Figure 18.8(c). Hint: for the corner nodes, use two corrections to the shape functions of the 4-node bilinear
quadrilateral. Check compatibility and completeness. Partial result: Ny = 2(1—£)(1—n) — 3(1—£?)(1—n).

EXERCISE 18.10 [A:20]. Consider a5-node transition triangle in which midnode 6 on side 1-3 ismissing.
Show that Nf = ¢, — 28182 — 2¢2¢3. Can this be expressed as aline product like (18.1)?

2 Although this N resembles the N of the 4-node quadrilateral depicted in Figure 18.4, they are not the same. That in
Figure E18.3 must vanish at node 5 (§ = » = 0). On the other hand, the N} of Figure 18.4 takes the value % there.
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Set CL1 A
0\ ) ; i
\Qourd27; Side 2-4 mapsto this
‘*\:‘%@?;ﬁ parabola; part of triangle
«Zad 2-3-4 turns "inside out"
4
3
4 2
1
4 3
4 N
1 2
Reference 2
triangular
elements
Set CL2
1 2

2

FIGURE E18.5. Mapping of reference triangles under sets (E18.1) and (E18.2).
Triangles are slightly separated at the diagonal 2—4 for visualization convenience.

EXERCISE 18.11 [A:30]. Thethree-node linear triangle isknown to be a poor performer for stress analysis.
In an effort to improveit, Dr. . M. Clueless proposes two sets of quadratic shape functions:

CLL  Ny=¢24 Np=¢2, N3=¢2 (E18.1)

CL2: Ny =¢2+200, Np=¢2+200, N3=2+208. (E18.2)

Dr. C. writesalearned paper claiming that both sets satisfy the interpolation condition, that set CL 1 will work
because it is conforming and that set CL2 will work because N; + N, + N3 = 1. He provides no numerical
examples. You get the paper for review. Show that the claims are false, and both sets are worthless. Hint:
study §16.6 and Figure E18.5.

EXERCISE 18.12 [A:25]. Another way of constructing shape functionsfor “incomplete” elementsisthrough
kinematic multifreedom constraints (MFCs) applied to a“ parent” element that contains the one to be derived.
Suppose that the 9-node biquadratic quadrilateral is chosen as parent, with shape functions called N, i =
1,...9givenin §18.4.2. To construct the shape functions of the 8-node serentipity quadrilateral, the motions
of node 9 are expressed in terms of the motions of the corner and midside nodes by the interpolation formulas
Uxg = a(Ux1 + Ux2 + Ux3 + Uxa) + B(Uxs + Uxe + Ux7 + Uxg), (E18.3)
Uyo = o(Uy1 + Uyz + Uys + Uya) + B(Uys + Uys + Uy7 + Uys), '

where o and B are scalars to be determined. (In the terminology of Chapter 9, uye and uyg are slaves
while boundary DOFs are masters) Show that the shape functions of the 8-node quadrilateral are then
Ni = NP +aNJ fori =1,...4and N, = NP + BN for i =5, ...8. Furthermore, show that « and g can
be determined by two conditions:

1. Theunit sum condition: Y7 | Ni = 1, leadsto 4o + 48 = 1.
2. Exactness of displacement interpolation for £2 and n? leadsto 2« + B = 0.
Solve these two equationsfor « and 8, and verify that the serendipity shape functions given in §18.4.3 resullt.

EXERCISE 18.13 [A:25] Construct the 16 shape functions of the bicubic quadrilateral.
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819.2 THE VARIATIONAL INDEX

§19.1. Overview

Chapters 11 through 18 have discussed, in piecemeal fashion, requirements for shape functions
of isoparametric elements. These are motivated by convergence: as the mesh is refined, the FEM
solution should approach the analytical solution of the mathematical model.> This attribute is
obviously necessary to instill confidence in FEM results from the standpoint of mathematics.

This Chapter provides unified information on convergence requirements. These requirements can
be grouped into three:

Completeness. The elements must have enough approximation power to capture the analytical
solution in thelimit of amesh refinement process. Thisintuitive statement isrendered more precise
bel ow.

Compatibility. The shape functions should provide displacement continuity between elements.
Physically theseinsure that no material gaps appear asthe elementsdeform. Asthe meshisrefined,
such gaps would multiply and may absorb or release spurious energy.

Stability. The system of finite element equations must satify certain well posedness conditions that
preclude nonphysical zero-energy modes in elements, as well as the absence of excessive element
distortion.

Completeness and compatibility are two aspects of the so-called consistency condition between
the discrete and mathematical models. A finite element model that passes both completeness and
continuity requirementsis called consistent. Thisisthe FEM analog of the famous L ax-Wendroff
theorem,? which says that consistency and stability imply convergence.

Remark 19.1. A deeper mathematical analysis done in more advanced courses shows that completenessis
necessary for convergence whereas failure of the other requirements does not necessarily precludesit. There
are, for example, FEM models in common use that do not satisfy compatibility. Furthermore, numerically
unstable models may be used (with caution) in situations where that property is advantageous, as in the
modeling of local singularities. Nonethel ess, the satisfaction of the three criteria guarantees convergence and
may therefore be regarded as a saf e choice for the beginner user.

§19.2. TheVariational Index

For the mathematical statement of the completeness and continuity conditions, the variational index
alluded to in previous sections plays a fundamental role.

The FEM isbased on the direct discretization of an energy functional I1[u], where u (displacements
for the elements considered in this book) is the primary variable, or (equivalently) the function to
be varied. Let m be the highest spatial derivative order of u that appearsin I1. Thismiscalled the
variational index.

1 Of course FEM convergence does not guarantee the correctness of the mathematical model in capturing the physics. As
discussed in Chapter 1, model verification against experimentsis a different and far more difficult problem.

2 Provenoriginaly for classical finitedifferencediscretizationsin fluid mechanics. More precisely, it statesthat anumerical
scheme for the scalar conservation law, du/dt + df /dx = O converges to a unique (weak) solution, if it is consistent,
stable and conservative. Thereis no equivalent theorem for systems of conservation laws.
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Example 19.1. In the bar problem discussed in Chapter 11,

L
I1[u] =/ (3UEAU —qu) dx. (19.1)
0

The highest derivative of the displacement u(x) isu’ = du/dx, which isfirst order in the space coordinate x.
Consequently m = 1. Thisis also the case on the plane stress problem studied in Chapter 14, because the
strains are expressed in terms of first order derivatives of the displacements.

Example 19.2. In the plane beam problem discussed in Chapter 12,

L
M[v] = / (% V'Elv” — qv) dx. (19.2)
0

The highest derivative of the transverse displacement is the curvature k = v” = d?v/dx?, which is of second
order in the space coordinate x. Conseguently m = 2.

§19.3. Consistency Requirements

Using theforegoing definition of variational index, we can proceed to state the two key requirements
for finite element shape functions.

819.3.1. Completeness

The element shape functions must represent exactly all polynomia terms
of order < m in the Cartesian coordinates. A set of shape functions that
satisfies this condition is called m-complete.

Note that this requirement applies at the element level and involves all shape functions of the
element.

Example 19.3. Suppose a displacement-based element is for a plane stress problem, in which m = 1. Then
1-completeness requires that the linear displacement field

Uy = g + 01X + a2y, Uy = ag + a1 X + apy (19.3)

be exactly represented for any value of the o coefficients. Thisis done by evaluating (19.3) at the nodes to
form adisplacement vector u® and then checking that u = N°u® recovers exactly (19.3). Section 16.6 presents
the details of this calculation for an arbitrary isoparametric plane stress element. That analysis shows that
completeness is satisfied if the sum of the shape functions is unity and the element is compatible.

Example 19.4. For the plane beam problem, in which m = 2, the quadratic transverse displacement
v = ao + a1X + ax? (19.9)

must be exactly represented over the element. Thisiseasily verified in for the 2-node beam element devel oped
in Chapter 13, because the assumed transverse displacement is a complete cubic polynomial in x. A complete
cubic contains the quadratic (19.4) as special case.
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@ (b) (©)

2-node bars

FI1GURE 19.1. An element patch isthe set of all elements attached to a patch node, labeled i.
(@) illustrates a patch of triangles; (b) amixture of triangles and quadrilaterals; (c) a mixture of
triangles, quadrilaterals, and bars.

§19.3.2. Compatibility

To state this requirement succintly, it is convenient to introduce the concept of element patch, or
simply patch. Thisisthe set of all elements attached to a given node, called the patch node. The
definitionisillustrated in Figure 19.1, which shows three different kind of patches attached to patch
nodei in aplane stress problem. The patch of Figure 19.1(a) contains only one type of element:
3-node linear triangles. The patch of Figure 19.1(b) mixes two plane stress element types: 3-node
linear triangles and 4-node bilinear quadrilaterals. The patch of Figure 19.1(c) combines three
element types: 3-node linear triangles, 4-node bilinear quadrilaterals, and 2-node bars.

We define afinite element patch trial function as the union of shape functions activated by setting
a degree of freedom at the patch node to unity, while all other freedoms are zero.

A patchtrial function “propagates’ only over the patch, and iszero beyond it. Thisproperty follows
from the local-support requirement stated in 818.1: a shape function for node i should vanish on
all sides or faces that do not includei .

With the help of these definitions we can enunciate the compatibility requirement as follows.

Patch trial functions must be C™-D continuous between interconnected
elements, and C™ piecewise differentiable inside each element.

If the variational index ism = 1, the patch trial functions must be C° continuous between elements,
and C?! inside elements.

A set of shape functions that satisfies the first requirement is called conforming. A conforming
expansion that satisfiesthe second requirement issaid to be of finite energy. Notethat thiscondition
appliesat twolevels: individua element, and element patch. An element endowed with conforming
shape functions is said to be conforming. A conforming element that satisfies the finite energy
requirement is said to be compatible.®

3 The FEM literature is a bit fuzzy as regards these terms. It seems better to leave the qualifier “conforming” to denote
interelement compatibility; informally “an element that gets along with its neighbors” The qualifier “compatible” is
used in the stricter sense of conforming while possessing sufficient internal smoothness.
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Ficure 19.2. Examples of 2D non-matching meshes. Interelement boundaries that fail matching
conditions are shown offset for visualization convenience. In (a,b,c) some nodes do not match. In
(d,ef) nodes and DOFs match but some sides do not, leading to violations of C° continuity.

Figures 19.1(b,c) illustrates the fact that one needs to check the possible connection of matching
elements of different types and possibly different dimensionality.

§19.3.3. Matching and Non-Matching M eshes

As stated, compatibility refersto the complete finite element mesh because mesh trial functions are
acombination of patch trial functions, which in turn are the union of element shape functions. This
generality poses some logistical difficulties because the condition is necessarily mesh dependent.
Compatibility can be checked at the element level by restricting attention to matching meshes. A
matching mesh is one in which adjacent elements share sides, nodes and degrees of freedom, asin
the patches shown in Figure 19.1.

For amatching mesh it is sufficient to restrict consideration first to apair of adjacent elements, and
then to the side shared by these elements. Suppose that the variation of a shape function along
that side is controlled by k nodal values. Then a polynomial variation of order upto k — 1 in the
natural coordinate(s) can be specified uniquely over theside. Thisissufficient to verify interelement
compatibility for m = 1, implying C° continuity, if the shape functions are polynomials.

Thissimplified criterion is the one used in previous Chapters. Specific 2D exampleswere givenin
Chapters 15 through 18.

Remark 19.2. [f the variational index is m = 2 and the problem is multidimensional, as in the case of
plates and shells, the check is far more involved and trickier because continuity of normal derivatives along
asideisinvolved. This practically important scenario is examined in advanced FEM treatments. The case of
non-polynomial shape functionsis, on the other hand, of little practical interest.
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Mesh of
tetrahedra

M esh of
bricks

F1GURE 19.3. Example of a3D non-matching mesh. Top portion discretized with
tetrahedra, lower portion with bricks. Nodes and boundary-quad edges and DOFs
match, but element types are different, leading to violation of C° continuity.

A mesh that does not satisfy the matching criteria stated above is called a nonmatching mesh.
Several two-dimensional examples are shown in Figure 19.2. As can be seen thereisawide range
of possibilities: nonmatching nodes, matching nodes but different element types, etc. Figure 19.3
depicts athree-dimensional example, in which case even more variety can be expected.

Nonmatching meshes are the rule rather than the exception in contact and impact problems (which,
being geometrically nonlinear, are outside the scope of thisbook). See Figure 19.4 illustrates what
happens in a problem of dlipping contact.

Initial shape Deformed shape
AARRARRR!

o

F1GuRE 19.4. In contact and impact problems, matching meshes are the exception rather than the
rule. Even if the meshes match at initial contact, slipping may produce a nonmatching mesh in
the deformed configuration, asillustrated in the figure.

In multiphysics simul ations nonmatching meshes are common, since they are often prepared sepa-
rately for the different physical components, asillustrated in Figure 19.5.

§19.4. Stability

Stability may beinformally characterized as ensuring that the finite el ement model enjoysthe same
solution uniqueness properties of the analytical solution of the mathematical model. For example, if
theonly motionsthat producezerointernal energy inthe mathematical model arerigid body motions,
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F1GURE 19.5. Nonmatching meshes are common in multiphysics problems, asin this example of
fluid-structure interaction (FSI). Two-dimensional model to simulate flow around a thin plate. If
the meshes are independenly prepared node locations will not generally match.

the finite element model must inherit that property. Since FEM can handle arbitrary assemblies of
elements, including individual elements, this property is required to hold at the element level.

In the present outline we are concerned with stability at the element level. Stability isnot aproperty
of shape functions per se but of the implementation of the element as well as its geometrical
definition. It involves two subordinate requirements. rank sufficiency, and Jacobian positiveness.
Of these, rank sufficiency is the most important one.

819.4.1. Rank Sufficiency

The element stiffness matrix must not possess any zero-energy kinematic mode other than rigid
body modes.

This can be mathematically expressed as follows. Let ng be the number of element degrees of
freedom, and ngr be the number of independent rigid body modes. Letr denotetherank of K€. The
element is called rank sufficient if r = ng — ng and rank deficient if r < ng — ng. Inthe latter
case, the rank deficiency is defined by

d=(MNg —ngR) —r (19.5)

If an isoparametric element is numerically integrated, let ng be the number of Gauss points, while
ne denotes the order of the stress-strain matrix E. Two additional assumptions are made:

(i) The element shape functions satisfy completeness in the sense that the rigid body modes are
exactly captured by them.
(i) Matrix E isof full rank.
Then each Gauss point adds ng to the rank of K€, up to amaximum of ng — ng. Hence the rank
of K€ will be
r = min(Ng — NR, Ng Ng) (19.6)
To attain rank sufficiency, neng must equal or exceed ng — ng:

| Ne Ng > Ng — NR | (19.7)

from which the appropriate Gauss integration rule can be selected.

In the plane stress problem, ng = 3 because E isa 3 x 3 matrix of elastic moduli; see equation
(14.5),. Also ng = 3. Consequently r = min(ng — 3, 3ng) and 3ng > ng — 3.
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Table 19.1 Rank-sufficient Gauss Rules for Some Plane Stress Elements

Element n ng ng—3 Minng Recommended rule
3-node triangle 3 6 3 1 centroid*
6-node triangle 6 12 9 3 3-point rules*
10-node triangle 10 20 17 6 6-point rule*
4-node quadrilateral 4 8 5 2 2Xx2
8-node quadrilatera 8 16 13 5 3x3
9-node quadrilateral 9 18 15 5 3x3
16-node quadrilateral 16 32 29 10 4x4

* These triangle integration rules are introduced in §24.2.

2 2

Ficure 19.6. Effect of displacing node 4 of the four-node bilinear quadrilateral shown on the
leftmost picture, to the right.

Remark 19.3. Thefact that each Gauss point adds ngng to the rank can be proven considering the following
property. Let B beang x ng rectangular real matrix withrankrg < ng, and E anng x ng positive-definite (p.d.)
symmetric matrix. Then the rank of BT EBisrg. Proof: letu # 0 be anon-null ng-vector. If B"TEBu=0
then0 = u"B" EBu = ||EY?2Bu]|. Therefore Bu = 0. Identify now B and E with the strain-displacement
and stress-strain (constitutive) matrix, respectively. In the plane stress case ng = 3, ng = 2n > 3isthe
number of element freedoms. Thus B has rank 3 and a fortiori BTE B must also have rank 3 since E is p.d.
At each Gauss point i a contribution of w; BT E B, which hasrank 3if w; > 0, isadded to K®. By atheorem
of linear algebra, the rank of K® increases by 3 until it reachesng — ng.

Example 19.5. Consider aplane stress 6-node quadratic triangle. Thenng = 2 x 6 = 12. To attain the proper
rank of 12 — ng = 12 — 3 = 9, ng > 3. A 3-point Gauss rule, such as the midpoint rule defined in §24.2,
makes the element rank sufficient.

Example 19.6. Consider a plane stress 9-node biquadratic quadrilateral. Thenng = 2 x 9 = 18. To attain
the proper rank of 18 — ng = 18 — 3 = 15, ng > 5. The 2 x 2 product Gauss rule is insufficient because
nec = 4. Hencea 3 x 3rule, which yieldsng = 9, isrequired to attain rank sufficiency.

Table19.1 collectsrank-sufficient Gaussintegration rulesfor somewidely used planestresselements
with n nodes and ng = 2n freedoms.
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819.4.2. Jacobian Positiveness

The geometry of the element should be such that the determinant J = det J of the Jacobian matrix
defined* in §17.2, is positive everywhere. Asillustrated in Equation (17.20), J characterizes the
local metric of the element natural coordinates.

F1cure 19.7. Effect of moving midpoint 5 of a9-node biquadratic quadrilateral
tangentially toward corner 2.

For athree-nodetriangle J isconstant and in fact equal to 2A. Therequirement J > Oisequivalent
to saying that corner nodes must be positioned and numbered so that a positive area A > 0 results.
Thisis called a convexity condition. It iseasily checked by afinite element program.

But for 2D elements with more than 3 nodes distortions may render portions of the element metric
negative. Thisisillustrated in Figure 19.6 for a 4-node quadrilateral in which node 4 is gradually
moved to the right. The quadrilateral gradually morphs from a convex figure into a nonconvex
one. The center figure is a triangle; note that the metric near node 4 is badly distorted (in fact
J = 0 there) rendering the element unacceptable. This clearly contradicts the erroneous advice of
some FE books, which state that quadrilaterals can be reduced to triangles as specia cases, thereby
rendering triangular elements unnecessary.

For higher order elements proper location of corner nodes is not enough. The non-corner nodes
(midside, interior, etc.) must be placed sufficiently close to their natural locations (midpoints,

4 This definition applies to quadrilateral elements. The Jacobian determinant of an arbitrary triangular element is defined
in §24.2.
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Ficure 19.8. Effect of displacing midpoints4, 5 and 6 of an equilateral 6-node triangle along
the midpoint normals. Motion isinwards in first two top frames, outwards in the last four. In
the lower leftmost picture nodes 1 through 6 lieon acircle.

centroids, etc.) to avoid violent local distortions. The effect of midpoint motions in quadratic
elementsisillustrated in Figures 19.7 and 19.8.

Figure 19.7 depicts the effect of moving midside node 5 tangentially in a 9-node quadrilateral
element while keeping all other 8 nodes fixed. When the location of 5 reaches the quarter-point of
side 1-2, the metric at corner 2 becomes singular in the sense that J = 0 there. Although thisis
disastrous in ordinary FE work, it has applications in the construction of specia “crack” elements
for linear fracture mechanics.

Displacing midside nodes normally to the sides is comparatively more forgiving, asillustrated in
Figure 19.8. Thisdepictsa6-node equilateral trianglein which midside nodes 4, 5 and 6 are moved
inwards and outwards aong the normals to the midpoint location. As shown in the lower left
picture, the element may be even morphed into a*“ parabolic circle” (meaning that nodes 1 through
6 lie on acircle) without the metric breaking down.

Notes and Bibliography

The literature on the mathematics of finite element methods has grown exponentially since the monograph of
Strang and Fix [705]. Thisis very readable but out of print. A more up-to-date exposition is the textbook by
Szabo and Babuska [721]. The subjects collected in this Chapter tend to be dispersed in recent monographs
and obscured by overuse of functional analysis.
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References
Referenced items have been moved to Appendix R.
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Exercises

Homework Exercisesfor Chapter 19
FEM Convergence Requirements

EXERCISE 19.1 [D:20] Explainwhy thetwo-dimensional meshespicturedin Figure19.2(d,ef) fail interele-
ment compatibility although nodes and DOFs match.

EXERCISE 19.2 [A:20] Theisoparametric definition of the straight 3-node bar element initsloca system X

'S 1 1 1 17N
[x} = [xl % 23} |:N§(§)i|. (E19.1)
v O; 0O U3 N3 (&)

Here £ isthe isoparametric coordinate that takesthevalues —1, 1 and O at nodes 1, 2 and 3, respectively, while
N7, N5 and N§ are the shape functions found in Exercise 16.3 and listed in (E16.2).

For simplicity, take X; = 0, X, = L, X3 = %L + aL. Here L isthe bar length and o a parameter that
characterizes how far node 3 is away from the midpoint location X = %L. Show that the minimum «’s
(minimal in absolute value sense) for which J = dx/d& vanishes at a point in the element are +1/4 (the
quarter-points). Interpret this result as a singularity by showing that the axial strain becomes infinite at a an
end point. (Thisresult has application in fracture mechanics modeling.)

EXERCISE 19.3 [A:15] Consider one dimensional bar-like elements with n nodes and 1 degree of freedom
per node so ng = n. The correct number of rigid body modesis 1. Each Gauss integration point adds 1 to
the rank; that is Ng = 1. By applying (19.7), find the minimal rank-preserving Gauss integration rules with
p pointsin the longitudinal direction if the number of node pointsisn = 2, 3 or 4.

EXERCISE 19.4 [A:20] Consider three dimensional solid “brick” elements with n nodes and 3 degrees of
freedom per node so ng = 3n. The correct number of rigid body modesis 6. Each Gauss integration point
adds 6 to the rank; that is, Ne = 6. By applying (19.7), find the minimal rank-preserving Gauss integration
ruleswith p pointsin each direction (that is, 1x1x 1, 2x2x 2, etc) if the number of node pointsisn = 8, 20,
27, or 64. Partial answer: for n = 27 the minimal rank preserving ruleis3 x 3 x 3.

EXERCISE 19.5 [A/C:35] (Requires use of a CAS help to be tractable). Repeat Exercise 19.2 for a 9-node
plane stress element. The element isinitially a perfect square, hodes 5,6,7,8 are at the midpoint of the sides
1-2, 2-3, 3-4 and 4-1, respectively, and 9 at the center of the square. Displace 5 tangentially towards 2 until
the Jacobian determinant at 2 vanishes. Thisresult isimportant in the construction of “singular elements’ for
fracture mechanics.

EXERCISE 19.6 [A/C:35] Repeat Exercise 19.5 but moving node 5 along the normal to the side. Discuss
the range of mation for which detJ > 0 within the element.

EXERCISE 19.7 [A:20] Discusswhether the deVeubeke triangle presented in Chapter 15 satisfies compl ete-
ness and interelement-compatbility requirements.
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