
PT1.1 MOTIVATION 11

11

Mathematical Modeling and
Engineering Problem Solving

Knowledge and understanding are prerequisites for the effective implementation of any
tool. No matter how impressive your tool chest, you will be hard-pressed to repair a car if
you do not understand how it works.

This is particularly true when using computers to solve engineering problems. Al-
though they have great potential utility, computers are practically useless without a funda-
mental understanding of how engineering systems work.

This understanding is initially gained by empirical means—that is, by observation and
experiment. However, while such empirically derived information is essential, it is only
half the story. Over years and years of observation and experiment, engineers and scientists
have noticed that certain aspects of their empirical studies occur repeatedly. Such general
behavior can then be expressed as fundamental laws that essentially embody the cumula-
tive wisdom of past experience. Thus, most engineering problem solving employs the two-
pronged approach of empiricism and theoretical analysis (Fig. 1.1).

It must be stressed that the two prongs are closely coupled. As new measurements are
taken, the generalizations may be modified or new ones developed. Similarly, the general-
izations can have a strong influence on the experiments and observations. In particular,
generalizations can serve as organizing principles that can be employed to synthesize ob-
servations and experimental results into a coherent and comprehensive framework from
which conclusions can be drawn. From an engineering problem-solving perspective, such
a framework is most useful when it is expressed in the form of a mathematical model.

The primary objective of this chapter is to introduce you to mathematical modeling
and its role in engineering problem solving. We will also illustrate how numerical methods
figure in the process.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form

Dependent
variable

= f

(
independent

variables
, parameters,

forcing
functions

)
(1.1)

1C H A P T E R 1

cha01064_ch01.qxd  3/20/09  11:10 AM  Page 11



where the dependent variable is a characteristic that usually reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon the system.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic re-
lationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F = net force acting on the body (N, or kg m/s2), m = mass of the object (kg), and
a = its acceleration (m/s2).
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FIGURE 1.1
The engineering problem-
solving process.
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The second law can be recast in the format of Eq. (1.1) by merely dividing both sides
by m to give

a = F

m
(1.3)

where a = the dependent variable reflecting the system’s behavior, F = the forcing func-
tion, and m = a parameter representing a property of the system. Note that for this simple
case there is no independent variable because we are not yet predicting how acceleration
varies in time or space.

Equation (1.3) has several characteristics that are typical of mathematical models of
the physical world:

1. It describes a natural process or system in mathematical terms.
2. It represents an idealization and simplification of reality. That is, the model ignores

negligible details of the natural process and focuses on its essential manifestations.
Thus, the second law does not include the effects of relativity that are of minimal im-
portance when applied to objects and forces that interact on or about the earth’s surface
at velocities and on scales visible to humans.

3. Finally, it yields reproducible results and, consequently, can be used for predictive
purposes. For example, if the force on an object and the mass of an object are known,
Eq. (1.3) can be used to compute acceleration.

Because of its simple algebraic form, the solution of Eq. (1.2) can be obtained easily.
However, other mathematical models of physical phenomena may be much more complex,
and either cannot be solved exactly or require more sophisticated mathematical techniques
than simple algebra for their solution. To illustrate a more complex model of this kind,
Newton’s second law can be used to determine the terminal velocity of a free-falling body
near the earth’s surface. Our falling body will be a parachutist (Fig. 1.2). A model for this
case can be derived by expressing the acceleration as the time rate of change of the veloc-
ity (dv/dt ) and substituting it into Eq. (1.3) to yield

dv

dt
= F

m
(1.4)

where v is velocity (m/s) and t is time (s). Thus, the mass multiplied by the rate of change
of the velocity is equal to the net force acting on the body. If the net force is positive, the
object will accelerate. If it is negative, the object will decelerate. If the net force is zero, the
object’s velocity will remain at a constant level.

Next, we will express the net force in terms of measurable variables and parameters.
For a body falling within the vicinity of the earth (Fig. 1.2), the net force is composed of two
opposing forces: the downward pull of gravity FD and the upward force of air resistance FU :

F = FD + FU (1.5)

If the downward force is assigned a positive sign, the second law can be used to for-
mulate the force due to gravity, as

FD = mg (1.6)

where g = the gravitational constant, or the acceleration due to gravity, which is approxi-
mately equal to 9.8 m/s2.
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FIGURE 1.2
Schematic diagram of the
forces acting on a falling
parachutist. FD is the downward
force due to gravity. FU is the
upward force due to air
resistance.

cha01064_ch01.qxd  3/20/09  11:10 AM  Page 13
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Air resistance can be formulated in a variety of ways. A simple approach is to assume
that it is linearly proportional to velocity1 and acts in an upward direction, as in

FU = −cv (1.7)

where c = a proportionality constant called the drag coefficient (kg/s). Thus, the greater
the fall velocity, the greater the upward force due to air resistance. The parameter c ac-
counts for properties of the falling object, such as shape or surface roughness, that affect air
resistance. For the present case, c might be a function of the type of jumpsuit or the orien-
tation used by the parachutist during free-fall.

The net force is the difference between the downward and upward force. Therefore,
Eqs. (1.4) through (1.7) can be combined to yield

dv

dt
= mg − cv

m
(1.8)

or simplifying the right side,

dv

dt
= g − c

m
v (1.9)

Equation (1.9) is a model that relates the acceleration of a falling object to the forces act-
ing on it. It is a differential equation because it is written in terms of the differential rate of
change (dv/dt ) of the variable that we are interested in predicting. However, in contrast to
the solution of Newton’s second law in Eq. (1.3), the exact solution of Eq. (1.9) for the ve-
locity of the falling parachutist cannot be obtained using simple algebraic manipulation.
Rather, more advanced techniques such as those of calculus, must be applied to obtain an
exact or analytical solution. For example, if the parachutist is initially at rest (v = 0 at
t = 0), calculus can be used to solve Eq. (1.9) for

v(t) = gm

c

(
1 − e−(c/m)t

)
(1.10)

Note that Eq. (1.10) is cast in the general form of Eq. (1.1), where v(t) = the depen-
dent variable, t = the independent variable, c and m = parameters, and g = the forcing
function.

EXAMPLE 1.1 Analytical Solution to the Falling Parachutist Problem

Problem Statement. A parachutist of mass 68.1 kg jumps out of a stationary hot air bal-
loon. Use Eq. (1.10) to compute velocity prior to opening the chute. The drag coefficient is
equal to 12.5 kg/s.

Solution. Inserting the parameters into Eq. (1.10) yields

v(t) = 9.8(68.1)

12.5

(
1 − e−(12.5/68.1)t

) = 53.39
(
1 − e−0.18355t

)
which can be used to compute

1In fact, the relationship is actually nonlinear and might better be represented by a power relationship such as
FU = −cv2. We will explore how such nonlinearities affect the model in a problem at the end of this chapter.
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t, s v, m/s

0 0.00
2 16.40
4 27.77
6 35.64
8 41.10

10 44.87
12 47.49
� 53.39

According to the model, the parachutist accelerates rapidly (Fig. 1.3). A velocity of
44.87 m/s (100.4 mi/h) is attained after 10 s. Note also that after a sufficiently long time, a
constant velocity, called the terminal velocity, of 53.39 m/s (119.4 mi/h) is reached. This
velocity is constant because, eventually, the force of gravity will be in balance with the air
resistance. Thus, the net force is zero and acceleration has ceased.

Equation (1.10) is called an analytical, or exact, solution because it exactly satisfies
the original differential equation. Unfortunately, there are many mathematical models that
cannot be solved exactly. In many of these cases, the only alternative is to develop a nu-
merical solution that approximates the exact solution.

As mentioned previously, numerical methods are those in which the mathematical
problem is reformulated so it can be solved by arithmetic operations. This can be illustrated
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FIGURE 1.3
The analytical solution to the
falling parachutist problem as
computed in Example 1.1.
Velocity increases with time and
asymptotically approaches a
terminal velocity.
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for Newton’s second law by realizing that the time rate of change of velocity can be ap-
proximated by (Fig. 1.4):

dv

dt
∼= �v

�t
= v(ti+1) − v(ti )

ti+1 − ti
(1.11)

where �v and �t = differences in velocity and time, respectively, computed over finite in-
tervals, v(ti ) = velocity at an initial time ti , and v(ti+1) = velocity at some later time ti+1.
Note that dv/dt ∼= �v/�t is approximate because �t is finite. Remember from calculus that

dv

dt
= lim

�t→0

�v

�t

Equation (1.11) represents the reverse process.
Equation (1.11) is called a finite divided difference approximation of the derivative at

time ti . It can be substituted into Eq. (1.9) to give

v(ti+1) − v(ti )

ti+1 − ti
= g − c

m
v(ti )

This equation can then be rearranged to yield

v(ti+1) = v(ti ) +
[
g − c

m
v(ti )

]
(ti+1 − ti ) (1.12)

Notice that the term in brackets is the right-hand side of the differential equation itself
[Eq. (1.9)]. That is, it provides a means to compute the rate of change or slope of v. Thus,
the differential equation has been transformed into an equation that can be used to deter-
mine the velocity algebraically at ti+1 using the slope and previous values of v and t. If you
are given an initial value for velocity at some time ti , you can easily compute velocity at a
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FIGURE 1.4
The use of a finite difference to
approximate the first derivative
of v with respect to t.
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later time ti+1. This new value of velocity at ti+1 can in turn be employed to extend the
computation to velocity at ti+2 and so on. Thus, at any time along the way,

New value = old value + slope × step size

Note that this approach is formally called Euler’s method.

EXAMPLE 1.2 Numerical Solution to the Falling Parachutist Problem

Problem Statement. Perform the same computation as in Example 1.1 but use Eq. (1.12)
to compute the velocity. Employ a step size of 2 s for the calculation.

Solution. At the start of the computation (ti = 0), the velocity of the parachutist is zero.
Using this information and the parameter values from Example 1.1, Eq. (1.12) can be used
to compute velocity at ti+1 = 2 s:

v = 0 +
[

9.8 − 12.5

68.1
(0)

]
2 = 19.60 m/s

For the next interval (from t = 2 to 4 s), the computation is repeated, with the result

v = 19.60 +
[

9.8 − 12.5

68.1
(19.60)

]
2 = 32.00 m/s

The calculation is continued in a similar fashion to obtain additional values:

t, s v, m/s

0 0.00
2 19.60
4 32.00
6 39.85
8 44.82

10 47.97
12 49.96
� 53.39

The results are plotted in Fig. 1.5 along with the exact solution. It can be seen that the
numerical method captures the essential features of the exact solution. However, because
we have employed straight-line segments to approximate a continuously curving function,
there is some discrepancy between the two results. One way to minimize such discrepan-
cies is to use a smaller step size. For example, applying Eq. (1.12) at l-s intervals results in
a smaller error, as the straight-line segments track closer to the true solution. Using hand
calculations, the effort associated with using smaller and smaller step sizes would make
such numerical solutions impractical. However, with the aid of the computer, large num-
bers of calculations can be performed easily. Thus, you can accurately model the velocity
of the falling parachutist without having to solve the differential equation exactly.

As in the previous example, a computational price must be paid for a more accurate
numerical result. Each halving of the step size to attain more accuracy leads to a doubling
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of the number of computations. Thus, we see that there is a trade-off between accuracy and
computational effort. Such trade-offs figure prominently in numerical methods and consti-
tute an important theme of this book. Consequently, we have devoted the Epilogue of Part
One to an introduction to more of these trade-offs.

1.2 CONSERVATION LAWS AND ENGINEERING

Aside from Newton’s second law, there are other major organizing principles in engineer-
ing. Among the most important of these are the conservation laws. Although they form the
basis for a variety of complicated and powerful mathematical models, the great conserva-
tion laws of science and engineering are conceptually easy to understand. They all boil
down to

Change = increases − decreases (1.13)

This is precisely the format that we employed when using Newton’s law to develop a force
balance for the falling parachutist [Eq. (1.8)].

Although simple, Eq. (1.13) embodies one of the most fundamental ways in which
conservation laws are used in engineering—that is, to predict changes with respect to time.
We give Eq. (1.13) the special name time-variable (or transient) computation.

Aside from predicting changes, another way in which conservation laws are applied is
for cases where change is nonexistent. If change is zero, Eq. (1.13) becomes

Change = 0 = increases − decreases

or

Increases = decreases (1.14)
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FIGURE 1.5
Comparison of the numerical
and analytical solutions for the
falling parachutist problem.
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Thus, if no change occurs, the increases and decreases must be in balance. This case, which
is also given a special name—the steady-state computation—has many applications in en-
gineering. For example, for steady-state incompressible fluid flow in pipes, the flow into a
junction must be balanced by flow going out, as in

Flow in = flow out

For the junction in Fig. 1.6, the balance can be used to compute that the flow out of the
fourth pipe must be 60.

For the falling parachutist, steady-state conditions would correspond to the case where
the net force was zero, or [Eq. (1.8) with dv/dt = 0]

mg = cv (1.15)

Thus, at steady state, the downward and upward forces are in balance, and Eq. (1.15) can
be solved for the terminal velocity

v = mg

c

Although Eqs. (1.13) and (1.14) might appear trivially simple, they embody the two
fundamental ways that conservation laws are employed in engineering. As such, they will
form an important part of our efforts in subsequent chapters to illustrate the connection be-
tween numerical methods and engineering. Our primary vehicles for making this connec-
tion are the engineering applications that appear at the end of each part of this book.

Table 1.1 summarizes some of the simple engineering models and associated conserva-
tion laws that will form the basis for many of these engineering applications. Most of the
chemical engineering applications will focus on mass balances for reactors. The mass bal-
ance is derived from the conservation of mass. It specifies that the change of mass of a chem-
ical in the reactor depends on the amount of mass flowing in minus the mass flowing out.

Both the civil and mechanical engineering applications will focus on models devel-
oped from the conservation of momentum. For civil engineering, force balances are
utilized to analyze structures such as the simple truss in Table 1.1. The same principles are
employed for the mechanical engineering applications to analyze the transient up-and-
down motion or vibrations of an automobile.
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FIGURE 1.6
A flow balance for steady
incompressible fluid flow at 
the junction of pipes.
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20 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING

TABLE 1.1 Devices and types of balances that are commonly used in the four major areas of engineering.
For each case, the conservation law upon which the balance is based is specified.

Structure

Civil engineering Conservation of
momentum

Chemical engineering

Field Device Organizing Principle Mathematical Expression

Conservation of mass

Force balance:

Mechanical engineering Conservation of
momentum

Machine Force balance:

Electrical engineering Conservation of charge Current balance:

Conservation of energy Voltage balance:

Mass balance:
Reactors Input Output

Over a unit of time period
 �mass = inputs – outputs

At each node
 � horizontal forces (FH) = 0
 � vertical forces (FV) = 0

For each node
 � current (i ) = 0

Around each loop
 � emf’s – � voltage drops for resistors = 0
 � � – � iR = 0

– FV

+ FV

+ FH– FH

+ i2

– i3+ i1+

–

Circuit
i1R1

i3R3

i2R2 �

Upward force

Downward force

x = 0

m = downward force – upward forced2x
dt2
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Finally, the electrical engineering applications employ both current and energy bal-
ances to model electric circuits. The current balance, which results from the conservation
of charge, is similar in spirit to the flow balance depicted in Fig. 1.6. Just as flow must bal-
ance at the junction of pipes, electric current must balance at the junction of electric wires.
The energy balance specifies that the changes of voltage around any loop of the circuit
must add up to zero. The engineering applications are designed to illustrate how numerical
methods are actually employed in the engineering problem-solving process. As such, they
will permit us to explore practical issues (Table 1.2) that arise in real-world applications.
Making these connections between mathematical techniques such as numerical methods
and engineering practice is a critical step in tapping their true potential. Careful examina-
tion of the engineering applications will help you to take this step.

TABLE 1.2 Some practical issues that will be explored in the engineering applications
at the end of each part of this book.

1. Nonlinear versus linear. Much of classical engineering depends on linearization to permit analytical
solutions. Although this is often appropriate, expanded insight can often be gained if nonlinear problems
are examined.

2. Large versus small systems. Without a computer, it is often not feasible to examine systems with over three
interacting components. With computers and numerical methods, more realistic multicomponent systems
can be examined.

3. Nonideal versus ideal. Idealized laws abound in engineering. Often there are nonidealized alternatives
that are more realistic but more computationally demanding. Approximate numerical approaches can
facilitate the application of these nonideal relationships.

4. Sensitivity analysis. Because they are so involved, many manual calculations require a great deal of time
and effort for successful implementation. This sometimes discourages the analyst from implementing the
multiple computations that are necessary to examine how a system responds under different conditions.
Such sensitivity analyses are facilitated when numerical methods allow the computer to assume the
computational burden.

5. Design. It is often a straightforward proposition to determine the performance of a system as a function of
its parameters. It is usually more difficult to solve the inverse problem—that is, determining the parameters
when the required performance is specified. Numerical methods and computers often permit this task to
be implemented in an efficient manner.

PROBLEMS

1.1 Use calculus to solve Eq. (1.9) for the case where the initial
velocity, v(0) is nonzero.
1.2 Repeat Example 1.2. Compute the velocity to t = 10 s, with a
step size of (a) 1 and (b) 0.5 s. Can you make any statement re-
garding the errors of the calculation based on the results?
1.3 Rather than the linear relationship of Eq. (1.7), you might
choose to model the upward force on the parachutist as a second-
order relationship,

FU = −c′v2

where c′ = a second-order drag coefficient (kg/m).

(a) Using calculus, obtain the closed-form solution for the case
where the jumper is initially at rest (v = 0 at t = 0).

(b) Repeat the numerical calculation in Example 1.2 with the
same initial condition and parameter values. Use a value of
0.225 kg/m for c′.

1.4 For the free-falling parachutist with linear drag, assume a first
jumper is 70 kg and has a drag coefficient of 12 kg/s. If a second
jumper has a drag coefficient of 15 kg/s and a mass of 75 kg, how
long will it take him to reach the same velocity the first jumper
reached in 10 s?
1.5 Compute the velocity of a free-falling parachutist using Euler’s
method for the case where m = 80 kg and c = 10 kg/s. Perform the
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calculation from t = 0 to 20 s with a step size of 1 s. Use an initial
condition that the parachutist has an upward velocity of 20 m/s at
t = 0. At t = 10 s, assume that the chute is instantaneously de-
ployed so that the drag coefficient jumps to 50 kg/s.
1.6 The amount of a uniformly distributed radioactive contaminant
contained in a closed reactor is measured by its concentration c
(becquerel/liter or Bq/L). The contaminant decreases at a decay
rate proportional to its concentration—that is

decay rate = −kc

where k is a constant with units of day−1. Therefore, according to
Eq. (1.13), a mass balance for the reactor can be written as

dc

dt
= −kc

(
change
in mass

)
=

(
decrease
by decay

)

(a) Use Euler’s method to solve this equation from t = 0 to 1 d
with k = 0.2 d−1. Employ a step size of �t = 0.1. The con-
centration at t = 0 is 10 Bq/L.

(b) Plot the solution on a semilog graph (i.e., ln c versus t) and de-
termine the slope. Interpret your results.

1.7 A storage tank contains a liquid at depth y where y = 0 when
the tank is half full. Liquid is withdrawn at a constant flow rate Q
to meet demands. The contents are resupplied at a sinusoidal rate
3Q sin2(t).

Figure P1.7

Equation (1.13) can be written for this system as

d(Ay)

dx
= 3Q sin2(t) − Q

(
change in
volume

)
= (inflow) − (outflow)

y

0

22 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING

or, since the surface area A is constant

dy

dx
= 3

Q

A
sin2(t) − Q

A

Use Euler’s method to solve for the depth y from t = 0 to 10 d with
a step size of 0.5 d. The parameter values are A = 1200 m2 and
Q = 500 m3/d. Assume that the initial condition is y = 0.

1.8 For the same storage tank described in Prob. 1.7, suppose that
the outflow is not constant but rather depends on the depth. For this
case, the differential equation for depth can be written as

dy

dx
= 3

Q

A
sin2(t) − α(1 + y)1.5

A

Use Euler’s method to solve for the depth y from t = 0 to 10 d with
a step size of 0.5 d. The parameter values are A = 1200 m2,
Q = 500 m3/d, and α = 300. Assume that the initial condition is
y = 0.

1.9 The volume flow rate through a pipe is given by Q = vA,

where v is the average velocity and A is the cross-sectional area.
Use volume-continuity to solve for the required area in pipe 3.

Figure P1.9

1.10 A group of 35 students attend a class in a room that measures
10 m by 8 m by 3 m. Each student takes up about 0.075 m3 and
gives out about 80 W of heat (1 W = 1 J/s). Calculate the air tem-
perature rise during the first 15 minutes of the class if the room is
completely sealed and insulated. Assume the heat capacity, Cv, for
air is 0.718 kJ/(kg K). Assume air is an ideal gas at 20°C and
101.325 kPa. Note that the heat absorbed by the air Q is related to
the mass of the air m, the heat capacity, and the change in tempera-
ture by the following relationship:

Q = m
∫ T2

T1

CvdT = mCv(T2 − T1)

The mass of air can be obtained from the ideal gas law:

PV = m

Mwt
RT

v3,out = 6 m/s
 A3 = ?

Q2,out = 20 m3/sQ1,in = 40 m3/s

cha01064_ch01.qxd  3/20/09  11:10 AM  Page 22



where P is the gas pressure, V is the volume of the gas, Mwt is the
molecular weight of the gas (for air, 28.97 kg/kmol), and R is the
ideal gas constant [8.314 kPa m3/(kmol K)].
1.11 Figure P1.11 depicts the various ways in which an average
man gains and loses water in one day. One liter is ingested as food,
and the body metabolically produces 0.3 L. In breathing air, the ex-
change is 0.05 L while inhaling, and 0.4 L while exhaling over a
one-day period. The body will also lose 0.2, 1.4, 0.2, and 0.35 L
through sweat, urine, feces, and through the skin, respectively. In
order to maintain steady-state condition, how much water must be
drunk per day?
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(b) For the case where drag is negligible, use the chain rule to ex-
press the differential equation as a function of altitude rather
than time. Recall that the chain rule is

dv

dt
= dv

dx

dx

dt

(c) Use calculus to obtain the closed form solution where v = v0 at
x = 0.

(d) Use Euler’s method to obtain a numerical solution from x = 0
to 100,000 m using a step of 10,000 m where the initial veloc-
ity is 1400 m/s upwards. Compare your result with the analyti-
cal solution.

1.13 Suppose that a spherical droplet of liquid evaporates at a rate
that is proportional to its surface area.

dV

dt
= −k A

where V = volume (mm3), t = time (min), k = the evaporation rate
(mm/min), and A = surface area (mm2). Use Euler’s method to
compute the volume of the droplet from t = 0 to 10 min using a
step size of 0.25 min. Assume that k = 0.1 mm/min and that the
droplet initially has a radius of 3 mm. Assess the validity of your re-
sults by determining the radius of your final computed volume and
verifying that it is consistent with the evaporation rate. 
1.14 Newton’s law of cooling says that the temperature of a body
changes at a rate proportional to the difference between its tempera-
ture and that of the surrounding medium (the ambient temperature),

dT

dt
= −k(T − Ta)

where T = the temperature of the body (°C), t = time (min), k = the
proportionality constant (per minute), and Ta = the ambient tem-
perature (°C). Suppose that a cup of coffee originally has a temper-
ature of 68°C. Use Euler’s method to compute the temperature
from t = 0 to 10 min using a step size of 1 min if Ta = 21°C and k =
0.1/min. 
1.15 Water accounts for roughly 60% of total body weight. As-
suming it can be categorized into six regions, the percentages go as
follows. Plasma claims 4.5% of the body weight and is 7.5% of the
total body water. Dense connective tissue and cartilage occupies
4.5% of the total body weight and 7.5% of the total body water. In-
terstitial lymph is 12% of the body weight, which is 20% of the
total body water. Inaccessible bone water is roughly 7.5% of the
total body water and 4.5% total body weight. If intracellular water
is 33% of the total body weight and transcellular water is 2.5% of
the total body water, what percent of total body weight must the
transcellular water be and what percent of total body water must the
intracellular water be?

Figure P1.11
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1.12 In our example of the free-falling parachutist, we assumed
that the acceleration due to gravity was a constant value of 9.8 m/s2.
Although this is a decent approximation when we are examining
falling objects near the surface of the earth, the gravitational force
decreases as we move above sea level. A more general representa-
tion based on Newton’s inverse square law of gravitational attrac-
tion can be written as

g(x) = g(0)
R2

(R + x)2

where g(x) = gravitational acceleration at altitude x (in m) mea-
sured upwards from the earth’s surface (m/s2), g(0) = gravitational
acceleration at the earth’s surface (∼= 9.8 m/s2), and R = the earth’s
radius (∼= 6.37 × 106 m).

(a) In a fashion similar to the derivation of Eq. (1.9) use a force
balance to derive a differential equation for velocity as a func-
tion of time that utilizes this more complete representation of
gravitation. However, for this derivation, assume that upward
velocity is positive. 
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1.16 Cancer cells grow exponentially with a doubling time of 20 h
when they have an unlimited nutrient supply. However, as the cells
start to form a solid spherical tumor without a blood supply, growth
at the center of the tumor becomes limited, and eventually cells
start to die.
(a) Exponential growth of cell number N can be expressed as

shown, where μ is the growth rate of the cells. For cancer cells,
find the value of μ.

d N

dt
= μN

(b) Write an equation that will describe the rate of change of tumor
volume during exponential growth given that the diameter of
an individual cell is 20 microns.

(c) After a particular type of tumor exceeds 500 microns in diam-
eter, the cells at the center of the tumor die (but continue to take
up space in the tumor). Determine how long it will take for the
tumor to exceed this critical size.

1.17 A fluid is pumped into the network shown in Fig. P1.17. If
Q2 = 0.7, Q3 = 0.5, Q7 = 0.1, and Q8 = 0.3 m3/s, determine the
other flows.

Figure P1.17

1.18 The following information is available for a bank account:

Date Deposits Withdrawals Interest Balance

5/1 1512.33
220.13 327.26

6/1
216.80 378.61

7/1
450.25 106.80

8/1
127.31 350.61

9/1

Q1

Q10 Q9 Q8

Q3 Q5

Q7Q6Q4Q2

24 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING

Note that the money earns interest which is computed as 

Interest = i Bi

where i = the interest rate expressed as a fraction per month, and
Bi the initial balance at the beginning of the month. 
(a) Use the conservation of cash to compute the balance on 6/1,

7/1, 8/1, and 9/1 if the interest rate is 1% per month (i =
0.01/month). Show each step in the computation. 

(b) Write a differential equation for the cash balance in the form 

d B

dt
= f (D(t), W (t), i)

where t = time (months), D(t) = deposits as a function of
time ($/month), W (t) = withdrawals as a function of time
($/month). For this case, assume that interest is compounded
continuously; that is, interest = i B . 

(c) Use Euler’s method with a time step of 0.5 month to simulate
the balance. Assume that the deposits and withdrawals are ap-
plied uniformly over the month.

(d) Develop a plot of balance versus time for (a) and (c).   
1.19 The velocity is equal to the rate of change of distance x (m),

dx

dt
= v(t) (P1.19)

(a) Substitute Eq. (1.10) and develop an analytical solution for dis-
tance as a function of time. Assume that x(0) = 0.

(b) Use Euler’s method to numerically integrate Eqs. (P1.19) and
(1.9) in order to determine both the velocity and distance fallen
as a function of time for the first 10 s of free fall using the same
parameters as in Example 1.2.

(c) Develop a plot of your numerical results together with the
analytical solutions.
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52

Approximations and 
Round-Off Errors

Because so many of the methods in this book are straightforward in description and appli-
cation, it would be very tempting at this point for us to proceed directly to the main body
of the text and teach you how to use these techniques. However, understanding the concept
of error is so important to the effective use of numerical methods that we have chosen to
devote the next two chapters to this topic.

The importance of error was introduced in our discussion of the falling parachutist in
Chap. 1. Recall that we determined the velocity of a falling parachutist by both analytical
and numerical methods. Although the numerical technique yielded estimates that were
close to the exact analytical solution, there was a discrepancy, or error, because the numer-
ical method involved an approximation. Actually, we were fortunate in that case because
the availability of an analytical solution allowed us to compute the error exactly. For many
applied engineering problems, we cannot obtain analytical solutions. Therefore, we cannot
compute exactly the errors associated with our numerical methods. In these cases, we must
settle for approximations or estimates of the errors.

Such errors are characteristic of most of the techniques described in this book. This
statement might at first seem contrary to what one normally conceives of as sound engi-
neering. Students and practicing engineers constantly strive to limit errors in their work.
When taking examinations or doing homework problems, you are penalized, not rewarded,
for your errors. In professional practice, errors can be costly and sometimes catastrophic.
If a structure or device fails, lives can be lost.

Although perfection is a laudable goal, it is rarely, if ever, attained. For example, despite
the fact that the model developed from Newton’s second law is an excellent approximation,
it would never in practice exactly predict the parachutist’s fall. A variety of factors such as
winds and slight variations in air resistance would result in deviations from the prediction.
If these deviations are systematically high or low, then we might need to develop a new
model. However, if they are randomly distributed and tightly grouped around the prediction,
then the deviations might be considered negligible and the model deemed adequate.
Numerical approximations also introduce similar discrepancies into the analysis. Again, the
question is: How much the next error is present in our calculations and is it tolerable?

This chapter and Chap. 4 cover basic topics related to the identification, quantification,
and minimization of these errors. In this chapter, general information concerned with the
quantification of error is reviewed in the first sections. This is followed by a section on one
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3.1 SIGNIFICANT FIGURES 53

of the two major forms of numerical error: round-off error. Round-off error is due to the fact
that computers can represent only quantities with a finite number of digits. Then Chap. 4
deals with the other major form: truncation error. Truncation error is the discrepancy in-
troduced by the fact that numerical methods may employ approximations to represent exact
mathematical operations and quantities. Finally, we briefly discuss errors not directly con-
nected with the numerical methods themselves. These include blunders, formulation or
model errors, and data uncertainty.

3.1 SIGNIFICANT FIGURES

This book deals extensively with approximations connected with the manipulation of num-
bers. Consequently, before discussing the errors associated with numerical methods, it is
useful to review basic concepts related to approximate representation of the numbers
themselves.

Whenever we employ a number in a computation, we must have assurance that it
can be used with confidence. For example, Fig. 3.1 depicts a speedometer and odometer
from an automobile. Visual inspection of the speedometer indicates that the car is traveling
between 48 and 49 km/h. Because the indicator is higher than the midpoint between the
markers on the gauge, we can say with assurance that the car is traveling at approximately
49 km/h. We have confidence in this result because two or more reasonable individuals
reading this gauge would arrive at the same conclusion. However, let us say that we insist
that the speed be estimated to one decimal place. For this case, one person might say 48.8,
whereas another might say 48.9 km/h. Therefore, because of the limits of this instrument,

40
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FIGURE 3.1
An automobile speedometer and odometer illustrating the concept of a significant figure.
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only the first two digits can be used with confidence. Estimates of the third digit (or higher)
must be viewed as approximations. It would be ludicrous to claim, on the basis of this
speedometer, that the automobile is traveling at 48.8642138 km/h. In contrast, the odome-
ter provides up to six certain digits. From Fig. 3.1, we can conclude that the car has trav-
eled slightly less than 87,324.5 km during its lifetime. In this case, the seventh digit (and
higher) is uncertain.

The concept of a significant figure, or digit, has been developed to formally designate
the reliability of a numerical value. The significant digits of a number are those that can be
used with confidence. They correspond to the number of certain digits plus one estimated
digit. For example, the speedometer and the odometer in Fig. 3.1 yield readings of three
and seven significant figures, respectively. For the speedometer, the two certain digits are
48. It is conventional to set the estimated digit at one-half of the smallest scale division on
the measurement device. Thus the speedometer reading would consist of the three signifi-
cant figures: 48.5. In a similar fashion, the odometer would yield a seven-significant-figure
reading of 87,324.45.

Although it is usually a straightforward procedure to ascertain the significant figures
of a number, some cases can lead to confusion. For example, zeros are not always signifi-
cant figures because they may be necessary just to locate a decimal point. The numbers
0.00001845, 0.0001845, and 0.001845 all have four significant figures. Similarly, when
trailing zeros are used in large numbers, it is not clear how many, if any, of the zeros are
significant. For example, at face value the number 45,300 may have three, four, or five
significant digits, depending on whether the zeros are known with confidence. Such
uncertainty can be resolved by using scientific notation, where 4.53 × 104, 4.530 × 104,
4.5300 × 104 designate that the number is known to three, four, and five significant
figures, respectively.

The concept of significant figures has two important implications for our study of
numerical methods:

1. As introduced in the falling parachutist problem, numerical methods yield approximate
results. We must, therefore, develop criteria to specify how confident we are in our
approximate result. One way to do this is in terms of significant figures. For example,
we might decide that our approximation is acceptable if it is correct to four significant
figures.

2. Although quantities such as π, e, or 
√

7 represent specific quantities, they cannot be
expressed exactly by a limited number of digits. For example,

π = 3.141592653589793238462643 . . .

ad infinitum. Because computers retain only a finite number of significant figures, such
numbers can never be represented exactly. The omission of the remaining significant
figures is called round-off error.

Both round-off error and the use of significant figures to express our confidence in a
numerical result will be explored in detail in subsequent sections. In addition, the concept
of significant figures will have relevance to our definition of accuracy and precision in the
next section.

54 APPROXIMATIONS AND ROUND-OFF ERRORS
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3.2 ACCURACY AND PRECISION 55

3.2 ACCURACY AND PRECISION

The errors associated with both calculations and measurements can be characterized with
regard to their accuracy and precision. Accuracy refers to how closely a computed or mea-
sured value agrees with the true value. Precision refers to how closely individual computed
or measured values agree with each other.

These concepts can be illustrated graphically using an analogy from target practice.
The bullet holes on each target in Fig. 3.2 can be thought of as the predictions of a numer-
ical technique, whereas the bull’s-eye represents the truth. Inaccuracy (also called bias) is
defined as systematic deviation from the truth. Thus, although the shots in Fig. 3.2c are
more tightly grouped than those in Fig. 3.2a, the two cases are equally biased because
they are both centered on the upper left quadrant of the target. Imprecision (also called un-
certainty), on the other hand, refers to the magnitude of the scatter. Therefore, although
Fig. 3.2b and d are equally accurate (that is, centered on the bull’s-eye), the latter is more
precise because the shots are tightly grouped.

Numerical methods should be sufficiently accurate or unbiased to meet the require-
ments of a particular engineering problem. They also should be precise enough for adequate
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FIGURE 3.2
An example from marksmanship illustrating the concepts of accuracy and precision. (a) Inaccurate
and imprecise; (b) accurate and imprecise; (c) inaccurate and precise; (d ) accurate and precise.
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engineering design. In this book, we will use the collective term error to represent both the
inaccuracy and the imprecision of our predictions. With these concepts as background, we
can now discuss the factors that contribute to the error of numerical computations.

3.3 ERROR DEFINITIONS

Numerical errors arise from the use of approximations to represent exact mathematical op-
erations and quantities. These include truncation errors, which result when approximations
are used to represent exact mathematical procedures, and round-off errors, which result
when numbers having limited significant figures are used to represent exact numbers. For
both types, the relationship between the exact, or true, result and the approximation can be
formulated as

True value = approximation + error (3.1)

By rearranging Eq. (3.1), we find that the numerical error is equal to the discrepancy be-
tween the truth and the approximation, as in

Et = true value − approximation (3.2)

where Et is used to designate the exact value of the error. The subscript t is included to des-
ignate that this is the “true” error. This is in contrast to other cases, as described shortly,
where an “approximate” estimate of the error must be employed.

A shortcoming of this definition is that it takes no account of the order of magni-
tude of the value under examination. For example, an error of a centimeter is much more
significant if we are measuring a rivet rather than a bridge. One way to account for the mag-
nitudes of the quantities being evaluated is to normalize the error to the true value, as in

True fractional relative error = true error

true value

where, as specified by Eq. (3.2), error = true value − approximation. The relative error can
also be multiplied by 100 percent to express it as

εt = true error

true value
100% (3.3)

where εt designates the true percent relative error.

EXAMPLE 3.1 Calculation of Errors

Problem Statement. Suppose that you have the task of measuring the lengths of a bridge
and a rivet and come up with 9999 and 9 cm, respectively. If the true values are 10,000 and
10 cm, respectively, compute (a) the true error and (b) the true percent relative error for
each case.

Solution.

(a) The error for measuring the bridge is [Eq. (3.2)]

Et = 10,000 − 9999 = 1 cm

56 APPROXIMATIONS AND ROUND-OFF ERRORS
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and for the rivet it is

Et = 10 − 9 = 1 cm

(b) The percent relative error for the bridge is [Eq. (3.3)]

εt = 1

10,000
100% = 0.01%

and for the rivet it is

εt = 1

10
100% = 10%

Thus, although both measurements have an error of 1 cm, the relative error for the rivet is
much greater. We would conclude that we have done an adequate job of measuring the
bridge, whereas our estimate for the rivet leaves something to be desired.

Notice that for Eqs. (3.2) and (3.3), E and ε are subscripted with a t to signify that the
error is normalized to the true value. In Example 3.1, we were provided with this value. How-
ever, in actual situations such information is rarely available. For numerical methods, the
true value will be known only when we deal with functions that can be solved analytically.
Such will typically be the case when we investigate the theoretical behavior of a particular
technique for simple systems. However, in real-world applications, we will obviously not
know the true answer a priori. For these situations, an alternative is to normalize the error
using the best available estimate of the true value, that is, to the approximation itself, as in

εa = approximate error

approximation
100% (3.4)

where the subscript a signifies that the error is normalized to an approximate value. Note
also that for real-world applications, Eq. (3.2) cannot be used to calculate the error term for
Eq. (3.4). One of the challenges of numerical methods is to determine error estimates in the
absence of knowledge regarding the true value. For example, certain numerical methods
use an iterative approach to compute answers. In such an approach, a present approxima-
tion is made on the basis of a previous approximation. This process is performed repeat-
edly, or iteratively, to successively compute (we hope) better and better approximations.
For such cases, the error is often estimated as the difference between previous and current
approximations. Thus, percent relative error is determined according to

εa = current approximation − previous approximation

current approximation
100% (3.5)

This and other approaches for expressing errors will be elaborated on in subsequent
chapters.

The signs of Eqs. (3.2) through (3.5) may be either positive or negative. If the approx-
imation is greater than the true value (or the previous approximation is greater than the
current approximation), the error is negative; if the approximation is less than the true
value, the error is positive. Also, for Eqs. (3.3) to (3.5), the denominator may be less than
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zero, which can also lead to a negative error. Often, when performing computations, we
may not be concerned with the sign of the error, but we are interested in whether the per-
cent absolute value is lower than a prespecified percent tolerance εs . Therefore, it is often
useful to employ the absolute value of Eqs. (3.2) through (3.5). For such cases, the compu-
tation is repeated until

|εa| < εs (3.6)

If this relationship holds, our result is assumed to be within the prespecified acceptable
level εs . Note that for the remainder of this text, we will almost exclusively employ ab-
solute values when we use relative errors.

It is also convenient to relate these errors to the number of significant figures in the ap-
proximation. It can be shown (Scarborough, 1966) that if the following criterion is met, we
can be assured that the result is correct to at least n significant figures.

εs = (0.5 × 102−n)% (3.7)

EXAMPLE 3.2 Error Estimates for Iterative Methods

Problem Statement. In mathematics, functions can often be represented by infinite
series. For example, the exponential function can be computed using

ex = 1 + x + x2

2
+ x3

3!
+ · · · + xn

n!
(E3.2.1)

Thus, as more terms are added in sequence, the approximation becomes a better and better
estimate of the true value of ex. Equation (E3.2.1) is called a Maclaurin series expansion.

Starting with the simplest version, ex = 1, add terms one at a time to estimate e0.5.
After each new term is added, compute the true and approximate percent relative errors
with Eqs. (3.3) and (3.5), respectively. Note that the true value is e0.5 = 1.648721 . . . . Add
terms until the absolute value of the approximate error estimate εa falls below a prespeci-
fied error criterion εs conforming to three significant figures.

Solution. First, Eq. (3.7) can be employed to determine the error criterion that ensures a
result is correct to at least three significant figures:

εs = (0.5 × 102−3)% = 0.05%

Thus, we will add terms to the series until εa falls below this level.
The first estimate is simply equal to Eq. (E3.2.1) with a single term. Thus, the first es-

timate is equal to 1. The second estimate is then generated by adding the second term, as in

ex = 1 + x

or for x = 0.5,

e0.5 = 1 + 0.5 = 1.5

This represents a true percent relative error of [Eq. (3.3)]

εt = 1.648721 − 1.5

1.648721
100% = 9.02%
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3.3 ERROR DEFINITIONS 59

Equation (3.5) can be used to determine an approximate estimate of the error, as in

εa = 1.5 − 1

1.5
100% = 33.3%

Because εa is not less than the required value of εs ,we would continue the computation by
adding another term, x2/2!, and repeating the error calculations. The process is continued
until εa < εs . The entire computation can be summarized as

Terms Result εεt (%) εεa (%)

1 1 39.3
2 1.5 9.02 33.3
3 1.625 1.44 7.69
4 1.645833333 0.175 1.27
5 1.648437500 0.0172 0.158
6 1.648697917 0.00142 0.0158

Thus, after six terms are included, the approximate error falls below εs = 0.05% and the
computation is terminated. However, notice that, rather than three significant figures, the
result is accurate to five! This is because, for this case, both Eqs. (3.5) and (3.7) are con-
servative. That is, they ensure that the result is at least as good as they specify. Although,
as discussed in Chap. 6, this is not always the case for Eq. (3.5), it is true most of the time.

3.3.1 Computer Algorithm for Iterative Calculations

Many of the numerical methods described in the remainder of this text involve iterative cal-
culations of the sort illustrated in Example 3.2. These all entail solving a mathematical prob-
lem by computing successive approximations to the solution starting from an initial guess.

The computer implementation of such iterative solutions involves loops. As we saw in
Sec. 2.1.1, these come in two basic flavors: count-controlled and decision loops. Most iter-
ative solutions use decision loops. Thus, rather than employing a prespecified number of
iterations, the process typically is repeated until an approximate error estimate falls below
a stopping criterion as in Example 3.2.

A pseudocode for a generic iterative calculation is presented in Fig. 3.3. The function
is passed a value (val) along with a stopping error criterion (es) and a maximum allow-
able number of iterations (maxit). The value is typically either (1) an initial value or (2) the
value for which the iterative calculation is to be made.

The function first initializes three variables. These include (1) a variable iter that
keeps track of the number of iterations, (2) a variable sol that holds the current estimate
of the solution, and (3) a variable ea that holds the approximate percent relative error. Note
that ea is initially set to a value of 100 to ensure that the loop executes at least once.

These initializations are followed by the decision loop that actually implements the
iterative calculation. Prior to generating a new solution, sol is first assigned to solold.
Then a new value of sol is computed and the iteration counter is incremented. If the new
value of sol is nonzero, the percent relative error ea is determined. The stopping criteria
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are then tested. If both are false, the loop repeats. If either are true, the loop terminates and
the final solution is sent back to the function call. The following example illustrates how
the generic algorithm can be applied to a specific iterative calculation.

EXAMPLE 3.3 Computer Implementation of an Iterative Calculation

Problem Statement. Develop a computer program based on the pseudocode from 
Fig. 3.3 to implement the calculation from Example 3.2.

Solution. A function to implement the Maclaurin series expansion for ex can be based on the
general scheme in Fig. 3.3. To do this, we first formulate the series expansion as a formula:

ex ∼=
n∑

i=0

xn

n!

Figure 3.4 shows functions to implement this series written in VBA and MATLAB. Simi-
lar codes could be developed in other languages such a C++ or Fortran 95. Notice that
whereas MATLAB has a built-in factorial function, it is necessary to compute the fac-
torial as part of the VBA implementation with a simple product accumulator fac. 

When the programs are run, they generate an estimate for the exponential function. For
the MATLAB version, the answer is returned along with the approximate error and the
number of iterations. For example, e1 can be evaluated as

>> format long
>> [val, ea, iter] = IterMeth(1,1e-6,100)

val =
2.718281826198493

ea =
9.216155641522974e-007

iter =
12

60 APPROXIMATIONS AND ROUND-OFF ERRORS

FIGURE 3.3
Pseudocode for a generic iterative calculation.

FUNCTION IterMeth(val, es, maxit)
iter � 1
sol � val
ea � 100
DO
solold � sol
sol � ...
iter � iter � 1
IF sol � 0 ea�abs((sol � solold)/sol)*100
IF ea � es OR iter � maxit EXIT

END DO
IterMeth � sol
END IterMeth
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We can see that after 12 iterations, we obtain a result of 2.7182818 with an approxi-
mate error estimate of = 9.2162 � 10–7%. The result can be verified by using the built-in
exp function to directly calculate the exact value and the true percent relative error,

>> trueval=exp(1)

trueval =
2.718281828459046

>> et=abs((trueval-val)/trueval)*100
et =

8.316108397236229e-008

As was the case with Example 3.2, we obtain the desirable outcome that the true error is
less than the approximate error. 

(a) VBA/Excel

Function IterMeth(x, es, maxit)
‘ initialization
iter = 1
sol = 1
ea = 100
fac = 1
‘ iterative calculation
Do

solold = sol
fac = fac * iter
sol = sol + x ^ iter / fac
iter = iter + 1
If sol <> 0 Then
ea = Abs((sol - solold) / sol) * 100

End If
If ea <= es Or iter >= maxit Then Exit Do

Loop
IterMeth = sol
End Function

(b) MATLAB

function [v,ea,iter] = IterMeth(x,es,maxit)
% initialization
iter = 1;
sol = 1;
ea = 100;

% iterative calculation
while (1)
solold = sol;

sol = sol + x ^ iter / factorial(iter);
iter = iter + 1;
if sol~=0
ea=abs((sol - solold)/sol)*100;

end
if ea<=es | iter>=maxit,break,end

end
v = sol;
end

FIGURE 3.4
(a) VBA/Excel and (b) MATLAB functions based on the pseudocode from Fig. 3.3.

With the preceding definitions as background, we can now proceed to the two types
of error connected directly with numerical methods: round-off errors and truncation
errors.
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3.4 ROUND-OFF ERRORS

As mentioned previously, round-off errors originate from the fact that computers retain
only a fixed number of significant figures during a calculation. Numbers such as π, e, or√

7 cannot be expressed by a fixed number of significant figures. Therefore, they cannot be
represented exactly by the computer. In addition, because computers use a base-2 repre-
sentation, they cannot precisely represent certain exact base-10 numbers. The discrepancy
introduced by this omission of significant figures is called round-off error.

3.4.1 Computer Representation of Numbers

Numerical round-off errors are directly related to the manner in which numbers are stored
in a computer. The fundamental unit whereby information is represented is called a word.
This is an entity that consists of a string of binary digits, or bits. Numbers are typically
stored in one or more words. To understand how this is accomplished, we must first review
some material related to number systems.

Number Systems. A number system is merely a convention for representing quantities.
Because we have 10 fingers and 10 toes, the number system that we are most familiar with
is the decimal, or base-10, number system. A base is the number used as the reference for
constructing the system. The base-10 system uses the 10 digits—0, 1, 2, 3, 4, 5, 6, 7, 8, 9—
to represent numbers. By themselves, these digits are satisfactory for counting from 0 to 9.

For larger quantities, combinations of these basic digits are used, with the position or
place value specifying the magnitude. The right-most digit in a whole number represents a
number from 0 to 9. The second digit from the right represents a multiple of 10. The third
digit from the right represents a multiple of 100 and so on. For example, if we have the
number 86,409 then we have eight groups of 10,000, six groups of 1000, four groups of
100, zero groups of 10, and nine more units, or

(8 × 104) + (6 × 103) + (4 × 102) + (0 × 101) + (9 × 100) = 86,409

Figure 3.5a provides a visual representation of how a number is formulated in the
base-10 system. This type of representation is called positional notation.

Because the decimal system is so familiar, it is not commonly realized that there are
alternatives. For example, if human beings happened to have had eight fingers and eight
toes, we would undoubtedly have developed an octal, or base-8, representation. In the
same sense, our friend the computer is like a two-fingered animal who is limited to two
states—either 0 or 1. This relates to the fact that the primary logic units of digital computers
are on/off electronic components. Hence, numbers on the computer are represented with
a binary, or base-2, system. Just as with the decimal system, quantities can be repre-
sented using positional notation. For example, the binary number 11 is equivalent to (1 ×
21) + (1 × 20) = 2 + 1 = 3 in the decimal system. Figure 3.5b illustrates a more compli-
cated example.

Integer Representation. Now that we have reviewed how base-10 numbers can be rep-
resented in binary form, it is simple to conceive of how integers are represented on a com-
puter. The most straightforward approach, called the signed magnitude method, employs
the first bit of a word to indicate the sign, with a 0 for positive and a 1 for negative. The
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remaining bits are used to store the number. For example, the integer value of −173 would
be stored on a 16-bit computer, as in Fig. 3.6.

EXAMPLE 3.4 Range of Integers

Problem Statement. Determine the range of integers in base-10 that can be represented
on a 16-bit computer.

1 � 1 =
0 � 2 =
1 � 4 =
1 � 8 =
0 � 16 =
1 � 32 =
0 � 64 =
1 � 128 =

1
0
4
8
0

32
0

128
173

27

1

26

0

25

1

24

0

23

1

22

1

21

0

20

1

9 � 1 =
0 � 10 =
4 � 100 =
6 � 1,000 =
8 � 10,000 =

9
0

400
6,000

80,000
86,409

104

8

103

6

102

4

101

0

100

9

(a)

(b)

FIGURE 3.5
How the (a) decimal (base 10) and the (b) binary (base 2) systems work. In (b), the binary num-
ber 10101101 is equivalent to the decimal number 173.

FIGURE 3.6
The representation of the decimal integer −173 on a 16-bit computer using the signed
magnitude method.

1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1

Sign
Number
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Solution. Of the 16 bits, the first bit holds the sign. The remaining 15 bits can hold bi-
nary numbers from 0 to 111111111111111. The upper limit can be converted to a decimal
integer, as in

(1 × 214) + (1 × 213) + · · · + (1 × 21) + (1 × 20)

which equals 32,767 (note that this expression can be simply evaluated as 215 − 1). Thus,
a 16-bit computer word can store decimal integers ranging from −32,767 to 32,767. In
addition, because zero is already defined as 0000000000000000, it is redundant to use the
number 1000000000000000 to define a “minus zero.” Therefore, it is usually employed to
represent an additional negative number: −32,768, and the range is from −32,768 to
32,767.

Note that the signed magnitude method described above is not used to represent inte-
gers on conventional computers. A preferred approach called the 2’s complement technique
directly incorporates the sign into the number’s magnitude rather than providing a separate
bit to represent plus or minus (see Chapra and Canale 1994). However, Example 3.4 still
serves to illustrate how all digital computers are limited in their capability to represent
integers. That is, numbers above or below the range cannot be represented. A more serious
limitation is encountered in the storage and manipulation of fractional quantities as de-
scribed next.

Floating-Point Representation. Fractional quantities are typically represented in com-
puters using floating-point form. In this approach, the number is expressed as a fractional
part, called a mantissa or significand, and an integer part, called an exponent or character-
istic, as in

m · be

where m = the mantissa, b = the base of the number system being used, and e = the expo-
nent. For instance, the number 156.78 could be represented as 0.15678 × 103 in a floating-
point base-10 system.

Figure 3.7 shows one way that a floating-point number could be stored in a word. The
first bit is reserved for the sign, the next series of bits for the signed exponent, and the last
bits for the mantissa.
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Signed
exponent

Mantissa

FIGURE 3.7
The manner in which a floating-point number is stored in a word.
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Note that the mantissa is usually normalized if it has leading zero digits. For example,
suppose the quantity 1/34 = 0.029411765 . . . was stored in a floating-point base-10 sys-
tem that allowed only four decimal places to be stored. Thus, 1/34 would be stored as

0.0294 × 100

However, in the process of doing this, the inclusion of the useless zero to the right of the
decimal forces us to drop the digit 1 in the fifth decimal place. The number can be normal-
ized to remove the leading zero by multiplying the mantissa by 10 and lowering the expo-
nent by 1 to give

0.2941 × 10−1

Thus, we retain an additional significant figure when the number is stored.
The consequence of normalization is that the absolute value of m is limited. That is,

1

b
≤ m < 1 (3.8)

where b = the base. For example, for a base-10 system, m would range between 0.1 and 1,
and for a base-2 system, between 0.5 and 1.

Floating-point representation allows both fractions and very large numbers to be
expressed on the computer. However, it has some disadvantages. For example, float-
ing-point numbers take up more room and take longer to process than integer num-
bers. More significantly, however, their use introduces a source of error because the
mantissa holds only a finite number of significant figures. Thus, a round-off error is
introduced.

EXAMPLE 3.5 Hypothetical Set of Floating-Point Numbers

Problem Statement. Create a hypothetical floating-point number set for a machine
that stores information using 7-bit words. Employ the first bit for the sign of the number,
the next three for the sign and the magnitude of the exponent, and the last three for the
magnitude of the mantissa (Fig. 3.8).

0 1 1 1 1 0 0

Sign of
number

Sign of
exponent

Magnitude
 of exponent

Magnitude
of mantissa

21 20 2–1 2–2 2–3

FIGURE 3.8
The smallest possible positive floating-point number from Example 3.5.
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Solution. The smallest possible positive number is depicted in Fig. 3.8. The initial 0 in-
dicates that the quantity is positive. The 1 in the second place designates that the exponent
has a negative sign. The 1’s in the third and fourth places give a maximum value to the
exponent of

1 × 21 + 1 × 20 = 3

Therefore, the exponent will be −3. Finally, the mantissa is specified by the 100 in the last
three places, which conforms to

1 × 2−1 + 0 × 2−2 + 0 × 2−3 = 0.5

Although a smaller mantissa is possible (e.g., 000, 001, 010, 011), the value of 100 is used
because of the limit imposed by normalization [Eq. (3.8)]. Thus, the smallest possible pos-
itive number for this system is +0.5 × 2−3, which is equal to 0.0625 in the base-10 system.
The next highest numbers are developed by increasing the mantissa, as in

0111101 = (1 × 2−1 + 0 × 2−2 + 1 × 2−3) × 2−3 = (0.078125)10

0111110 = (1 × 2−1 + 1 × 2−2 + 0 × 2−3) × 2−3 = (0.093750)10

0111111 = (1 × 2−1 + 1 × 2−2 + 1 × 2−3) × 2−3 = (0.109375)10

Notice that the base-10 equivalents are spaced evenly with an interval of 0.015625.
At this point, to continue increasing, we must decrease the exponent to 10, which gives

a value of

1 × 21 + 0 × 20 = 2

The mantissa is decreased back to its smallest value of 100. Therefore, the next number is

0110100 = (1 × 2−1 + 0 × 2−2 + 0 × 2−3) × 2−2 = (0.125000)10

This still represents a gap of 0.125000 − 0.109375 = 0.015625. However, now when
higher numbers are generated by increasing the mantissa, the gap is lengthened to 0.03125,

0110101 = (1 × 2−1 + 0 × 2−2 + 1 × 2−3) × 2−2 = (0.156250)10

0110110 = (1 × 2−1 + 1 × 2−2 + 0 × 2−3) × 2−2 = (0.187500)10

0110111 = (1 × 2−1 + 1 × 2−2 + 1 × 2−3) × 2−2 = (0.218750)10

This pattern is repeated as each larger quantity is formulated until a maximum number is
reached,

0011111 = (1 × 2−1 + 1 × 2−2 + 1 × 2−3) × 23 = (7)10

The final number set is depicted graphically in Fig. 3.9.

Figure 3.9 manifests several aspects of floating-point representation that have signifi-
cance regarding computer round-off errors:

1. There Is a Limited Range of Quantities That May Be Represented. Just as for the inte-
ger case, there are large positive and negative numbers that cannot be represented.
Attempts to employ numbers outside the acceptable range will result in what is called
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3.4 ROUND-OFF ERRORS 67

an overflow error. However, in addition to large quantities, the floating-point repre-
sentation has the added limitation that very small numbers cannot be represented. This
is illustrated by the underflow “hole” between zero and the first positive number in
Fig. 3.9. It should be noted that this hole is enlarged because of the normalization
constraint of Eq. (3.8).

2. There Are Only a Finite Number of Quantities That Can Be Represented within the
Range. Thus, the degree of precision is limited. Obviously, irrational numbers cannot be
represented exactly. Furthermore, rational numbers that do not exactly match one of the
values in the set also cannot be represented precisely. The errors introduced by approx-
imating both these cases are referred to as quantizing errors. The actual approximation
is accomplished in either of two ways: chopping or rounding. For example, suppose that
the value of π = 3.14159265358 . . . is to be stored on a base-10 number system carry-
ing seven significant figures. One method of approximation would be to merely omit,
or “chop off,” the eighth and higher terms, as in π = 3.141592, with the introduction of
an associated error of [Eq. (3.2)]

Et = 0.00000065 . . .

This technique of retaining only the significant terms was originally dubbed “trun-
cation” in computer jargon. We prefer to call it chopping to distinguish it from the
truncation errors discussed in Chap. 4. Note that for the base-2 number system in

�x
x – �x

�x/2 �x/2
x – �x x + �x

Chopping Rounding

0

0

7
Overflow

Underflow “hole”
at zero

FIGURE 3.9
The hypothetical number system developed in Example 3.5. Each value is indicated by a tick
mark. Only the positive numbers are shown. An identical set would also extend in the
negative direction.
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Fig. 3.9, chopping means that any quantity falling within an interval of length �x will
be stored as the quantity at the lower end of the interval. Thus, the upper error bound
for chopping is �x. Additionally, a bias is introduced because all errors are positive.
The shortcomings of chopping are attributable to the fact that the higher terms in the
complete decimal representation have no impact on the shortened version. For
instance, in our example of π, the first discarded digit is 6. Thus, the last retained digit
should be rounded up to yield 3.141593. Such rounding reduces the error to

Et = −0.00000035 . . .

Consequently, rounding yields a lower absolute error than chopping. Note that for the
base-2 number system in Fig. 3.9, rounding means that any quantity falling within an in-
terval of length �x will be represented as the nearest allowable number. Thus, the upper
error bound for rounding is �x/2. Additionally, no bias is introduced because some
errors are positive and some are negative. Some computers employ rounding. However,
this adds to the computational overhead, and, consequently, many machines use simple
chopping. This approach is justified under the supposition that the number of significant
figures is large enough that resulting round-off error is usually negligible.

3. The Interval between Numbers, �x, Increases as the Numbers Grow in Magnitude. It
is this characteristic, of course, that allows floating-point representation to preserve
significant digits. However, it also means that quantizing errors will be proportional to
the magnitude of the number being represented. For normalized floating-point num-
bers, this proportionality can be expressed, for cases where chopping is employed, as

|�x |
|x | ≤ � (3.9)

and, for cases where rounding is employed, as

|�x |
|x | ≤ �

2
(3.10)

where � is referred to as the machine epsilon, which can be computed as

� = b1−t (3.11)

where b is the number base and t is the number of significant digits in the mantissa.
Notice that the inequalities in Eqs. (3.9) and (3.10) signify that these are error bounds.
That is, they specify the worst cases.

EXAMPLE 3.6 Machine Epsilon

Problem Statement. Determine the machine epsilon and verify its effectiveness in
characterizing the errors of the number system from Example 3.5. Assume that chopping
is used.

Solution. The hypothetical floating-point system from Example 3.5 employed values of
the base b = 2, and the number of mantissa bits t = 3. Therefore, the machine epsilon
would be [Eq. (3.11)]

� = 21−3 = 0.25
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Consequently, the relative quantizing error should be bounded by 0.25 for chopping. The
largest relative errors should occur for those quantities that fall just below the upper bound
of the first interval between successive equispaced numbers (Fig. 3.10). Those numbers
falling in the succeeding higher intervals would have the same value of �x but a greater
value of x and, hence, would have a lower relative error. An example of a maximum error
would be a value falling just below the upper bound of the interval between (0.125000)10

and (0.156250)10. For this case, the error would be less than

0.03125

0.125000
= 0.25

Thus, the error is as predicted by Eq. (3.9).

The magnitude dependence of quantizing errors has a number of practical applications in
numerical methods. Most of these relate to the commonly employed operation of testing
whether two numbers are equal. This occurs when testing convergence of quantities as well as
in the stopping mechanism for iterative processes (recall Example 3.2). For these cases, it
should be clear that, rather than test whether the two quantities are equal, it is advisable to test
whether their difference is less than an acceptably small tolerance. Further, it should also be
evident that normalized rather than absolute difference should be compared, particularly when
dealing with numbers of large magnitude. In addition, the machine epsilon can be employed
in formulating stopping or convergence criteria. This ensures that programs are portable—that
is, they are not dependent on the computer on which they are implemented. Figure 3.11 lists
pseudocode to automatically determine the machine epsilon of a binary computer.

Extended Precision. It should be noted at this point that, although round-off errors can
be important in contexts such as testing convergence, the number of significant digits car-
ried on most computers allows most engineering computations to be performed with more
than acceptable precision. For example, the hypothetical number system in Fig. 3.9 is a
gross exaggeration that was employed for illustrative purposes. Commercial computers use
much larger words and, consequently, allow numbers to be expressed with more than ade-
quate precision. For example, computers that use IEEE format allow 24 bits to be used for
the mantissa, which translates into about seven significant base-10 digits of precision1 with
a range of about 10−38 to 1039.

Largest relative
error

FIGURE 3.10
The largest quantizing error will occur for those values falling just below the upper bound of the
first of a series of equispaced intervals.

epsilon � 1
DO
IF(epsilon+1�1)EXIT
epsilon � epsilon/2

END DO
epsilon � 2 � epsilon

FIGURE 3.11
Pseudocode to determine
machine epsilon for a binary
computer.

1Note that only 23 bits are actually used to store the mantissa. However, because of normalization, the first bit of
the mantissa is always 1 and is, therefore, not stored. Thus, this first bit together with the 23 stored bits gives the
24 total bits of precision for the mantissa.
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With this acknowledged, there are still cases where round-off error becomes critical.
For this reason most computers allow the specification of extended precision. The most
common of these is double precision, in which the number of words used to store floating-
point numbers is doubled. It provides about 15 to 16 decimal digits of precision and a range
of approximately 10−308 to 10308.

In many cases, the use of double-precision quantities can greatly mitigate the effect of
round-off errors. However, a price is paid for such remedies in that they also require more
memory and execution time. The difference in execution time for a small calculation might
seem insignificant. However, as your programs become larger and more complicated, the
added execution time could become considerable and have a negative impact on your ef-
fectiveness as a problem solver. Therefore, extended precision should not be used frivo-
lously. Rather, it should be selectively employed where it will yield the maximum benefit
at the least cost in terms of execution time. In the following sections, we will look closer at
how round-off errors affect computations, and in so doing provide a foundation of under-
standing to guide your use of the double-precision capability.

Before proceeding, it should be noted that some of the commonly used software pack-
ages (for example, Excel, Mathcad) routinely use double precision to represent numerical
quantities. Thus, the developers of these packages decided that mitigating round-off errors
would take precedence over any loss of speed incurred by using extended precision.
Others, like MATLAB software, allow you to use extended precision, if you desire.

3.4.2 Arithmetic Manipulations of Computer Numbers

Aside from the limitations of a computer’s number system, the actual arithmetic manipula-
tions involving these numbers can also result in round-off error. In the following section, we
will first illustrate how common arithmetic operations affect round-off errors. Then we will
investigate a number of particular manipulations that are especially prone to round-off errors.

Common Arithmetic Operations. Because of their familiarity, normalized base-10
numbers will be employed to illustrate the effect of round-off errors on simple addition,
subtraction, multiplication, and division. Other number bases would behave in a similar
fashion. To simplify the discussion, we will employ a hypothetical decimal computer with
a 4-digit mantissa and a 1-digit exponent. In addition, chopping is used. Rounding would
lead to similar though less dramatic errors.

When two floating-point numbers are added, the mantissa of the number with the
smaller exponent is modified so that the exponents are the same. This has the effect of align-
ing the decimal points. For example, suppose we want to add 0.1557 · 101 + 0.4381 · 10−1.
The decimal of the mantissa of the second number is shifted to the left a number of places
equal to the difference of the exponents [1 − (−1) = 2], as in

0.4381 · 10−1 → 0.004381 · 101

Now the numbers can be added,

0.1557 · 101

0.004381 · 101

0.160081 · 101

and the result chopped to 0.1600 · 101. Notice how the last two digits of the second num-
ber that were shifted to the right have essentially been lost from the computation.
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Subtraction is performed identically to addition except that the sign of the subtrahend
is reversed. For example, suppose that we are subtracting 26.86 from 36.41. That is,

0.3641 · 102

− 0.2686 · 102

0.0955 · 102

For this case the result is not normalized, and so we must shift the decimal one place
to the right to give 0.9550 · 101 = 9.550. Notice that the zero added to the end of the man-
tissa is not significant but is merely appended to fill the empty space created by the shift.
Even more dramatic results would be obtained when the numbers are very close, as in

0.7642 · 103

− 0.7641 · 103

0.0001 · 103

which would be converted to 0.1000 · 100 = 0.1000. Thus, for this case, three nonsignifi-
cant zeros are appended. This introduces a substantial computational error because subse-
quent manipulations would act as if these zeros were significant. As we will see in a later
section, the loss of significance during the subtraction of nearly equal numbers is among
the greatest source of round-off error in numerical methods.

Multiplication and division are somewhat more straightforward than addition or sub-
traction. The exponents are added and the mantissas multiplied. Because multiplication of
two n-digit mantissas will yield a 2n-digit result, most computers hold intermediate results
in a double-length register. For example,

0.1363 · 103 × 0.6423 · 10−1 = 0.08754549 · 102

If, as in this case, a leading zero is introduced, the result is normalized,

0.08754549 · 102 → 0.8754549 · 101

and chopped to give

0.8754 · 101

Division is performed in a similar manner, but the mantissas are divided and the expo-
nents are subtracted. Then the results are normalized and chopped.

Large Computations. Certain methods require extremely large numbers of arithmetic
manipulations to arrive at their final results. In addition, these computations are often in-
terdependent. That is, the later calculations are dependent on the results of earlier ones.
Consequently, even though an individual round-off error could be small, the cumulative
effect over the course of a large computation can be significant.

EXAMPLE 3.7 Large Numbers of Interdependent Computations

Problem Statement. Investigate the effect of round-off error on large numbers of inter-
dependent computations. Develop a program to sum a number 100,000 times. Sum the
number 1 in single precision, and 0.00001 in single and double precision.

Solution. Figure 3.12 shows a Fortran 90 program that performs the summation. Whereas
the single-precision summation of 1 yields the expected result, the single-precision
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summation of 0.00001 yields a large discrepancy. This error is reduced significantly when
0.00001 is summed in double precision.

Quantizing errors are the source of the discrepancies. Because the integer 1 can be rep-
resented exactly within the computer, it can be summed exactly. In contrast, 0.00001 can-
not be represented exactly and is quantized by a value that is slightly different from its true
value. Whereas this very slight discrepancy would be negligible for a small computation, it
accumulates after repeated summations. The problem still occurs in double precision but is
greatly mitigated because the quantizing error is much smaller.

Note that the type of error illustrated by the previous example is somewhat atypical in that
all the errors in the repeated operation are of the same sign. In most cases the errors of a long
computation alternate sign in a random fashion and, thus, often cancel out. However, there are
also instances where such errors do not cancel but, in fact, lead to a spurious final result. The
following sections are intended to provide insight into ways in which this may occur.

Adding a Large and a Small Number. Suppose we add a small number, 0.0010, to a
large number, 4000, using a hypothetical computer with the 4-digit mantissa and the 1-digit
exponent. We modify the smaller number so that its exponent matches the larger,

0.4000 · 104

0.0000001 · 104

0.4000001 · 104
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PROGRAM fig0312
IMPLICIT none
INTEGER::i
REAL::sum1, sum2, x1, x2
DOUBLE PRECISION::sum3, x3
sum1=0.
sum2=0.
sum3=0. 
x1=1.
x2=1.e–5
x3=1.d–5
DO i=1,100000
sum1=sum1+x1
sum2=sum2+x2
sum3=sum3+x3

END DO
PRINT *, sum1
PRINT *, sum2
PRINT *, sum3
END
output:
100000.000000

1.000990
9.999999999980838E-001

FIGURE 3.12
Fortran 90 program to sum
a number 105 times. The
case sums the number 1 in
single precision and the
number 10�5 in single and
double precision.
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which is chopped to 0.4000 · 104. Thus, we might as well have not performed the
addition!

This type of error can occur in the computation of an infinite series. The initial terms
in such series are often relatively large in comparison with the later terms. Thus, after a
few terms have been added, we are in the situation of adding a small quantity to a large
quantity.

One way to mitigate this type of error is to sum the series in reverse order—that is, in
ascending rather than descending order. In this way, each new term will be of comparable
magnitude to the accumulated sum (see Prob. 3.5).

Subtractive Cancellation. This term refers to the round-off induced when subtracting
two nearly equal floating-point numbers.

One common instance where this can occur involves finding the roots of a quadratic
equation or parabola with the quadratic formula,

x1

x2
= −b ± √

b2 − 4ac

2a
(3.12)

For cases where b2 � 4ac, the difference in the numerator can be very small. In such cases,
double precision can mitigate the problem. In addition, an alternative formulation can be
used to minimize subtractive cancellation,

x1

x2
= −2c

b ± √
b2 − 4ac

(3.13)

An illustration of the problem and the use of this alternative formula are provided in the
following example.

EXAMPLE 3.8 Subtractive Cancellation

Problem Statement. Compute the values of the roots of a quadratic equation with a = 1,
b = 3000.001, and c = 3. Check the computed values versus the true roots of x1 = −0.001
and x2 = −3000.

Solution. Figure 3.13 shows an Excel/VBA program that computes the roots x1 and x2 on
the basis of the quadratic formula [(Eq. (3.12)]. Note that both single- and double-precision
versions are given. Whereas the results for x2 are adequate, the percent relative errors for x1

are poor for the single-precision version, εt = 2.4%. This level could be inadequate for
many applied engineering problems. This result is particularly surprising because we are
employing an analytical formula to obtain our solution!

The loss of significance occurs in the line of both programs where two relatively
large numbers are subtracted. Similar problems do not occur when the same numbers are
added.

On the basis of the above, we can draw the general conclusion that the quadratic for-
mula will be susceptible to subtractive cancellation whenever b2 � 4ac. One way to cir-
cumvent this problem is to use double precision. Another is to recast the quadratic formula
in the format of Eq. (3.13). As in the program output, both options give a much smaller
error because the subtractive cancellation is minimized or avoided.
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Note that, as in the foregoing example, there are times where subtractive cancellation
can be circumvented by using a transformation. However, the only general remedy is to
employ extended precision.

Smearing. Smearing occurs whenever the individual terms in a summation are larger
than the summation itself. As in the following example, one case where this occurs is in se-
ries of mixed signs.

EXAMPLE 3.9 Evaluation of ex using Infinite Series

Problem Statement. The exponential function y = ex is given by the infinite series

y = 1 + x + x2

2
+ x3

3!
+ · · ·

Evaluate this function for x = 10 and x = −10, and be attentive to the problems of round-
off error.

Solution. Figure 3.14a gives an Excel/VBA program that uses the infinite series to
evaluate ex. The variable i is the number of terms in the series, term is the value of the

Option Explicit

Sub fig0313()
Dim a As Single, b As Single
Dim c As Single, d As Single
Dim x1 As Single, x2 As Single
Dim x1r As Single
Dim aa As Double, bb As Double
Dim cc As Double, dd As Double
Dim x11 As Double, x22 As Double

'Single precision:
a = 1: b = 3000.001: c = 3
d = Sqr(b * b - 4 * a * c)
x1 = (-b + d) / (2 * a)
x2 = (-b - d) / (2 * a)

'Double precision:
aa = 1: bb = 3000.001: cc = 3
dd = Sqr(bb * bb - 4 * aa * cc)
x11 = (-bb + dd) / (2 * aa)
x22 = (-bb - dd) / (2 * aa)

'Modified formula for first root
'single precision:
x1r = -2 * c / (b + d)

'Display results
Sheets("sheet1").Select
Range("b2").Select
ActiveCell.Value = x1
ActiveCell.Offset(1, 0).Select
ActiveCell.Value = x2
ActiveCell.Offset(2, 0).Select
ActiveCell.Value = x11
ActiveCell.Offset(1, 0).Select
ActiveCell.Value = x22
ActiveCell.Offset(2, 0).Select
ActiveCell.Value = x1r
End Sub

OUTPUT:

FIGURE 3.13
Excel/VBA program to determine the roots of a quadratic.
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the sum are much larger than the final result of the sum. Furthermore, unlike the previous
case, the individual terms vary in sign. Thus, in effect we are adding and subtracting large
numbers (each with some small error) and placing great significance on the differences—
that is, subtractive cancellation. Thus, we can see that the culprit behind this example of
smearing is, in fact, subtractive cancellation. For such cases it is appropriate to seek some
other computational strategy. For example, one might try to compute y = e10 as y = (e−1)10.
Other than such a reformulation, the only general recourse is extended precision.

Inner Products. As should be clear from the last sections, some infinite series are partic-
ularly prone to round-off error. Fortunately, the calculation of series is not one of the more
common operations in numerical methods. A far more ubiquitous manipulation is the
calculation of inner products, as in

n∑
i=1

xi yi = x1 y1 + x2 y2 + · · · + xn yn

This operation is very common, particularly in the solution of simultaneous linear alge-
braic equations. Such summations are prone to round-off error. Consequently, it is often
desirable to compute such summations in extended precision.

Although the foregoing sections should provide rules of thumb to mitigate round-off
error, they do not provide a direct means beyond trial and error to actually determine the
effect of such errors on a computation. In Chap. 4, we will introduce the Taylor series,
which will provide a mathematical approach for estimating these effects.

76 APPROXIMATIONS AND ROUND-OFF ERRORS

PROBLEMS

3.1 Convert the following base-2 numbers to base-10: (a) 1011001,
(b) 110.00101 and (c) 0.01011
3.2 Convert the following base-8 numbers to base 10: 71,563 and
3.14.
3.3 Compose your own program based on Fig. 3.11 and use it to
determine your computer’s machine epsilon.
3.4 In a fashion similar to that in Fig. 3.11, write a short program
to determine the smallest number, xmin, used on the computer you
will be employing along with this book. Note that your computer
will be unable to reliably distinguish between zero and a quantity
that is smaller than this number.
3.5 The infinite series

f (n) =
n∑

i=1

1

i4

converges on a value of f (n) = π4/90 as n approaches infinity.
Write a program in single precision to calculate f (n) for
n = 10,000 by computing the sum from i = 1 to 10,000. Then
repeat the calculation but in reverse order—that is, from
i = 10,000 to 1 using increments of −1. In each case, compute the
true percent relative error. Explain the results.

3.6 Evaluate e−5 using two approaches

e−x = 1 − x + x2

2
− x3

3!
+ · · ·

and

e−x = 1

ex
= 1

1 + x + x2

2
+ x3

3!
+ · · ·

and compare with the true value of 6.737947 × 10−3. Use 20 terms
to evaluate each series and compute true and approximate relative
errors as terms are added.
3.7 The derivative of f(x) = 1/(1 − 3x2) is given by

6x

(1 − 3x2)2

Do you expect to have difficulties evaluating this function at
x = 0.577? Try it using 3- and 4-digit arithmetic with chopping.
3.8 (a) Evaluate the polynomial

y = x3 − 7x2 + 8x − 0.35
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at x = 1.37. Use 3-digit arithmetic with chopping. Evaluate the
percent relative error.
(b) Repeat (a) but express y as

y = ((x − 7)x + 8)x − 0.35

Evaluate the error and compare with part (a).
3.9 Calculate the random access memory (RAM) in megabytes
necessary to store a multidimensional array that is 20 × 40 × 120.
This array is double precision, and each value requires a 64-bit word.
Recall that a 64-bit word = 8 bytes and 1 kilobyte = 210 bytes.
Assume that the index starts at 1.
3.10 Determine the number of terms necessary to approximate cos x
to 8 significant figures using the Maclaurin series approximation

cos x = 1 − x2

2
+ x4

4!
− x6

6!
+ x8

8!
− · · ·

Calculate the approximation using a value of x = 0.3π . Write a
program to determine your result.

3.11 Use 5-digit arithmetic with chopping to determine the roots of
the following equation with Eqs. (3.12) and (3.13)

x2 − 5000.002x + 10

Compute percent relative errors for your results.
3.12 How can the machine epsilon be employed to formulate a
stopping criterion εs for your programs? Provide an example.
3.13 The “divide and average” method, an old-time method for ap-
proximating the square root of any positive number a, can be for-
mulated as

x = x + a/x

2

Write a well-structured function to implement this algorithm based
on the algorithm outlined in Fig. 3.3.
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78

Truncation Errors and
the Taylor Series

Truncation errors are those that result from using an approximation in place of an exact
mathematical procedure. For example, in Chap. 1 we approximated the derivative of ve-
locity of a falling parachutist by a finite-divided-difference equation of the form [Eq. (1.11)]

dv

dt
∼= �v

�t
= v(ti+1) − v(ti )

ti+1 − ti
(4.1)

A truncation error was introduced into the numerical solution because the difference equa-
tion only approximates the true value of the derivative (recall Fig. 1.4). In order to gain
insight into the properties of such errors, we now turn to a mathematical formulation that
is used widely in numerical methods to express functions in an approximate fashion—the
Taylor series.

4.1 THE TAYLOR SERIES

Taylor’s theorem (Box 4.1) and its associated formula, the Taylor series, is of great value in
the study of numerical methods. In essence, the Taylor series provides a means to predict a
function value at one point in terms of the function value and its derivatives at another
point. In particular, the theorem states that any smooth function can be approximated as a
polynomial.

A useful way to gain insight into the Taylor series is to build it term by term. For
example, the first term in the series is

f(xi+1) ∼= f(xi ) (4.2)

This relationship, called the zero-order approximation, indicates that the value of f at the
new point is the same as its value at the old point. This result makes intuitive sense because
if xi and xi+1 are close to each other, it is likely that the new value is probably similar to the
old value.

Equation (4.2) provides a perfect estimate if the function being approximated is, in
fact, a constant. However, if the function changes at all over the interval, additional terms

4C H A P T E R 4
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4.1 THE TAYLOR SERIES 79

of the Taylor series are required to provide a better estimate. For example, the first-order
approximation is developed by adding another term to yield

f(xi+1) ∼= f(xi ) + f ′(xi )(xi+1 − xi ) (4.3)

The additional first-order term consists of a slope f ′(xi) multiplied by the distance between
xi and xi+1. Thus, the expression is now in the form of a straight line and is capable of pre-
dicting an increase or decrease of the function between xi and xi+1.

Although Eq. (4.3) can predict a change, it is exact only for a straight-line, or linear,
trend. Therefore, a second-order term is added to the series to capture some of the curva-
ture that the function might exhibit:

f(xi+1) ∼= f(xi ) + f ′(xi )(xi+1 − xi ) + f ′′(xi )

2!
(xi+1 − xi )

2 (4.4)

Box 4.1 Taylor’s Theorem

Taylor’s Theorem
If the function f and its first n + 1 derivatives are continuous on an
interval containing a and x, then the value of the function at x is
given by

f(x) = f(a) + f ′(a)(x − a) + f ′′(a)

2!
(x − a)2

+ f (3)(a)

3!
(x − a)3 + · · ·

+ f (n)(a)

n!
(x − a)n + Rn (B4.1.1)

where the remainder Rn is defined as

Rn =
∫ x

a

(x − t)n

n!
f (n+1)(t) dt (B4.1.2)

where t = a dummy variable. Equation (B4.1.1) is called the Taylor
series or Taylor’s formula. If the remainder is omitted, the right side
of Eq. (B4.1.1) is the Taylor polynomial approximation to f (x). In
essence, the theorem states that any smooth function can be ap-
proximated as a polynomial.

Equation (B4.1.2) is but one way, called the integral form, by
which the remainder can be expressed. An alternative formulation
can be derived on the basis of the integral mean-value theorem.

First Theorem of Mean for Integrals
If the function g is continuous and integrable on an interval con-
taining a and x, then there exists a point ξ between a and x such that∫ x

a
g(t) dt = g(ξ)(x − a) (B4.1.3)

In other words, this theorem states that the integral can be repre-
sented by an average value for the function g(ξ) times the interval
length x − a. Because the average must occur between the mini-
mum and maximum values for the interval, there is a point x = ξ at
which the function takes on the average value.

The first theorem is in fact a special case of a second mean-
value theorem for integrals.

Second Theorem of Mean for Integrals
If the functions g and h are continuous and integrable on an interval
containing a and x, and h does not change sign in the interval, then
there exists a point ξ between a and x such that

∫ x

a
g(t)h(t) dt = g(ξ)

∫ x

a
h(t) dt (B4.1.4)

Thus, Eq. (B4.1.3) is equivalent to Eq. (B4.1.4) with h(t) = 1.
The second theorem can be applied to Eq. (B4.1.2) with

g(t) = f (n+1)(t) h(t) = (x − t)n

n!

As t varies from a to x, h(t) is continuous and does not change sign.
Therefore, if f (n+1)(t) is continuous, then the integral mean-value
theorem holds and

Rn = f (n+1)(ξ)

(n + 1)!
(x − a)n+1

This equation is referred to as the derivative or Lagrange form of
the remainder.
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In a similar manner, additional terms can be included to develop the complete Taylor series
expansion:

f(xi+1) = f(xi ) + f ′(xi )(xi+1 − xi ) + f ′′(xi )

2!
(xi+1 − xi )

2

+ f (3)(xi )

3!
(xi+1 − xi )

3 + · · · + f (n)(xi )

n!
(xi+1 − xi )

n + Rn (4.5)

Note that because Eq. (4.5) is an infinite series, an equal sign replaces the approximate sign
that was used in Eqs. (4.2) through (4.4). A remainder term is included to account for all
terms from n + 1 to infinity:

Rn = f (n+1)(ξ)

(n + 1)!
(xi+1 − xi )

n+1 (4.6)

where the subscript n connotes that this is the remainder for the nth-order approximation
and ξ is a value of x that lies somewhere between xi and xi+1. The introduction of the ξ is so
important that we will devote an entire section (Sec. 4.1.1) to its derivation. For the time
being, it is sufficient to recognize that there is such a value that provides an exact determi-
nation of the error.

It is often convenient to simplify the Taylor series by defining a step size h = xi+1 − xi

and expressing Eq. (4.5) as

f(xi+1) = f(xi ) + f ′(xi )h + f ′′(xi )

2!
h2 + f (3)(xi )

3!
h3 + · · · + f (n)(xi )

n!
hn + Rn

(4.7)

where the remainder term is now

Rn = f (n+1)(ξ)

(n + 1)!
hn+1 (4.8)

EXAMPLE 4.1 Taylor Series Approximation of a Polynomial

Problem Statement. Use zero- through fourth-order Taylor series expansions to approx-
imate the function

f(x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

from xi = 0 with h = 1. That is, predict the function’s value at xi+1 = 1.

Solution. Because we are dealing with a known function, we can compute values for
f (x) between 0 and 1. The results (Fig. 4.1) indicate that the function starts at f (0) = 1.2
and then curves downward to f (1) = 0.2. Thus, the true value that we are trying to predict
is 0.2.

The Taylor series approximation with n = 0 is [Eq. (4.2)]

f(xi+1) � 1.2

80 TRUNCATION ERRORS AND THE TAYLOR SERIES

cha01064_ch04.qxd  3/20/09  11:46 AM  Page 80



4.1 THE TAYLOR SERIES 81

Thus, as in Fig. 4.1, the zero-order approximation is a constant. Using this formulation re-
sults in a truncation error [recall Eq. (3.2)] of

Et = 0.2 − 1.2 = −1.0

at x = 1.
For n = 1, the first derivative must be determined and evaluated at x = 0:

f ′(0) = −0.4(0.0)3 − 0.45(0.0)2 − 1.0(0.0) − 0.25 = −0.25

Therefore, the first-order approximation is [Eq. (4.3)]

f(xi+1) � 1.2 − 0.25h

which can be used to compute f (1) = 0.95. Consequently, the approximation begins to
capture the downward trajectory of the function in the form of a sloping straight line
(Fig. 4.1). This results in a reduction of the truncation error to

Et = 0.2 − 0.95 = −0.75

For n = 2, the second derivative is evaluated at x = 0:

f ′′(0) = −1.2(0.0)2 − 0.9(0.0) − 1.0 = −1.0

Therefore, according to Eq. (4.4),

f(xi+1) � 1.2 − 0.25h − 0.5h2

and substituting h = 1, f (1) = 0.45. The inclusion of the second derivative now adds some
downward curvature resulting in an improved estimate, as seen in Fig. 4.1. The truncation
error is reduced further to 0.2 − 0.45 = −0.25.

Second order 

First order 

True 

f (x)

1.0

0.5

0
xi = 0 xi + 1 = 1 x

f (xi + 1)

f (xi + 1) � f (xi) + f �(xi)h + h2

h

f �(xi)
2!

f (xi + 1) � f (xi) + f �(xi)h

f (xi + 1) � f (xi)
f (xi) Zero order

FIGURE 4.1
The approximation of f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2 at x =1 by zero-order,
first-order, and second-order Taylor series expansions.
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Additional terms would improve the approximation even more. In fact, the inclusion
of the third and the fourth derivatives results in exactly the same equation we started with:

f(x) = 1.2 − 0.25h − 0.5h2 − 0.15h3 − 0.1h4

where the remainder term is

R4 = f (5)(ξ)

5!
h5 = 0

because the fifth derivative of a fourth-order polynomial is zero. Consequently, the Taylor
series expansion to the fourth derivative yields an exact estimate at xi+1 = 1:

f(1) = 1.2 − 0.25(1) − 0.5(1)2 − 0.15(1)3 − 0.1(1)4 = 0.2

In general, the nth-order Taylor series expansion will be exact for an nth-order poly-
nomial. For other differentiable and continuous functions, such as exponentials and sinu-
soids, a finite number of terms will not yield an exact estimate. Each additional term will
contribute some improvement, however slight, to the approximation. This behavior will be
demonstrated in Example 4.2. Only if an infinite number of terms are added will the series
yield an exact result.

Although the above is true, the practical value of Taylor series expansions is that, in
most cases, the inclusion of only a few terms will result in an approximation that is close
enough to the true value for practical purposes. The assessment of how many terms are re-
quired to get “close enough” is based on the remainder term of the expansion. Recall that
the remainder term is of the general form of Eq. (4.8). This relationship has two major
drawbacks. First, ξ is not known exactly but merely lies somewhere between xi and xi+1.
Second, to evaluate Eq. (4.8), we need to determine the (n + 1)th derivative of f(x). To do
this, we need to know f (x). However, if we knew f (x), there would be no need to perform
the Taylor series expansion in the present context!

Despite this dilemma, Eq. (4.8) is still useful for gaining insight into truncation errors.
This is because we do have control over the term h in the equation. In other words, we can
choose how far away from x we want to evaluate f (x), and we can control the number of
terms we include in the expansion. Consequently, Eq. (4.8) is usually expressed as

Rn = O(hn+1)

where the nomenclature O(hn+1) means that the truncation error is of the order of hn+1.
That is, the error is proportional to the step size h raised to the (n + l)th power. Although
this approximation implies nothing regarding the magnitude of the derivatives that multi-
ply hn+1, it is extremely useful in judging the comparative error of numerical methods
based on Taylor series expansions. For example, if the error is O(h), halving the step size
will halve the error. On the other hand, if the error is O(h2), halving the step size will quar-
ter the error.

In general, we can usually assume that the truncation error is decreased by the addition
of terms to the Taylor series. In many cases, if h is sufficiently small, the first- and other
lower-order terms usually account for a disproportionately high percent of the error. Thus,
only a few terms are required to obtain an adequate estimate. This property is illustrated by
the following example.

82 TRUNCATION ERRORS AND THE TAYLOR SERIES

cha01064_ch04.qxd  3/20/09  11:46 AM  Page 82



4.1 THE TAYLOR SERIES 83

EXAMPLE 4.2 Use of Taylor Series Expansion to Approximate a Function with an Infinite Number
of Derivatives

Problem Statement. Use Taylor series expansions with n = 0 to 6 to approximate
f (x) = cos x at xi+1 = π/3 on the basis of the value of f(x) and its derivatives at xi =
π/4. Note that this means that h = π/3 − π/4 = π/12.

Solution. As with Example 4.1, our knowledge of the true function means that we can
determine the correct value  f(π/3) = 0.5.

The zero-order approximation is [Eq. (4.3)]

f
(π

3

) ∼= cos
(π

4

)
= 0.707106781

which represents a percent relative error of

εt = 0.5 − 0.707106781

0.5
100% = −41.4%

For the first-order approximation, we add the first derivative term where f ′(x) = −sin x:

f
(π

3

) ∼= cos
(π

4

)
− sin

(π

4

)( π

12

)
= 0.521986659

which has εt = −4.40 percent.
For the second-order approximation, we add the second derivative term where

f ′′(x) = −cos x :

f
(π

3

) ∼= cos
(π

4

)
− sin

(π

4

)( π

12

)
− cos (π/4)

2

( π

12

)2
= 0.497754491

with εt = 0.449 percent. Thus, the inclusion of additional terms results in an improved
estimate.

The process can be continued and the results listed, as in Table 4.1. Notice that the de-
rivatives never go to zero as was the case with the polynomial in Example 4.1. Therefore,
each additional term results in some improvement in the estimate. However, also notice
how most of the improvement comes with the initial terms. For this case, by the time we

TABLE 4.1 Taylor series approximation of f (x) = cos x at xi+1 = π/3 using a base point
of π/4. Values are shown for various orders (n) of approximation.

Order n f (n)(x) f(π/3) �t

0 cos x 0.707106781 −41.4
1 −sin x 0.521986659 −4.4
2 −cos x 0.497754491 0.449
3 sin x 0.499869147 2.62 × 10−2

4 cos x 0.500007551 −1.51 × 10−3

5 −sin x 0.500000304 −6.08 × 10−5

6 −cos x 0.499999988 2.44 × 10−6
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have added the third-order term, the error is reduced to 2.62 × 10−2 percent, which means
that we have attained 99.9738 percent of the true value. Consequently, although the addi-
tion of more terms will reduce the error further, the improvement becomes negligible.

4.1.1 The Remainder for the Taylor Series Expansion

Before demonstrating how the Taylor series is actually used to estimate numerical errors, we
must explain why we included the argument ξ in Eq. (4.8). A mathematical derivation is pre-
sented in Box 4.1. We will now develop an alternative exposition based on a somewhat more
visual interpretation. Then we can extend this specific case to the more general formulation.

Suppose that we truncated the Taylor series expansion [Eq. (4.7)] after the zero-order
term to yield

f(xi+1) ∼= f(xi )

A visual depiction of this zero-order prediction is shown in Fig. 4.2. The remainder, or
error, of this prediction, which is also shown in the illustration, consists of the infinite se-
ries of terms that were truncated:

R0 = f ′(xi )h + f ′′(xi )

2!
h2 + f (3)(xi )

3!
h3 + · · ·

It is obviously inconvenient to deal with the remainder in this infinite series format.
One simplification might be to truncate the remainder itself, as in

R0
∼= f ′(xi )h (4.9)

84 TRUNCATION ERRORS AND THE TAYLOR SERIES

Zero-order prediction 

Exact prediction 

f (x)

xi xi + 1 x

h

f (xi)

R0

FIGURE 4.2
Graphical depiction of a zero-order Taylor series prediction and remainder.
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Although, as stated in the previous section, lower-order derivatives usually account for a
greater share of the remainder than the higher-order terms, this result is still inexact
because of the neglected second- and higher-order terms. This “inexactness” is implied by
the approximate equality symbol (∼=) employed in Eq. (4.9).

An alternative simplification that transforms the approximation into an equivalence is
based on a graphical insight. As in Fig. 4.3, the derivative mean-value theorem states that
if a function f (x) and its first derivative are continuous over an interval from xi to xi+1, then
there exists at least one point on the function that has a slope, designated by f ′(ξ), that is
parallel to the line joining f (xi) and f (xi+1). The parameter ξ marks the x value where this
slope occurs (Fig. 4.3). A physical illustration of this theorem is that, if you travel between
two points with an average velocity, there will be at least one moment during the course of
the trip when you will be moving at that average velocity.

By invoking this theorem it is simple to realize that, as illustrated in Fig. 4.3, the slope
f ′(ξ) is equal to the rise R0 divided by the run h, or

f ′(ξ) = R0

h

which can be rearranged to give

R0 = f ′(ξ)h (4.10)

Thus, we have derived the zero-order version of Eq. (4.8). The higher-order versions are
merely a logical extension of the reasoning used to derive Eq. (4.10). The first-order version is

R1 = f ′′(ξ)

2!
h2 (4.11)

FIGURE 4.3
Graphical depiction of the derivative mean-value theorem.

f (x)

xi xi + 1� x

h

R0

Slope = f �(� )

Slope =
R0
h
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For this case, the value of ξ conforms to the x value corresponding to the second derivative
that makes Eq. (4.11) exact. Similar higher-order versions can be developed from Eq. (4.8).

4.1.2 Using the Taylor Series to Estimate Truncation Errors

Although the Taylor series will be extremely useful in estimating truncation errors through-
out this book, it may not be clear to you how the expansion can actually be applied to nu-
merical methods. In fact, we have already done so in our example of the falling parachutist.
Recall that the objective of both Examples 1.1 and 1.2 was to predict velocity as a function
of time. That is, we were interested in determining v(t). As specified by Eq. (4.5), v(t) can
be expanded in a Taylor series:

v(ti+1) = v(ti ) + v′(ti )(ti+1 − ti ) + v′′(ti )
2!

(ti+1 − ti )
2 + · · · + Rn (4.12)

Now let us truncate the series after the first derivative term:

v(ti+1) = v(ti ) + v′(ti )(ti+1 − ti ) + R1 (4.13)

Equation (4.13) can be solved for

v′(ti ) = v(ti+1) − v(ti )

ti+1 − ti︸ ︷︷ ︸ − R1

ti+1 − ti︸ ︷︷ ︸ (4.14)
First-order Truncation

approximation error

The first part of Eq. (4.14) is exactly the same relationship that was used to approximate
the derivative in Example 1.2 [Eq. (1.11)]. However, because of the Taylor series approach,
we have now obtained an estimate of the truncation error associated with this approxima-
tion of the derivative. Using Eqs. (4.6) and (4.14) yields

R1

ti+1 − ti
= v′′(ξ)

2!
(ti+1 − ti ) (4.15)

or

R1

ti+1 − ti
= O(ti+1 − ti ) (4.16)

Thus, the estimate of the derivative [Eq. (1.11) or the first part of Eq. (4.14)] has a trunca-
tion error of order ti+1 − ti. In other words, the error of our derivative approximation
should be proportional to the step size. Consequently, if we halve the step size, we would
expect to halve the error of the derivative.

EXAMPLE 4.3 The Effect of Nonlinearity and Step Size on the Taylor Series Approximation

Problem Statement. Figure 4.4 is a plot of the function

f(x) = xm (E4.3.1)

for m = 1, 2, 3, and 4 over the range from x = 1 to 2. Notice that for m = 1 the function is
linear, and as m increases, more curvature or nonlinearity is introduced into the function.
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Employ the first-order Taylor series to approximate this function for various values of the
exponent m and the step size h.

Solution. Equation (E4.3.1) can be approximated by a first-order Taylor series expansion,
as in

f(xi+1) = f(xi ) + mxm−1
i h (E4.3.2)

which has a remainder

R1 = f ′′(xi )

2!
h2 + f (3)(xi )

3!
h3 + f (4)(xi )

4!
h4 + · · ·

First, we can examine how the approximation performs as m increases—that is, as the
function becomes more nonlinear. For m = 1, the actual value of the function at x = 2 is 2.

FIGURE 4.4
Plot of the function f (x) = xm for m = 1, 2, 3, and 4. Notice that the function becomes more
nonlinear as m increases.
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The Taylor series yields

f(2) = 1 + 1(1) = 2

and

R1 = 0

The remainder is zero because the second and higher derivatives of a linear function are
zero. Thus, as expected, the first-order Taylor series expansion is perfect when the under-
lying function is linear.

For m = 2, the actual value is f(2) = 22 = 4. The first-order Taylor series approxima-
tion is

f(2) = 1 + 2(1) = 3

and

R1 = 2
2 (1)2 + 0 + 0 + · · · = 1

Thus, because the function is a parabola, the straight-line approximation results in a dis-
crepancy. Note that the remainder is determined exactly.

For m = 3, the actual value is f (2) = 23 = 8. The Taylor series approximation is

f(2) = 1 + 3(1)2(1) = 4

and

R1 = 6
2 (1)2 + 6

6 (1)3 + 0 + 0 + · · · = 4

Again, there is a discrepancy that can be determined exactly from the Taylor series.
For m = 4, the actual value is f (2) = 24 = 16. The Taylor series approximation is

f(2) = 1 + 4(1)3(1) = 5

and

R1 = 12
2 (1)2 + 24

6 (1)3 + 24
24 (1)4 + 0 + 0 + · · · = 11

On the basis of these four cases, we observe that R1 increases as the function becomes
more nonlinear. Furthermore, R1 accounts exactly for the discrepancy. This is because
Eq. (E4.3.1) is a simple monomial with a finite number of derivatives. This permits a com-
plete determination of the Taylor series remainder.

Next, we will examine Eq. (E4.3.2) for the case m = 4 and observe how R1 changes as
the step size h is varied. For m = 4, Eq. (E4.3.2) is

f(x + h) = f(x) + 4x3
i h

If x = 1, f (1) = 1 and this equation can be expressed as

f(1 + h) = 1 + 4h

with a remainder of

R1 = 6h2 + 4h3 + h4

88 TRUNCATION ERRORS AND THE TAYLOR SERIES
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4.1 THE TAYLOR SERIES 89

This leads to the conclusion that the discrepancy will decrease as h is reduced. Also, at suf-
ficiently small values of h, the error should become proportional to h2. That is, as h is
halved, the error will be quartered. This behavior is confirmed by Table 4.2 and Fig. 4.5.

Thus, we conclude that the error of the first-order Taylor series approximation de-
creases as m approaches 1 and as h decreases. Intuitively, this means that the Taylor series

FIGURE 4.5
Log-log plot of the remainder R1 of the first-order Taylor series approximation of the function
f (x) = x4 versus step size h. A line with a slope of 2 is also shown to indicate that as h
decreases, the error becomes proportional to h2.

�Slope� = 2

0.11
0.001

0.01

0.1

1

10

0.01 h

R1

TABLE 4.2 Comparison of the exact value of the function f (x) = x4 with the first-order 
Taylor series approximation. Both the function and the approximation are 
evaluated at x + h, where x = 1.

First-Order
h True Approximation R1

1 16 5 11
0.5 5.0625 3 2.0625
0.25 2.441406 2 0.441406
0.125 1.601807 1.5 0.101807
0.0625 1.274429 1.25 0.024429
0.03125 1.130982 1.125 0.005982
0.015625 1.063980 1.0625 0.001480
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becomes more accurate when the function we are approximating becomes more like a
straight line over the interval of interest. This can be accomplished either by reducing the
size of the interval or by “straightening” the function by reducing m. Obviously, the latter
option is usually not available in the real world because the functions we analyze are typi-
cally dictated by the physical problem context. Consequently, we do not have control of
their lack of linearity, and our only recourse is reducing the step size or including additional
terms in the Taylor series expansion.

4.1.3 Numerical Differentiation

Equation (4.14) is given a formal label in numerical methods—it is called a finite divided
difference. It can be represented generally as

f ′(xi ) = f(xi+1) − f(xi )

xi+1 − xi
+ O(xi+1 − xi ) (4.17)

or

f ′(xi ) = � fi

h
+ O(h) (4.18)

where � fi is referred to as the first forward difference and h is called the step size, that is,
the length of the interval over which the approximation is made. It is termed a “forward”
difference because it utilizes data at i and i + 1 to estimate the derivative (Fig. 4.6a). The
entire term � f/h is referred to as a first finite divided difference.

This forward divided difference is but one of many that can be developed from the
Taylor series to approximate derivatives numerically. For example, backward and centered
difference approximations of the first derivative can be developed in a fashion similar to
the derivation of Eq. (4.14). The former utilizes values at xi−1 and xi (Fig. 4.6b), whereas
the latter uses values that are equally spaced around the point at which the derivative is es-
timated (Fig. 4.6c). More accurate approximations of the first derivative can be developed
by including higher-order terms of the Taylor series. Finally, all the above versions can also
be developed for second, third, and higher derivatives. The following sections provide
brief summaries illustrating how some of these cases are derived.

Backward Difference Approximation of the First Derivative. The Taylor series can be
expanded backward to calculate a previous value on the basis of a present value, as in

f(xi−1) = f(xi ) − f ′(xi )h + f ′′(xi )

2!
h2 − · · · (4.19)

Truncating this equation after the first derivative and rearranging yields

f ′(xi ) ∼= f(xi ) − f(xi−1)

h
= ∇ f1

h
(4.20)

where the error is O(h), and ∇ fi is referred to as the first backward difference. See Fig. 4.6b
for a graphical representation.
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3.4 ROUND-OFF ERRORS 75

(a) Program

Option Explicit

Sub fig0314()
Dim term As Single, test As Single 
Dim sum As Single, x As Single
Dim i As Integer
i = 0: term = 1#: sum = 1#: test = 0#
Sheets("sheet1").Select
Range("b1").Select
x = ActiveCell.Value
Range("a3:c1003").ClearContents
Range("a3").Select
Do

If sum = test Then Exit Do
ActiveCell.Value = i
ActiveCell.Offset(0, 1).Select
ActiveCell.Value = term
ActiveCell.Offset(0, 1).Select
ActiveCell.Value = sum
ActiveCell.Offset(1, -2).Select
i = i + 1
test = sum
term = x ^ i / _

Application.WorksheetFunction.Fact(i)
sum = sum + term

Loop
ActiveCell.Offset(0, 1).Select
ActiveCell.Value = "Exact value = "
ActiveCell.Offset(0, 1).Select
ActiveCell.Value = Exp(x)
End Sub

FIGURE 3.14
(a) An Excel/VBA program to evaluate ex using an infinite series. (b) Evaluation of ex. 
(c) Evaluation of e−x.

(b) Evaluation of e10

(c) Evaluation of e10

current term added to the series, and sum is the accumulative value of the series. The vari-
able test is the preceding accumulative value of the series prior to adding term. The series
is terminated when the computer cannot detect the difference between test and sum.

Figure 3.14b shows the results of running the program for x = 10. Note that this case
is completely satisfactory. The final result is achieved in 31 terms with the series identical
to the library function value within seven significant figures.

Figure 3.14c shows similar results for x = −10. However, for this case, the results of
the series calculation are not even the same sign as the true result. As a matter of fact, the
negative results are open to serious question because ex can never be less than zero. The
problem here is caused by round-off error. Note that many of the terms that make up
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4.1 THE TAYLOR SERIES 91

FIGURE 4.6
Graphical depiction of (a) forward, (b) backward, and (c) centered finite-divided-difference
approximations of the first derivative.
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Centered Difference Approximation of the First Derivative. A third way to approxi-
mate the first derivative is to subtract Eq. (4.19) from the forward Taylor series expansion:

f(xi+1) = f(xi ) + f ′(xi )h + f ′′(xi )

2!
h2 + · · · (4.21)

to yield

f(xi+1) = f(xi−1) + 2 f ′(xi )h + 2 f (3)(xi )

3!
h3 + · · ·

which can be solved for

f ′(xi ) = f(xi+1) − f(xi−1)

2h
− f (3)(xi )

6
h2 − · · ·

or

f ′(xi ) = f(xi+1) − f(xi−1)

2h
− O(h2) (4.22)

Equation (4.22) is a centered difference representation of the first derivative. Notice that the
truncation error is of the order of h2 in contrast to the forward and backward approximations
that were of the order of h. Consequently, the Taylor series analysis yields the practical in-
formation that the centered difference is a more accurate representation of the derivative
(Fig. 4.6c). For example, if we halve the step size using a forward or backward difference,
we would approximately halve the truncation error, whereas for the central difference, the
error would be quartered.

EXAMPLE 4.4 Finite-Divided-Difference Approximations of Derivatives

Problem Statement. Use forward and backward difference approximations of O(h) and
a centered difference approximation of O(h2) to estimate the first derivative of

f(x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

at x = 0.5 using a step size h = 0.5. Repeat the computation using h = 0.25. Note that the
derivative can be calculated directly as

f ′(x) = −0.4x3 − 0.45x2 − 1.0x − 0.25

and can be used to compute the true value as f ′(0.5) = −0.9125.

Solution. For h = 0.5, the function can be employed to determine

xi−1 = 0

xi = 0.5

xi+1 = 1.0

f(xi−1) = 1.2

f(xi ) = 0.925

f(xi+1) = 0.2

These values can be used to compute the forward divided difference [Eq. (4.17)],

f ′(0.5) ∼= 0.2 − 0.925

0.5
= −1.45 |εt | = 58.9%
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4.1 THE TAYLOR SERIES 93

the backward divided difference [Eq. (4.20)],

f ′(0.5) ∼= 0.925 − 1.2

0.5
= −0.55 |εt | = 39.7%

and the centered divided difference [Eq. (4.22)],

f ′(0.5) ∼= 0.2 − 1.2

1.0
= −1.0 |εt | = 9.6%

For h = 0.25,

xi−1 = 0.25

xi = 0.5

xi+1 = 0.75

f(xi−1) = 1.10351563

f(xi ) = 0.925

f(xi+1) = 0.63632813

which can be used to compute the forward divided difference,

f ′(0.5) ∼= 0.63632813 − 0.925

0.25
= −1.155 |εt | = 26.5%

the backward divided difference,

f ′(0.5) ∼= 0.925 − 1.10351563

0.25
= −0.714 |εt | = 21.7%

and the centered divided difference,

f ′(0.5) ∼= 0.63632813 − 1.10351563

0.5
= −0.934 |εt | = 2.4%

For both step sizes, the centered difference approximation is more accurate than for-
ward or backward differences. Also, as predicted by the Taylor series analysis, halving the
step size approximately halves the error of the backward and forward differences and quar-
ters the error of the centered difference.

Finite Difference Approximations of Higher Derivatives. Besides first derivatives, the
Taylor series expansion can be used to derive numerical estimates of higher derivatives. To
do this, we write a forward Taylor series expansion for f (x i+2) in terms of f (xi):

f(xi+2) = f(xi ) + f ′(xi )(2h) + f ′′(xi )

2!
(2h)2 + · · · (4.23)

Equation (4.21) can be multiplied by 2 and subtracted from Eq. (4.23) to give

f(xi+2) − 2 f(xi+1) = − f(xi ) + f ′′(xi )h2 + · · ·
which can be solved for

f ′′(xi ) = f(xi+2) − 2 f(xi+1) + f(xi )

h2
+ O(h) (4.24)
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This relationship is called the second forward finite divided difference. Similar manipula-
tions can be employed to derive a backward version

f ′′(xi ) = f(xi ) − 2 f(xi−1) + f(xi−2)

h2
+ O(h)

and a centered version

f ′′(xi ) = f(xi+1) − 2 f(xi ) + f(xi−1)

h2
+ O(h2)

As was the case with the first-derivative approximations, the centered case is more accu-
rate. Notice also that the centered version can be alternatively expressed as

f ′′(xi ) ∼=
f(xi+1) − f(xi )

h
− f(xi ) − f(xi−1)

h
h

Thus, just as the second derivative is a derivative of a derivative, the second divided dif-
ference approximation is a difference of two first divided differences.

We will return to the topic of numerical differentiation in Chap. 23. We have intro-
duced you to the topic at this point because it is a very good example of why the Taylor
series is important in numerical methods. In addition, several of the formulas introduced in
this section will be employed prior to Chap. 23.

4.2 ERROR PROPAGATION

The purpose of this section is to study how errors in numbers can propagate through math-
ematical functions. For example, if we multiply two numbers that have errors, we would
like to estimate the error in the product.

4.2.1 Functions of a Single Variable

Suppose that we have a function f (x) that is dependent on a single independent variable x.
Assume that x̃ is an approximation of x. We, therefore, would like to assess the effect of
the discrepancy between x and x̃ on the value of the function. That is, we would like to
estimate

� f(x̃) = | f(x) − f(x̃)|
The problem with evaluating �f (x̃) is that f(x) is unknown because x is unknown. We can
overcome this difficulty if x̃ is close to x and f (x̃) is continuous and differentiable. If these
conditions hold, a Taylor series can be employed to compute f (x) near f(x̃), as in

f(x) = f(x̃) + f ′(x̃)(x − x̃) + f ′′(x̃)

2
(x − x̃)2 + · · ·

Dropping the second- and higher-order terms and rearranging yields

f(x) − f(x̃) ∼= f ′(x̃)(x − x̃)

94 TRUNCATION ERRORS AND THE TAYLOR SERIES
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4.2 ERROR PROPAGATION 95

or

� f(x̃) = | f ′(x̃)|�x̃ (4.25)

where �f (x̃) = | f (x) − f (x̃)| represents an estimate of the error of the function and �x̃ =
|x − x̃ | represents an estimate of the error of x. Equation (4.25) provides the capability to
approximate the error in f(x) given the derivative of a function and an estimate of the error
in the independent variable. Figure 4.7 is a graphical illustration of the operation.

EXAMPLE 4.5 Error Propagation in a Function of a Single Variable

Problem Statement. Given a value of x̃ = 2.5 with an error of �x̃ = 0.01, estimate the
resulting error in the function, f (x) = x3.

Solution. Using Eq. (4.25),

� f(x̃) ∼= 3(2.5)2(0.01) = 0.1875

Because f(2.5) = 15.625, we predict that

f(2.5) = 15.625 ± 0.1875

or that the true value lies between 15.4375 and 15.8125. In fact, if x were actually 2.49, the
function could be evaluated as 15.4382, and if x were 2.51, it would be 15.8132. For this
case, the first-order error analysis provides a fairly close estimate of the true error.

FIGURE 4.7
Graphical depiction of first-
order error propagation.

True error
� f �(x)��x

Estimated error

x x x

f (x)
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96 TRUNCATION ERRORS AND THE TAYLOR SERIES

4.2.2 Functions of More than One Variable

The foregoing approach can be generalized to functions that are dependent on more than
one independent variable. This is accomplished with a multivariable version of the Taylor
series. For example, if we have a function of two independent variables u and v, the Taylor
series can be written as

f(ui+1, vi+1) = f(ui , vi ) + ∂ f

∂u
(ui+1 − ui ) + ∂ f

∂v
(vi+1 − vi )

+ 1

2!

[
∂2 f

∂u2
(ui+1 − ui )

2 + 2
∂2 f

∂u∂v
(ui+1 − ui )(vi+1 − vi )

+ ∂2 f

∂v2
(vi+1 − vi )

2

]
+ · · · (4.26)

where all partial derivatives are evaluated at the base point i. If all second-order and higher
terms are dropped, Eq. (4.26) can be solved for

� f(ũ, ṽ) =
∣∣∣∣∂ f

∂u

∣∣∣∣�ũ +
∣∣∣∣∂ f

∂v

∣∣∣∣�ṽ

where �ũ and �ṽ = estimates of the errors in u and v, respectively.
For n independent variables x̃1, x̃2, . . . , x̃ n having errors �x̃1, �x̃2, . . . , �xn, the fol-

lowing general relationship holds:

� f(x̃1, x̃2, . . . , x̃n) ∼=
∣∣∣∣ ∂ f

∂x1

∣∣∣∣�x̃1 +
∣∣∣∣ ∂ f

∂x2

∣∣∣∣�x̃2 + · · · +
∣∣∣∣ ∂ f

∂xn

∣∣∣∣�x̃n (4.27)

EXAMPLE 4.6 Error Propagation in a Multivariable Function

Problem Statement. The deflection y of the top of a sailboat mast is

y = F L4

8E I

where F = a uniform side loading (N/m), L = height (m), E = the modulus of elasticity
(N/m2), and I = the moment of inertia (m4). Estimate the error in y given the following data:

F̃ = 750 N/m

L̃ = 9 m

Ẽ = 7.5 × 109 N/m2

Ĩ = 0.0005 m4

�F̃ = 30 N/m

�L̃ = 0.03 m

�Ẽ = 5 × 107 N/m2

� Ĩ = 0.000005 m4

Solution. Employing Eq. (4.27) gives

�y(F̃, L̃, Ẽ, Ĩ ) =
∣∣∣∣ ∂y

∂ F

∣∣∣∣�F̃ +
∣∣∣∣ ∂y

∂L

∣∣∣∣�L̃ +
∣∣∣∣ ∂y

∂ E

∣∣∣∣�Ẽ +
∣∣∣∣∂y

∂ I

∣∣∣∣� Ĩ

or

�y(F̃, L̃, Ẽ, Ĩ ) ∼= L̃4

8Ẽ Ĩ
�F̃ + F̃ L̃3

2Ẽ Ĩ
�L̃ + F̃ L̃4

8Ẽ2 Ĩ
�Ẽ + F̃ L̃4

8Ẽ Ĩ 2
� Ĩ
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Substituting the appropriate values gives

�y = 0.006561 + 0.002187 + 0.001094 + 0.00164 = 0.011482

Therefore, y = 0.164025 ± 0.011482. In other words, y is between 0.152543 and
0.175507 m. The validity of these estimates can be verified by substituting the extreme val-
ues for the variables into the equation to generate an exact minimum of

ymin = 720(8.97)4

8(7.55 × 109)0.000505
= 0.152818

and

ymax = 780(9.03)4

8(7.45 × 109)0.000495
= 0.175790

Thus, the first-order estimates are reasonably close to the exact values.

Equation (4.27) can be employed to define error propagation relationships for com-
mon mathematical operations. The results are summarized in Table 4.3. We will leave the
derivation of these formulas as a homework exercise.

4.2.3 Stability and Condition

The condition of a mathematical problem relates to its sensitivity to changes in its input
values. We say that a computation is numerically unstable if the uncertainty of the input
values is grossly magnified by the numerical method.

These ideas can be studied using a first-order Taylor series

f(x) = f(x̃) + f ′(x̃)(x − x̃)

This relationship can be employed to estimate the relative error of f(x) as in

f(x) − f(x̃)

f(x)
∼= f ′(x̃)(x − x̃)

f(x̃)

The relative error of x is given by

x − x̃

x̃

TABLE 4.3 Estimated error bounds associated with
common mathematical operations using
inexact numbers ũ and ṽ.

Operation Estimated Error

Addition �(ũ + ṽ) �˜̃u + �ṽ
Subtraction �(ũ − ṽ) �˜̃u + �ṽ
Multiplication �(ũ × ṽ) |ũ|�ṽ + |ṽ|�ũ

Division � |ũ|�ṽ + |ṽ|�ũ

|ṽ|2

)
ũ
ṽ

(
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A condition number can be defined as the ratio of these relative errors

Condition number = x̃ f ′(x̃)

f(x̃)
(4.28)

The condition number provides a measure of the extent to which an uncertainty in x is mag-
nified by f(x). A value of 1 tells us that the function’s relative error is identical to the rela-
tive error in x. A value greater than 1 tells us that the relative error is amplified, whereas a
value less than 1 tells us that it is attenuated. Functions with very large values are said to be
ill-conditioned. Any combination of factors in Eq. (4.28) that increases the numerical value
of the condition number will tend to magnify uncertainties in the computation of f (x).

EXAMPLE 4.7 Condition Number

Problem Statement. Compute and interpret the condition number for

f(x) = tan x for x̃ = π

2
+ 0.1

(π

2

)

f(x) = tan x for x̃ = π

2
+ 0.01

(π

2

)
Solution. The condition number is computed as

Condition number = x̃(1/ cos2 x)

tan x̃

For x̃ = π/2 + 0.1(π/2),

Condition number = 1.7279(40.86)

−6.314
= −11.2

Thus, the function is ill-conditioned. For x̃ = π/2 + 0.01(π/2), the situation is even
worse:

Condition number = 1.5865(4053)

−63.66
= −101

For this case, the major cause of ill conditioning appears to be the derivative. This makes
sense because in the vicinity of π/2, the tangent approaches both positive and negative
infinity.

4.3 TOTAL NUMERICAL ERROR

The total numerical error is the summation of the truncation and round-off errors. In gen-
eral, the only way to minimize round-off errors is to increase the number of significant
figures of the computer. Further, we have noted that round-off error will increase due to
subtractive cancellation or due to an increase in the number of computations in an analysis.
In contrast, Example 4.4 demonstrated that the truncation error can be reduced by decreas-
ing the step size. Because a decrease in step size can lead to subtractive cancellation or to
an increase in computations, the truncation errors are decreased as the round-off errors are
increased. Therefore, we are faced by the following dilemma: The strategy for decreasing
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4.3 TOTAL NUMERICAL ERROR 99

one component of the total error leads to an increase of the other component. In a compu-
tation, we could conceivably decrease the step size to minimize truncation errors only to
discover that in doing so, the round-off error begins to dominate the solution and the total
error grows! Thus, our remedy becomes our problem (Fig. 4.8). One challenge that we face
is to determine an appropriate step size for a particular computation. We would like to
choose a large step size in order to decrease the amount of calculations and round-off
errors without incurring the penalty of a large truncation error. If the total error is as shown
in Fig. 4.8, the challenge is to identify the point of diminishing returns where round-off
error begins to negate the benefits of step-size reduction.

In actual cases, however, such situations are relatively uncommon because most
computers carry enough significant figures that round-off errors do not predominate.
Nevertheless, they sometimes do occur and suggest a sort of “numerical uncertainty prin-
ciple” that places an absolute limit on the accuracy that may be obtained using certain com-
puterized numerical methods. We explore such a case in the following section.

4.3.1 Error Analysis of Numerical Differentiation

As described in the Sec. 4.1.3, a centered difference approximation of the first derivative
can be written as (Eq. 4.22):

f ′(xi ) = f (xi+1) − f (xi−1)

2h
− f (3)(ξ)

6
h2 (4.29)

True Finite-difference Truncation
value approximation error

FIGURE 4.8
A graphical depiction of the trade-off between round-off and truncation error that sometimes
comes into play in the course of a numerical method. The point of diminishing returns is shown,
where round-off error begins to negate the benefits of step-size reduction.
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Thus, if the two function values in the numerator of the finite-difference approximation
have no round-off error, the only error is due to truncation.

However, because we are using digital computers, the function values do include
round-off error as in 

f(xi−1) = f̃ (xi−1) + ei−1

f(xi+1) = f̃ (xi+1) + ei+1

where the f̃ ’s are the rounded function values and the e’s are the associated round-off er-
rors. Substituting these values into Eq. (4.29) gives

f ′(xi ) = f̃ (xi+1) − f̃ (xi−1)

2h
+ ei+1 − ei−1

2h
− f (3)(ξ)

6
h2

True Finite-difference Round-off Truncation
value approximation error error

We can see that the total error of the finite-difference approximation consists of a round-off
error which increases with step size and a truncation error that decreases with step size.

Assuming that the absolute value of each component of the round-off error has an
upper bound of ε, the maximum possible value of the difference  ei+1 − ei will be 2ε. Fur-
ther, assume that the third derivative has a maximum absolute value of M. An upper bound
on the absolute value of the total error can therefore be represented as

Total error =
∣∣∣∣ f ′(xi ) − f̃ (xi+1) − f̃ (xi−1)

2h

∣∣∣∣ ≤ ε

h
+ h2 M

6
(4.30)

An optimal step size can be determined by differentiating Eq. (4.30), setting the result
equal to zero and solving for

hopt = 3

√
3ε

M
(4.31)

EXAMPLE 4.8 Round-off and Truncation Errors in Numerical Differentiation

Problem Statement. In Example 4.4, we used a centered difference approximation of
O(h2) to estimate the first derivative of the following function at x = 0.5,

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

Perform the same computation starting with h = 1. Then progressively divide the step size
by a factor of 10 to demonstrate how round-off becomes dominant as the step size is
reduced. Relate your results to Eq. (4.31). Recall that the true value of the derivative
is −0.9125. 

Solution. We can develop a program to perform the computations and plot the results.
For the present example, we have done this with a MATLAB M-file. Notice that we pass
both the function and its analytical derivative as arguments. In addition, the function
generates a plot of the results.

100 TRUNCATION ERRORS AND THE TAYLOR SERIES
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4.3 TOTAL NUMERICAL ERROR 101

function diffex(func,dfunc,x,n)
format long
dftrue=dfunc(x);
h=1;
H(1)=h;
D(1)=(func(x+h)-func(x-h))/(2*h);
E(1)=abs(dftrue-D(1));
for i=2:n
h=h/10;  
H(i)=h;
D(i)=(func(x+h)-func(x-h))/(2*h);
E(i)=abs(dftrue-D(i));

end
L=[H' D' E']';
fprintf('   step size   finite difference    true error\n');
fprintf('%14.10f %16.14f %16.13f\n',L);
loglog(H,E),xlabel('Step Size'),ylabel('Error')
title('Plot of Error Versus Step Size')
format short

The M-file can then be run using the following commands:

>> ff=@(x) -0.1*x^4-0.15*x^3-0.5*x^2-0.25*x+1.2;
>> df=@(x) -0.4*x^3-0.45*x^2-x-0.25;
>> diffex(ff,df,0.5,11)

When the function is run, the following numeric output is generated along with the plot
(Fig. 4.9):

step size   finite difference    true error
1.0000000000 -1.26250000000000  0.3500000000000
0.1000000000 -0.91600000000000  0.0035000000000
0.0100000000 -0.91253500000000  0.0000350000000
0.0010000000 -0.91250035000001  0.0000003500000
0.0001000000 -0.91250000349985  0.0000000034998
0.0000100000 -0.91250000003318  0.0000000000332
0.0000010000 -0.91250000000542  0.0000000000054
0.0000001000 -0.91249999945031  0.0000000005497
0.0000000100 -0.91250000333609  0.0000000033361
0.0000000010 -0.91250001998944  0.0000000199894
0.0000000001 -0.91250007550059  0.0000000755006

The results are as expected. At first, round-off is minimal and the estimate is dominated by
truncation error. Hence, as in Eq. (4.30), the total error drops by a factor of 100 each time
we divide the step by 10. However, starting at h = 0.0001, we see round-off error begin to
creep in and erode the rate at which the error diminishes. A minimum error is reached at
h = 10−6. Beyond this point, the error increases as round-off dominates.

Because we are dealing with an easily differentiable function, we can also investigate
whether these results are consistent with Eq. (4.31). First, we can estimate M by evaluating
the function’s third derivative as 

M = | f 3(0.5)| = | −2.4(0.5) − 0.9| = 2.1
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102 TRUNCATION ERRORS AND THE TAYLOR SERIES

Because MATLAB has a precision of about 15 to 16 base-10 digits, a rough estimate of the
upper bound on round-off would be about e � 0.5 � 10�16. Substituting these values into
Eq. (4.31) gives

hopt = 3

√
3(0.5 × 10−16)

2.1
= 4.3 × 10−6

which is on the same order as the result of 1 × 10−6 obtained with our computer program.

4.3.2 Control of Numerical Errors

For most practical cases, we do not know the exact error associated with numerical meth-
ods. The exception, of course, is when we have obtained the exact solution that makes our
numerical approximations unnecessary. Therefore, for most engineering applications we
must settle for some estimate of the error in our calculations.

There are no systematic and general approaches to evaluating numerical errors for all
problems. In many cases error estimates are based on the experience and judgment of the
engineer.

Although error analysis is to a certain extent an art, there are several practical pro-
gramming guidelines we can suggest. First and foremost, avoid subtracting two nearly
equal numbers. Loss of significance almost always occurs when this is done. Sometimes
you can rearrange or reformulate the problem to avoid subtractive cancellation. If this is not
possible, you may want to use extended-precision arithmetic. Furthermore, when adding

FIGURE 4.9
Plot of error versus step size.
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4.4 BLUNDERS, FORMULATION ERRORS, AND DATA UNCERTAINTY 103

and subtracting numbers, it is best to sort the numbers and work with the smallest numbers
first. This avoids loss of significance.

Beyond these computational hints, one can attempt to predict total numerical errors
using theoretical formulations. The Taylor series is our primary tool for analysis of both
truncation and round-off errors. Several examples have been presented in this chapter. Pre-
diction of total numerical error is very complicated for even moderately sized problems
and tends to be pessimistic. Therefore, it is usually attempted for only small-scale tasks.

The tendency is to push forward with the numerical computations and try to estimate
the accuracy of your results. This can sometimes be done by seeing if the results satisfy
some condition or equation as a check. Or it may be possible to substitute the results back
into the original equation to check that it is actually satisfied.

Finally you should be prepared to perform numerical experiments to increase your
awareness of computational errors and possible ill-conditioned problems. Such experi-
ments may involve repeating the computations with a different step size or method and
comparing the results. We may employ sensitivity analysis to see how our solution changes
when we change model parameters or input values. We may want to try different numeri-
cal algorithms that have different theoretical foundations, are based on different computa-
tional strategies, or have different convergence properties and stability characteristics.

When the results of numerical computations are extremely critical and may involve
loss of human life or have severe economic ramifications, it is appropriate to take special
precautions. This may involve the use of two or more independent groups to solve the same
problem so that their results can be compared.

The roles of errors will be a topic of concern and analysis in all sections of this book.
We will leave these investigations to specific sections.

4.4 BLUNDERS, FORMULATION ERRORS,
AND DATA UNCERTAINTY

Although the following sources of error are not directly connected with most of the nu-
merical methods in this book, they can sometimes have great impact on the success of a
modeling effort. Thus, they must always be kept in mind when applying numerical tech-
niques in the context of real-world problems.

4.4.1 Blunders

We are all familiar with gross errors, or blunders. In the early years of computers, erro-
neous numerical results could sometimes be attributed to malfunctions of the computer
itself. Today, this source of error is highly unlikely, and most blunders must be attributed to
human imperfection.

Blunders can occur at any stage of the mathematical modeling process and can con-
tribute to all the other components of error. They can be avoided only by sound knowledge
of fundamental principles and by the care with which you approach and design your solu-
tion to a problem.

Blunders are usually disregarded in discussions of numerical methods. This is no doubt
due to the fact that, try as we may, mistakes are to a certain extent unavoidable. However,
we believe that there are a number of ways in which their occurrence can be minimized. In
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particular, the good programming habits that were outlined in Chap. 2 are extremely useful
for mitigating programming blunders. In addition, there are usually simple ways to check
whether a particular numerical method is working properly. Throughout this book, we
discuss ways to check the results of numerical calculations.

4.4.2 Formulation Errors

Formulation, or model, errors relate to bias that can be ascribed to incomplete mathemati-
cal models. An example of a negligible formulation error is the fact that Newton’s second
law does not account for relativistic effects. This does not detract from the adequacy of the
solution in Example 1.1 because these errors are minimal on the time and space scales as-
sociated with the falling parachutist problem.

However, suppose that air resistance is not linearly proportional to fall velocity, as in
Eq. (1.7), but is a function of the square of velocity. If this were the case, both the analyti-
cal and numerical solutions obtained in the Chap. 1 would be erroneous because of formu-
lation error. Further consideration of formulation error is included in some of the engineer-
ing applications in the remainder of the book. You should be cognizant of these problems
and realize that, if you are working with a poorly conceived model, no numerical method
will provide adequate results.

4.4.3 Data Uncertainty

Errors sometimes enter into an analysis because of uncertainty in the physical data upon
which a model is based. For instance, suppose we wanted to test the falling parachutist
model by having an individual make repeated jumps and then measuring his or her veloc-
ity after a specified time interval. Uncertainty would undoubtedly be associated with these
measurements, since the parachutist would fall faster during some jumps than during oth-
ers. These errors can exhibit both inaccuracy and imprecision. If our instruments consis-
tently underestimate or overestimate the velocity, we are dealing with an inaccurate, or
biased, device. On the other hand, if the measurements are randomly high and low, we are
dealing with a question of precision.

Measurement errors can be quantified by summarizing the data with one or more well-
chosen statistics that convey as much information as possible regarding specific character-
istics of the data. These descriptive statistics are most often selected to represent (1) the
location of the center of the distribution of the data and (2) the degree of spread of the data.
As such, they provide a measure of the bias and imprecision, respectively. We will return
to the topic of characterizing data uncertainty in Part Five.

Although you must be cognizant of blunders, formulation errors, and uncertain data,
the numerical methods used for building models can be studied, for the most part, inde-
pendently of these errors. Therefore, for most of this book, we will assume that we have
not made gross errors, we have a sound model, and we are dealing with error-free mea-
surements. Under these conditions, we can study numerical errors without complicating
factors. 
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4.1 The Maclaurin series expansion for cos x is

cos x = 1 − x2

2
+ x4

4!
− x6

6!
+ x8

8!
− · · ·

Starting with the simplest version, cos x = 1, add terms one at a
time to estimate cos(π/3). After each new term is added, compute
the true and approximate percent relative errors. Use your pocket
calculator to determine the true value. Add terms until the absolute
value of the approximate error estimate falls below an error crite-
rion conforming to two significant figures.
4.2 Perform the same computation as in Prob. 4.1, but use the
Maclaurin series expansion for the sin x to estimate sin(π/3).

sin x = x − x3

3!
+ x5

5!
− x7

7!
+ · · ·

4.3 The following infinite series can be used to approximate ex :

ex = 1 + x + x2

2
+ x3

3!
+ · · · + xn

n!

(a) Prove that this Maclaurin series expansion is a special case of
the Taylor series expansion [(Eq. (4.7)] with xi = 0 and h = x . 

(b) Use the Taylor series to estimate f(x) = e−x at xi+1 = 1 for
xi = 0.2. Employ the zero-, first-, second-, and third-order ver-
sions and compute the |εt | for each case.

4.4 Use zero- through fourth-order Taylor series expansions to pre-
dict f(2.5) for f(x) = ln x using a base point at x = 1. Compute
the true percent relative error εt for each approximation. Discuss
the meaning of the results.
4.5 Use zero- through third-order Taylor series expansions to
predict f(3) for

f(x) = 25x3 − 6x2 + 7x − 88

using a base point at x = 1. Compute the true percent relative error
εt for each approximation.
4.6 Use forward and backward difference approximations of O(h)

and a centered difference approximation of O(h2) to estimate the
first derivative of the function examined in Prob. 4.5. Evaluate the
derivative at x = 2 using a step size of h = 0.2. Compare your
results with the true value of the derivative. Interpret your results
on the basis of the remainder term of the Taylor series expansion.
4.7 Use a centered difference approximation of O(h2) to estimate
the second derivative of the function examined in Prob. 4.5. Per-
form the evaluation at x = 2 using step sizes of h = 0.25 and
0.125. Compare your estimates with the true value of the second
derivative. Interpret your results on the basis of the remainder term
of the Taylor series expansion.

4.8 The Stefan-Boltzmann law can be employed to estimate the
rate of radiation of energy H from a surface, as in

H = Aeσ T 4

where H is in watts, A = the surface area (m2), e = the emissivity
that characterizes the emitting properties of the surface (dimen-
sionless), σ = a universal constant called the Stefan-Boltzmann
constant (= 5.67 × 10−8 W m−2 K−4), and T = absolute tempera-
ture (K). Determine the error of H for a steel plate with A =
0.15 m2, e = 0.90, and T = 650 ± 20. Compare your results with
the exact error. Repeat the computation but with T = 650 ± 40.
Interpret your results.
4.9 Repeat Prob. 4.8 but for a copper sphere with
radius = 0.15 ± 0.01 m, e = 0.90 ± 0.05, and T = 550 ± 20.
4.10 Recall that the velocity of the falling parachutist can be com-
puted by [Eq. (1.10)],

v(t) = gm

c

(
1 − e−(c/m)t)

Use a first-order error analysis to estimate the error of v at t = 6, if
g = 9.8 and m = 50 but c = 12.5 ± 1.5.
4.11 Repeat Prob. 4.10 with g = 9.8, t = 6, c = 12.5 ± 1.5, and
m = 50 ± 2.
4.12 Evaluate and interpret the condition numbers for
(a) f(x) =

√
|x − 1| + 1 for x = 1.00001

(b) f(x) = e−x for x = 10

(c) f(x) =
√

x2 + 1 − x for x = 300

(d) f(x) = e−x − 1

x
for x = 0.001

(e) f(x) = sin x

1 + cos x
for x = 1.0001π

4.13 Employing ideas from Sec. 4.2, derive the relationships from
Table 4.3.
4.14 Prove that Eq. (4.4) is exact for all values of x if f(x) =
ax2 + bx + c.
4.15 Manning’s formula for a rectangular channel can be written as

Q = 1

n

(B H)5/3

(B + 2H)2/3

√
S

where Q = flow (m3/s), n = a roughness coefficient, B = width
(m), H = depth (m), and S = slope. You are applying this formula
to a stream where you know that the width = 20 m and the
depth = 0.3 m. Unfortunately, you know the roughness and the
slope to only a ± 10% precision. That is, you know that the rough-
ness is about 0.03 with a range from 0.027 to 0.033 and the slope is
0.0003 with a range from 0.00027 to 0.00033. Use a first-order

PROBLEMS
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error analysis to determine the sensitivity of the flow prediction to
each of these two factors. Which one should you attempt to mea-
sure with more precision?
4.16 If |x | < 1, it is known that

1

1 − x
= 1 + x + x2 + x3 + · · ·

Repeat Prob. 4.1 for this series for x = 0.1.
4.17 A missile leaves the ground with an initial velocity v0 form-
ing an angle φ0 with the vertical as shown in Fig. P4.17. The

where ve = the escape velocity of the missile. It is desired to fire
the missile and reach the design maximum altitude within an accu-
racy of ±2%. Determine the range of values for φ0 if ve/v0 = 2 and
α = 0.25.
4.18 To calculate a planet’s space coordinates, we have to solve the
function

f(x) = x − 1 − 0.5 sin x

Let the base point be a = xi = π/2 on the interval [0, π]. Deter-
mine the highest-order Taylor series expansion resulting in a maxi-
mum error of 0.015 on the specified interval. The error is equal to
the absolute value of the difference between the given function and
the specific Taylor series expansion. (Hint: Solve graphically.)
4.19 Consider the function f(x) = x3 − 2x + 4 on the interval
[−2, 2] with h = 0.25. Use the forward, backward, and centered
finite difference approximations for the first and second derivatives
so as to graphically illustrate which approximation is most accu-
rate. Graph all three first derivative finite difference approxima-
tions along with the theoretical, and do the same for the second
derivative as well.
4.20 Derive Eq. (4.31).
4.21 Repeat Example 4.8, but for f(x) = cos(x) at x = π/6. 
4.22 Repeat Example 4.8, but for the forward divided difference
(Eq. 4.17).
4.23 Develop a well-structured program to compute the Maclaurin
series expansion for the cosine function as described in Prob. 4.1.
The function should have the following features:
• Iterate until the relative error falls below a stopping criterion

(es) or exceeds a maximum number of iterations (maxit).
Allow the user to specify values for these parameters.

• Include default values of es (= 0.000001) and maxit (= 100)

in the event that they are not specified by the user.
• Return the estimate of cos(x), the approximate relative error, the

number of iterations, and the true relative error (that you can cal-
culate based on the built-in cosine function). 

Figure P4.17

R

v0

�0

maximum desired altitude is αR where R is the radius of the earth.
The laws of mechanics can be used to show that

sin φ0 = (1 + α)

√
1 − α

1 + α

(
ve

v0

)2
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