LFP각형 배터리의 냉각시스템 분석

한양대학교 미래자동차공학과 4학년 박찬우 김응환 지도교수: 민승재

논문 배경 및 목적

◆ 논문 배경

- 환경 규제 강화에 따른 전기차에 대한 관심 증가
- 열 폭주[안전성] 문제로 인한 냉각 장치 성능에 대한 연구 필요
- 배터리 셀간 온도 차를 줄이고, 별도의 전력을 필요로 하지 않는 PCM 소재에 대한 연구 활발
- Active cooling과 Passive cooling에 대한 비교 및 분석

- 실제 사용되고 있는 배터리 모듈 Active cooling 모델 해석 현재 연구중인 PCM(Passive) 재질을 이용한 해석
- 해석 간에 적정 셀간 온도차와 배터리 적정 작동 온도 유지

해석 모델 + Termianal ◆ 배터리 모델 및 해석 조건 (표) - Termianal Aluminu Jelly Roll Copper Acrylic Heat capacity 1470 975 385 (J/(kg*K))Anode Cathode current ← Density current collector 2700 8960 1190 2560 (kg/m^3) collector Thermal Case Conductivity 238 0.18 30.8 Jelly Roll 400 (W/(m*K))3D모델 구조

Heat transfer Initial Batt. External Heat Temp.(K) temp.(K) source (W^-2*m*K) Jelly 293.15 293.15 Roll

Cell case: Aluminum Anode Collector: Aluminum Cathode Collector: Copper Jelly Roll: Specific Material Terminal: Acrylic Plastic

1D모델 해석

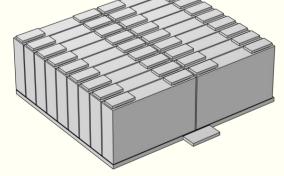
◆ 배터리 모델 및 해석 조건

- 1. 리튬이온배터리의 발열량을 분석하기위해 1D모델 설계
- 2. 1D모델에 전압 인가
- 모델 내부 물성치, 전류와 전압으로 인한 발열량 계산
- 4. 발열량을 3D모델에 대입 후 설계한 3D모델 해석
- 배터리 1C기준으로 해석하여 기존의 실험조건과 동일한 50min후 배터리의 이상적인 작동온도범위인(20~60°C), 셀 간 최대온도[7°C]를 넘지 않는 것을 목표로 하여 해석을 진행한 후 실험 값과 비교

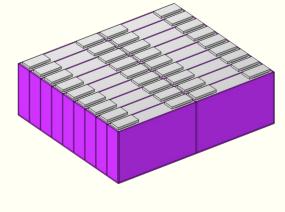
a	1	1	C-factor
i_1C	156[A/m^2]	156 A/m ²	1C discharge current
L_neg	55e-6[m]	5.5E-5 m	Length of negative electrode
L_sep	30e-6[m]	3E-5 m	Length of separator
L_pos	55e-6[m]	5.5E-5 m	Length of positive electrode
r_mandrel	2[mm]	0.002 m	Mandrel radius
L_neg_cc	7[um]	7E-6 m	Negative current collector thickness
L_pos_cc	10[um]	1E-5 m	Positive current collector thickness
L_batt	L_neg+L_neg_cc+L_sep	1.57E-4 m	Cell thickness
rp_neg	255.2*10^6[m]	2.552E8 m	Particle radius negative electrode
rp_pos	49.3e-6[m]	4.93E-5 m	Particle radius positive electrode
epss_pos	0.482	0.482	Solid phase volume fraction positive electrode
epsl_pos	0.29	0.29	Electrolyte phase volume fraction positive electrode
brugl_pos	2.1	2.1	Bruggeman coefficient for tortuosity in positive electrode
epss_neg	0.62	0.62	Solid phase volume fraction negative electrode
epsl_neg	0.31	0.31	Electrolyte phase volume fraction negative electrode
epsl_sep	0.4	0.4	Electrolyte phase volume fraction separator
brugl_sep	2.1	2.1	Bruggeman coefficient for tortuosity in separator
i0ref_neg	0.5[A/m^2]	0.5 A/m ²	Reference exchange current density negative electrode
i0ref_pos	1.5[A/m^2]	1.5 A/m²	Reference exchange current density positive electrode
cs0_neg	22055	22055	Initial state-of-charge negative electrode
cs0_pos	4001	4001	Initial state-of-charge positive electrode
cl_0	1000[mol/m^3]	1000 mol/m ³	Initial electrolyte salt concentration

1D 모델 parameter

	양극재	음극재	전해질
Battery Model	LFP	Graphite	LiPF6

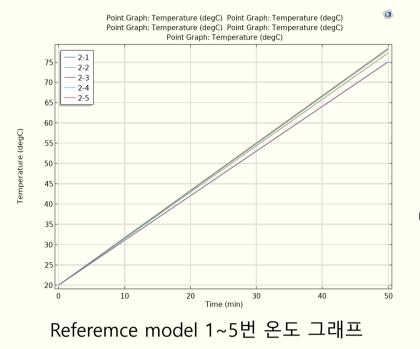

Active Cooling & Passive Cooling

- Active Cooling: 냉각을 위한 별도의 에너지 장치를 이용하는 것
- 냉각수 해석 조건
 - 모듈 단위(9x2개), 실제 사용되고 있는 냉각장치 해석
 - 단열재 두께: 2mm
 - Fin flow velocity(v): 0.98m/s [층류유동가정]
 - Coolant material: Ethlyne glycole & water (50:50)


Thermal conductivity [W/[m*K]]	Density [kg/m^3]	Heat capacity [J/(kg*K))]	Dynamic viscosity[Ns/M^2]	Kinematic Viscosity [m^2/s]	Prandtl number
0.4108	1050.440	3499	0.001538	0.00001464	13.099

- Passive Cooling: 냉각을 위한 별도의 에너지 소비장치를 이용하지 않고 자연적인 대류 및 열전도로 냉각하는 것
- PCM(Phase Change Material): 상변화물질. 특정한 온도에서 물질이 상을 변화하며 열을 흡수, 방출 또는 열에너지를 조절할 수 있는 물질
- 현재 연구가 활발히 되고 있는 소재이며, 가장 대중적인 배치로 설계 후 해석 ■ 모듈 단위: (9x2개), 기존 active cooling model에서 배터리 사이 단열재를 PCM으로 대체하여 해석
 - Phase change material: Paraffin Wax
 - PCM 두께: 2mm
- PCM 해석 조건

I CIVI 9						
	Thermal conductivit y (W/(m*K))	Density (kg/m^3)	Heat capacity (J/(kg*K))	Phase changing Temp. (K)	Transition interval (K)	Latent heat (KJ/kg)
Solid	0.21	920	1905	313	3.51	233
Liqui d	0.21	795	2318			

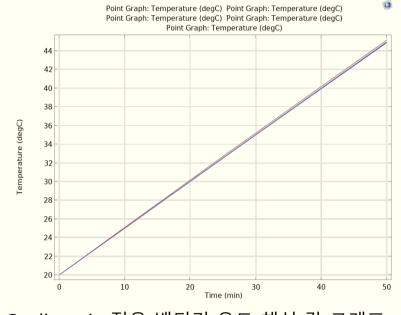

Cooling pin model geometry

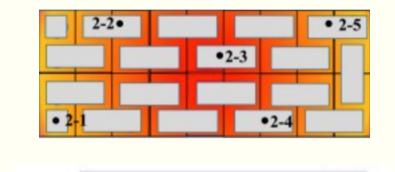
Cooling pin geometry

PCM model geometry

냉각 방법에 따른 해석 결과

◆ 냉각장치가 없는 Reference Model

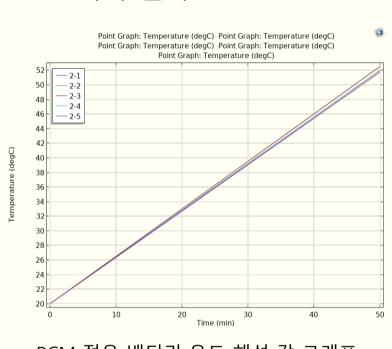

최대 온도	최소 온도	셀간 온도 격차
87°C	73.0°C	14°C

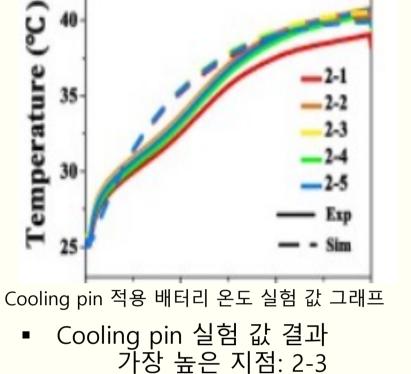

■ 1번부터 5번까지의 지점은 실험 값에서 찍은 온도 지점과 같으며, 냉각 장치를 장착하지 않은 모델 2-3에서 가장 높은 온도 75.6°C를 기록했다.

◆ Cooling pin 해석 결과

■ 해석 값 vs 실험 값

실험 값에서 측정된 온도 point와 같은 위치로 point를 찍어 온도 온도 비교를 진행





Cooling pin 적용 배터리 온도 해석 값 그래프

■ Cooling pin 해석 결과 가장 높은 지점: 2-3 가장 낮은 지점: 2-4 최고 온도: 45.2°C 최대 최소 온도차: 0.4°C

◆ PCM 해석 결과

가장 낮은 지점: 2-1

최고 온도: 42.5℃

■ PCM 해석 결과 가장 높은 지점: 2-3 가장 낮은 지점: 2-5

최고 온도: 53℃

최대 최소 온도차: 12℃

PCM 적용 배터리 온도 해석 값 그래프

논문 결과

◆ 결과 비교

- 리튬이온배터리는 100도 이상에서 열폭주가 발생하며, 셀 간 온도차이가 7도 이상 차이가 나게 되면, 열화 현상으로 인해 배터리의 총 용량이 감소한다.
- Active cooling 해석 결과 최대-최소 온도차이는 0.4도로, 셀 간 온도차이가 크지 않으며, 열폭주와 열화현상의 우려는 보이지 않는다. 또한, 실험값에서 최고 온도는 42.5°C, 해석값은 45.2°C로 2.7°C 차이가 난다.
- 별도의 전력을 필요로 하지 않는 passive cooling은 셀간 온도 격차는 12°C로 reference model보다 2°C정도 감소했으나, 최대 온도가 53°C로 다소 높게 나와 active cooling에 비해 냉각 성능이 떨어진다.

- Active cooling 으로 배터리 적정 작동 온도 (20~60°C) 와 적정 셀간 온도 차 (~7°C) 를 만족 할 수 있다.
- 단일 PCM소재로는 active cooling에 비해 냉각 성능이 떨어진다.
- PCM과 active cooling을 같이 사용하면, active cooling에 소모되는 에너지도 감소하며, 시너지 효과를 기대할 수 있기에 냉각 성능에 더 좋은 모습을 보일 것이다.
- Passive cooling 해석에 적용한 낮은 열전도도(0.21)의 Parrafin wax PCM 보다 높은 열전도도를 가진 PCM 소재들에 대한 연구가 필요하다.

참고 문헌

- Kai Shen, Jieyu Sun, Yuejiu Zheng, Chengshan Xu, Huaibin Wang, Shuyu Wang, Siqi Chen, Xuning Feng, A comprehensive analysis and experimental investigation for the thermal management of cell-to-pack battery system, Applied Thermal Engineering, Volume 211, 2022
- Henrik Lundgren, Pontus Svens, Henrik Ekstrom, Carl Tengstedt, Johan Lindstrom, Marten Behm, Goran Lindbergh,, Thermal Management of largeformat prismatic lithium-ion battery in PHEV application, Journal of the electrochemical society, Volume 163, 2015