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A unique characteristic of automobile body structure is the use of thin-walled
structural elements. If a typical structural element from civil engineering—an I
beam—is compared to a typical element from an automobile structure—a rocker
beam—the difference in section proportions becomes apparent, Figure 3.1. If we
compare the proportion of each section, the width to the thickness ratio, we see
that it is relatively large for the automobile section. Further, we see that, unlike the
I beam, the auto section is non-symmetrical, and that it is a fabrication of several
formed pieces spot welded together. All of these differences lead to important
differences in physical behavior, which we will cover in this chapter.

Automotive rocker Civil engineering
typical section typical section

Figure 3.1 Beam sections.

3.1 Overview of Classical Beam Behavior

As a foundation for automotive beam behavior, we begin with classical beam
behavior. This behavior is best embodied in a long straight beam with an I beam
section; our assumptions are that the section is symmetric, the applied forces are
down the axis of symmetry for the section, the section will not change shape upon
loading, the deformation of the beam will be in the plane and in the direction of the
applied load, the internal beam stresses vary in direct proportion with the strain,
and failure is defined as yielding of the outermost fiber.

3.1.1 Static equilibrium at a beam section

The behavior of a beam under loading depends on the resulting bending moments
at sections along the beam. To determine these moments, we can imagine the
beam, Figure 3.2a, cut at some distance x from the end, Figure 3.2b. Looking at

the left portion of the beam, an upward shear load, V, and a counter clockwise
bending moment, M, act on the cut section. By setting the beam portion into static
equilibrium we can find both V(x) and M(x). These are related by, Figure 3.2c, or
the bending moment at a location x is equal to the area under the shear diagram
between 0 and x.

X
M(x) = J-de 3.1)
0
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where:
M(x) = Bending moment on a section at x

V = Shear load on section at x
x = Coordinate along length of beam
In Equation 3.1 and subsequent equations where the bending moment, M(x),

appears, a positive bending moment is defined to be one which bends the beam
such that the radius of curvature is above the beam.
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Figure 3.2 Beam equilibrium.
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3.1.2 Stress over a beam section
At any cut of a beam, the direct stress varies linearly with the distance from the
neutral axis, z, according to

e _¥ (3.2)
where:
z = vertical distance from point of interest to the section neutral axis. (Defined to

be positive in the upward direction.)
M(x) = Bending moment on the section

o = Direct stress at point of interest
The moment of inertia, I, is given by:

Fee J' 22dA (3.3)
SECTION
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3.1.3 Beam deflection

The deflected shape of a beam may be described by a function, y = f(x), where y

is the lateral deflection from the initial shape at a distance x from the end. The
curvature of the deflected beam at the distance x can be approximated by the second
derivative, y”. This curvature is directly proportional to the bending moment acting
at that section:

L) NCY)
EI
where:
M(x) = Bending moment on a section at x

y” = Curvature of the beam at x
E = Young’s modulus
I'= Moment of inertia
The deflection of a beam results by integrating Equation 3.3 twice and applying

specific boundary conditions for the beam. Application of this equation provides
useful results for stiffness for several typical beam conditions, Figure 3.3.
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Figure 3.3 Beam stiffness equations.
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With this summary of classical beam results, we can now look at the unique
behavior of automotive structural elements. In this discussion of body structural
elements, we will divide them into two general types: 1) frameworks constructed
of beams, and 2) panels, Figure 3.6. In the next section we will develop tools to
understand the unique behavior of automotive beams.
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Figure 3.6 Structural element classification.

3.2 Design of Automotive Beam Sections

Several characteristics of automotive beams require analytical tools beyond classical
beam theory. Below we will treat 1) the non-symmetrical nature of automotive
beams, 2) local distortion of the section at the point of loading, 3) twisting of thin-
walled members, 4) the effect of spot welds on structural performance.

3.2.1 Bending of non-symmetric beams

Beam sections in automotive applications are typically non-symmetrical, and

we must develop the ability to predict deflection and stress for these sections. A
symmetrically loaded section will deflect in the same direction as the applied load,
Figure 3.7a. The deflection of a beam with a non-symmetrical section in general will
not be colinear with the applied load, Figure 3.7b.

(b)

Symmetrical beam Non-symmetrical beam

Figure 3.7 Deflection of symmetrical and non-symmetrical beams.
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However, for any arbitrary non-symmetric section there is a specific axis through its
centroid for which a load applied along that axis will produce a deflection colinear
with that load [1]. This axis is defined as a principle axis. Perpendicular to this axis is
a second principle axis with the same load-deflection property, Figure 3.8.

Principle coordinates view down length of beam
for section showing deflection

Figure 3.8 Non-symmetrical beam principle axes.

This suggests a way to predict deflections in a beam with a non-symmetric section
and loaded in some arbitrary direction, Figure 3.9:

1. Resolve the load into components along each principle axis.

2. Solve for the resulting deflection for each of these components using the equations
of Figure 3.3. Note that the moment of inertia is taken about the axis perpendicular
to the load. Each of these deflections will be along the respective principle axis.

3. Take the vector sum of the two deflections to determine the magnitude and
direction of the total deflection.

Deflections along
principle axes

Vector sum of
deflections along
principle axes

Figure 3.9 Non-symmetrical beam deflection.



For stress, the steps are similar after determining

the bending moment vector acting on the section, ¥

Figure 3.10: My

1. Resolve the moment into components along Applied
each principle axis. - moment

2. For each component of the moment, solve for My,
the resulting stress using Equation 3.2. Note
that the dimension z is the distance to the point
of interest from the axis which is colinear with
the moment vector, and the moment of inertia is about the same axis.

Figure 3.10 Moments acting on
non-symmetrical beam.

3. Take the algebraic sum of the two stresses for the resultant stress.
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3.2.2 Point loading of thin-walled sections

In the development of beam theory for thin-walled sections, we have assumed that the
applied point loads only influence the beam through the resulting bending moments.
In practice, with thin-walled sections the point load also distorts the beam section in
the vicinity of the load, Figure 3.16. This undesirable distortion leads to a reduced
apparent beam stiffness and increased local stress. In this section, we will develop tools
to predict the degree of local distortion and strategies to minimize local distortion.
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Figure 3.16 Local deformation under point load.

To investigate the effects of point loading of a thin-walled section, consider the latch
structure of a van, Figure 3.17. We will idealize this structure as a simply supported
beam with rectangular section. The latch applies a point load at the center of the
section, and we are interested in the resulting stiffness measured at this point. Under
such a load, the deformation we would observe is shown in Figure 3.18. In addition
to the idealized beam deformation, we would see a local distortion of the section
near the point load. In effect, the thin-walled point-loaded beam would be two
springs in series: the idealized beam stiffness, and the stiffness of the local distortion
of the section, Figure 3.18. The idealized beam stiffness is summarized in Figure 3.3.
Now we will look at a way to predict the local distortion.

Van latch structure
stiffness requirement
K>1500 N/mm

100 mm square, t=0.8 mm
Steel

m’mm

Figure 3.17 Van cross member.

e B

Deformed shape

Figure 3.18 Deflection of van latch structure.
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Looking again at the distorted beam, we can separate out the idealized beam
deflection by imagining the beam supported along its neutral axis, Figure 3.19a. The
point load is reacted by a deformed patch on the top surface of the beam which we
denote as the affected zone (we take the length and width of the affected zone to be
the section width, b). The affected zone can now be imagined to be cut into slices of
unit length with each slice acting as a spring supporting the load. Figure 3.19b. As
such, the distorted sections act as an elastic foundation for the point load.

width of -
affected zone =
Physical behavior: both
beam deformation and
local deformation

Beam cut into slices. Overall
beam deformation eliminated
by supporting slices along
neutral axis leaving only local
deformation of each slice.

Figure 3.19a Idealized beam.

Local behavior
isolated by
supporting beam
along neutral axis

Beam divided into

slices of unit width I. I!I
>

over affected zone

Slice characterized by a rfj‘sucg
framework with stiffness kg -, °

Figure 3.19b Idealized beam.
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Consider the foundation stiffness to be kg, 1cx N/mm/mm and assume the deflected

shape for the top plate centerline is, Figure 3.20:
y:—Asin%, O<x<m

where:

y = Normal deflection of top plate at centerline

b = Plate width

A = Plate deflection at point of load application

x = Coordinate along length of plate
The strain energy, de, in one slice may be integrated over the length of the affected
zone to arrive at the energy of distortion for the affected zone:

1

de = 2 (kspice d2)(y)?

b
1
°E5 _[ kspicg (v)2dx

0
1 4 1 b
. omx
€= 0) _[ kspicg(—Asin 7) 2dx = B kopice 2
0

We can equate this distortion energy, e, to the work done by the external force, 1/2FA.
Equating work to strain energy yields:

K k

LOCAL — 5 sLice? (3.5)

So the stiffness as seen by the point load, k, is directly related to the stiffness of a

7 ""LOCAL’

slice of the section, k.. For a rectangular section & high, b wide and ¢ thick, Figure 3.21,

. L SLICEA
the stiffness of a unit slice is:

_16Et3(h+b)
SLICE b3(4h+b)

so substituting Equation 3.6 into 3.5 for a point-loaded thin-walled rectangular beam:

_8Et3(h+Db)
LOCAL b2(4h + b)

(3.6)

K
where:
K, ocar = Local stiffness of section under a central point load
t = Section thickness
h = Section height
b = Section width
E =Young’s Modulus
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Figure 3.20 Idealized beam analysis.
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The above example demonstrates why an untreated thin-walled section performs so
poorly under a point load. In practice there are several strategies to reduce this local
distortion so that the idealized beam stiffness is more fully utilized. Fundamentally
the point load must load the shear web of the section directly, Figure 3.22. This can
be achieved by moving the load point to align with the web, Figure 3.23a. When the
load point cannot be physically aligned with the web, Figure 3.23b, a stiff structural
element, which reacts the load to the webs, can be added to the section. Finally, a
through-section attachment with bulkhead can be used to achieve this transfer of
load to the web, Figure 3.23c. Two examples of this strategy are shown in Figure 3.24.

Need to transfer applied
f load to side walls

Applied load T

~

> \___ Need to distribute
load to shear
members in web

Figure 3.22 Shear web.

3.3 Torsion of Thin-Wall Members

Elementary treatment of twisting of bars is limited to solid circular sections. For
solid circular bar, the basic equations [3] for angular deflection and for shear stress
are given by:

L
sl 3.7
6 ] (3.7a)
T
i (3.7b)
J
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Move load to Local Through-section
shear wall reinforcement reinforcement
(a) (b) ()

Figure 3.23 Loading the shear web.

Through-section engine mount Through-section door hinge
attachment attachment

Figure 3.24 Example sections reacting a point load. (Courtesy of A2Mac1.com
Automotive Benchmarking, and the American Iron and Steel Institute, UltraLight
Steel Auto Body

where:
T = Applied torque

0 = Resulting angle of twist
] = Polar moment of inertia
G = Shear modulus

L = Length of the bar

r = Radius of the bar

7= Maximum shear stress (at the surface of the bar)
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3.3.1 Torsion of members with closed section

For the thin-walled hollow sections we see in automotive body structures, Equations
3.7 are not valid, and we will now develop the equivalents for predicting angular
deflection and shear stress for thin-walled closed sections:

P 1 (3.82)
GEer
o (3.8b)
2At
where:
0 = angle of rotation
T = Applied torque
L = Beam length
7= Shear stress
A = Area enclosed by the section
t = Thickness
J e = Thin-wall torsion constant
For a thin-walled closed section with constant thickness:
4A%
L (3.9)
Jerr S
where:
Jee = Thin-wall closed-section torsion constant with constant thickness
S = Section perimeter.
A = Area enclosed by the section ;!
t = constant thickness
For sections with varying thickness:
2
4A” (3.10)

Jerr = 25,
i
i ti

where the section is divided into i segments each of uniform thickness, t,and length s,

We will now develop these equations [4]. Consider a thin-walled closed tube of
arbitrary cross-section shape and length, L, Figure 3.25a. We apply equal and
opposite torques at the ends of the tube and imagine the tube cut along its length,
Figure 3.25b. All along one of the cut edges will be a shearing stress, 7,, and we can
look at the static equilibrium of a rectangular element adjacent to the cut, Figure
3.26a. Setting longitudinal forces into equilibrium gives 7,t,=7,t,. The quantity () is
the shearing force per unit length and we define this as shear flow, . Further, setting
moments on this element into equilibrium, Figure 3.26b, yields g°=g, or the shear
flow on all sides of this element are equal. This shows that the shear flow, (1t), is
uniform throughout the tube. Now we seek a relationship between shear flow and
applied torque.
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ytydL TotpdL qdL qdL
A 4

q'ds
T4t = Tot, =constant 2M,=0=(q dL) ds-(q’ds) dL
7t =g shear flow q'=q shear flow

(a) (b)

Figure 3.26 Element under torsion.

Looking at the end view of the tube, we can consider a small element of perimeter,
dS. As shear flow is uniform throughout the tube, the force, dF, acting on this
element is dF=qd$S. This force is directed tangent to the section, and results in a small
torque, dT, about some arbitrary point O contained within the interior of the section.
The torque is equal to the force, dF, times the distance, 7, from the line of action of
the force to the point O, or dT=rdF=rqdS. To determine the total torque we must
integrate around the perimeter:

T= jgrqu

PERIMETER
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Since g is constant, it can be brought out of the integral:

T=gq §rd5
PERIMETER
To solve this integral, note that the shaded area in Figure 3.27 is given by:

dA = lrdS
2

Substituting this relationship into the previous yields the desired relationship
between stress and torque. (Note that A is the area enclosed by the tube perimeter
and not the area of the material.):

T=2g §dA
PERIMETER
T=2gA
Ll
=54
r=L_ (3.11)
2tA .

where:
T = Applied torque

A = Area enclosed by the section
t = Thickness

) q ds
H

Figure 3.27 Tube section.

Now consider the angle of twist, 6, resulting from the application of the torque, T,
Figure 3.25. We will equate the work done by the external torque to the strain energy
stored within the twisted tube.

external work from applied torque = %TG
1 1T 14
trai =|-ytdV=|-=wV=|-—dV
strain energy I2y7 -[2 G J.Z G
2
strain energy = J.j%%—t dL ds
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using Equation 3.8 to substitute for shear stress,=:
Sy
trai =||=—=|=—| tdLdS
strain energy ” o (ZAt)

1o 1
trai =———1||-dLdS
strain energy G (2A)2 J‘J‘ ;
strain ener: = _}_Ez_ E
A TR,

Equating work to strain energy:
1 i S el

2 d0UAV I 1

L
4GA° 34
Rearranging yields:
WL :
GI EFF
sa’
Gl 5ds
§_+ 3.12)
t ' )
1A*

where ] EFF™ ——E
t
which agrees with Equation 3.8a where the variables are defined. Note for the case
where the thickness is constant, the effective torsional constant is

4A%t
)i g T (3.13)
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3.3.2 Torsion of members with open section

The above discussion concerned tubes with closed section. For opeh sections, the
development of the equations requires application of the theory of elasticity and is
beyond the scope of this book. However, we state the results [5] below, Figure 3.29,
for a thin-walled open section of constant thickness:

Jerr = 1t35 (3.14a)
3
T= o - (3.14b)
Jrr
where: 3
J s = Torsion constant for an open section
S = Developed section length
t = Thickness

T = Applied torque

7 = Shear stress

Uniform thickness Variable thickness
Jgpp=1/3s8 Jepr=1/3 25,17

Figure 3.29 Torsion of open sections.
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For open sections with non-uniform thickness:
15,s
Jeer = gzti 5; B:l2)
i

where the section is divided into i segments each of uniform thickness, ¢, and length s,.

Note the somewhat unexpected result that the shape of the open section does not
enter the expressions, and in general open sections are much more flexible than a
closed section of the same perimeter.

3.3.3 Warping of open sections under torsion

The above examples for torsion of open and closed sections showed the open
section to be relatively highly flexible. The reason open sections perform so

poorly in torsion is that the section has considerable warping in the longitudinal
direction, Figure 3.31. In Equations 3.14a and 3.14b, we assumed that this warping
is unrestrained in any way. However, if we rigidly hold an end of the open tube
and prevent warping, the stiffness of the tube can be markedly increased. In Figures
3.32 and 3.33, we provide formulae for prediction of angle of rotation when one or
both ends of a tube are restrained from warping [6]. Note the use of the warping
constant, Cw, for the section. Warping depends only on the geometry of the section,
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with large Cw values indicating greater out-of-plane deformation, and Cw=0
indicating the section remains planar under torque loading. For general sections, the
constant Cw may be obtained using section analysis software, or for simple sections
it may be calculated using the formulae shown in Figure 3.34 [6].

Figure 3.31 Open-section warping.

J=torsion constant, Cw=warping constant: k= C‘:]C;
; 7
(a) 7.0 gl g
- warp JG
warp
(b) e g TE (1 tanhkL)
~ "
warp no GJ kL
warp
i tanh@
() - Bt g Bl D
no no GJ kL
warp warp 2

Figure 3.32 Formulae for twist of end-loaded warping tubes.

7,0 7L tanh *L

@ 2 N ) |
warp | warp 4GJ kL
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no warp no T 4GJ kL
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Figure 3.33 Formulae for twist of center-loaded warping tubes.
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Figure 3.34 Formulae for warping coefficients.
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The physical means of restraining warping is often challenging to achieve in practice.
In Figure 3.36, other boundary conditions are shown for the steering column beam for
the cases (a), (b), (c) of Figure 3.32.

Warping Warping Warping
@sjrained constrained constrained
Warping Warping Warping

unconstrained unconstrained constrained
L 1,0 T
- o Y
warp warp warp No No No
warp warp warp
(a) (b) (c)

Figure 3.36 Constraining warping: Idealization.

62



Note that the effectiveness of restraining warping depends on the tube length; the
stiffening influence of restraining warping diminishes as the tube becomes longer.
Intuitively this is because the warping restraint primarily influences the region around
tube end, and as the tube becomes longer this region becomes proportionately smaller.

3.3.4 Effect of spot welds on structural performance

Automotive body sections are fabrications of several formed elements, usually

spot welded together. Spot welding is a robust and cost-efficient process for mass
production, Figure 3.38, but does present some unique structural challenges. One of
these is the addition of shear flexibility in the section which is most evident during
torsion of fabricated sections. In this section we will develop tools to predict the
degree of shear flexibility, the implications on section stiffness, and strategies to
minimize the flexibility.
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electrical
current

pneumatic actuator

i il = weld tips

R electrode
+ R sheet-electrode
+ R sheet e

P=2R

+ R faying surface Joule Heat=Pt= i Rt

+ R sheet where P=power
+ R sheet-electrode i=weld current
+ R electrode t=weld time

Figure 3.38 Spot welder.

3.3.4.1 Peel versus shear loading condition

Let us look at a single spot weld loaded by equal and opposite tensile loads, Figure
3.39. This condition is referred to as shear loading. The loads act on the centerline

of the flange thickness, and the offset between centerlines creates a moment at the
weld. The moment bends the flange and creates high stress in the area of the weld,
as shown in Figure 3.40. Even the small offset of loads under shear loading creates
stress concentrations, which reduce fatigue performance. Figure 3.41 shows this
effect for a mild steel sample loaded in shear with the fatigue limit being reduced
from the base material—in this case, by a factor of seven. When an adhesive is used
in addition to the spot weld, the stresses are more evenly distributed and the fatigue
performance is enhanced.

Figure 3.39 Shear-loaded spot-welded joint.
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Figure 3.40 Stress in spot-welded joint.

mild steel
idth=25 mm
TR —
thickness=0.7 mm
metal overlap=15 mm
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. ----""“-—- Weld bonded
Thh—— Spot welded

1 | ]

105 108 107 Cycles to failure

1000

0

Figure 3.41 Fatigue of spot-welded joint in shear.

Another loading configuration—peel loading—increases this detrimental offset even

more, Figure 3.42. Comparing weld strength for an individual weld, Figure 3.43,

shows the effect of increasing the loading offset, x, beyond the sheet thickness as in
shear loading. Because of this effect, good design practice is to use part geometry to
put welds into shear loading rather than peel loading. Figure 3.44 and 3.45 show auto

body examples for welds in peel and the preferred design with the weld in shear.
Note that in each case, we assume a tensile load within the plane of the thin-wall
material, and attempt to minimize the offset of this tensile load from the weld.
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= =

Figure 3.42 Peel loading of spot-welded joint.

Weld strength in peel Weld strength in shear
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Figure 3.43 Offset effect on spot-welded joint strength.

Weld in shear Shear condition

- -——"—-— -
Rear compartment Weld in peel Peel condition
pan (avoid)

Figure 3.44 Examples of rear compartment joints in shear and peel.
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Figure 3.45 Examples of joints in shear and peel.

3.3.4.2 Longitudinal stiffness of a shear-loaded weld flange

Even with a well-designed spot-welded joint under shear loading, local deformations,
which will reduce the apparent stiffness of a section, will occur. We will now look at

a welded flange and determine how it elastically deforms under the action of shear
loading. Isolating one spot weld, the distortion under a shear load is a rotation with
the center at the interface of the weld, Figure 3.46. This rotation causes a relative
longitudinal deflection between the two flanges. Now looking at a series of welds
under shear loading, we can expect the deformation shown in Figure 3.47.

|
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r—— i im i Limomome [
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—

Figure 3.46 Distortion at spot weld.
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770|/\/\/\/'\x
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shape of distorted
flange in side view
n="nsin( 27m/p)

Figure 3.47 Distortion for a series of spot welds.

At each weld the same small rotation occurs and the result is a relative longitudinal
deflection at the end of the flanges. Let the deflected shape of the flange be given as:

o 20X
n=1,sin—
14
At each weld, the slope is Oatx=0,p, 2p .. . .:
dn 2z 2mx
ekl = 770 —COS——
dx P p

dn 2z
— (at :O/ 7 2 o) = —=9
7 #x=0, p. 2p..)=m, -
From the geometry:
6=i00r9=25
2 t

Substituting into the above gives:

2r 2

onid B
UN ;

=L
o tr

where:
7, = Amplitude of the deformed flange sine wave (Figure 3.47)

t = Thickness for upper and lower flange
p = Spot weld pitch (distance between spot welds)

6 = Lateral deflection of the flange from the original position
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We can now use energy principles and equate work done by the external shearing
force to the strain energy stored in bending the flange into the sinusoidal shape.

The work done by an external elastic shearing force acting through distance § is:
1 1 1
k==F5=—(L)o == 6
work == . (qL) > (qnp)

where:
g = Shear flow at the welded flange

n = Number of spot welds in the length
p = Weld pitch (distance between spot welds)
6 = Deflection down the length of the welded flange

The bending strain energy in the distorted flange with moment of inertia I is:

L 2
_ (EI(n")? - 2r ) . 2mx
e—J.—2—dx and 7"=-1, 7 sin—

0 p
L=np 2 2

EI 2r . 2mx
e=— j M| — | sin—| dx

2 P P

0
4L=mnp

6=E‘I]02 2 J. sl =2 b

2 p P

0
Substituting the identity and integrating:

1-cos 2(—@)
sin? [_27zx) el
p

2

4

EI 2w | n
2 p}2

from above 7, = P 550

tm

4EIn? né?

e= —

2 p
Now equating work with strain energy gives:

4FIn? néd?
2

o=

_ 8EIx?

(pt)?
For a flange width, w, and thickness, t, [=wt}/12 and:

3p? (3.16)
= 2Enwt |
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where:
6 = The deflection down the length of the welded flange

p = Weld pitch (distance between spot welds)

g = Shear flow across welded flanges (force per unit length)

E = Young’s Modulus

w = Flange width

t = Flange thickness
Equation 3.16 provides some insight into the added flexibility when a spot-welded
flange is present in a section. When a shear load is introduced at the weld interface,
a longitudinal deflection will occur. This deflection is proportional to the square of
the weld pitch. The deflection occurs whenever a shear across the weld is present,

during both section bending or in torsion. To illustrate the influence on section
stiffness, consider a tube, closed by a single spot-weld flange, Figure 3.48.

Ideal closed tube fabricated
closed tube with a single weld flange
'-__' -

S = Perimeter
== without flange
considered

Figure 3.48 Closed tube with single weld flange.

The tube of Figure 3.48 is twisted by torque, T, and we are interested in the angle of
deflection [7]. In our previous development of the closed-tube twisting behavior, we
used a balance of work performed by the external torque to the internal shear strain
energy within the tube. We can consider the same balance, but now the internal
energy is also contained within the distorted weld flange.
External work =(shear strain energy in tube wall) + (strain energy in distorted flange)
1 SL 1
—TO=—4q>+=(qL)8
2= a1 2
Using the result of Equation 3.16 for &:

2
lT9=iL—q2 +%(qL)( d q)

2 2Gt 2Er2wt
. : o . . . G 1
Which can be simplified using the relationship, — = to:
E 2(1+p)

(stiffness of closed tube without weld flange)

Gl (3.17)
i
47?1+ 1) ws

L
0
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where:
(T/6) = Torsional stiffness of the spot-welded tube
p = Weld pitch
= Poisson’s ratio
w = Flange width

S = Perimeter of the section without flange considered

This expression gives an estimate of the reduced stiffness in a twisted section when
a single spot-welded flange is present.
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3.4 Thin-Wall Beam Section Design in Automobiles

In the previous sections, we have been discussing the unique behavior of the
thin-wall sections used in the automotive body. It is helpful to ask a fundamental
question: Why are automotive sections so often thin walled? We will use a simple
thought experiment to answer this question. Consider a steel cantilever beam
with a tip load. In this experiment the cross-section area is fixed (and therefore

the beam mass is fixed), and we are free to choose the cross-section shape to
maximize strength and stiffness. From basic beam theory we know for a cantilever
beam that:

3EI [0 pEsien
K= F and PMAX = DL—C (3'1 8)
where:
K = Stiffness in bending
F,,,x = Maximum load (strength)

E =Young’s Modulus

L = Beam length

¢ = Distance from the neutral axis to the outer fiber
I = Moment of inertia, I=[z?dA

O,

esiony = Allowable design stress

In‘this experiment we will take the material yield stress as the design stress,
0'Design:GY'

First let us imagine a square cross section of unit area as our base for stiffness and
strength performance, Figure 3.51a. Now observe from Equations 3.18 that both
stiffness and strength increase with moment of inertia, and as section material is
moved away from the neutral axis the moment inertia is increased. This observation
leads to an I beam shape with increased moment of inertia for constant cross-
section area, yielding improved strength and stiffness. For example, Figure 3.51b
shows an I beam of the same mass as the base square, resulting in 17 times the base
stiffness. With no apparent difficulties with this design approach, we can move the
material further from the neutral axis to result in the I beam of Figure 3.51c and a
performance of 115 times the base stiffness. Given our assumptions, this approach
could be continued until a very tall I beam of paper thickness resulted in presumably
a very high stiffness and strength.

If we now move from a strictly thought experiment to testing two of the designed
sections, the thick-walled I beam of Figure 3.51b and the thin-walled I beam of
Figure 3.51c, we would find that while very stiff, the thin-walled section fails at an
unexpectedly low load. The difference between expected performance and actual *
performance for the thinner-walled section is the existence of a new failure mode—
elastic plate buckling of the compressive elements of the section.
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relative stiffness: 1 17 115
(a) (b) (c)

Figure 3.51 Relative bending stiffness for equal cross-section area.

The general behavior of a compressively loaded plate is to react loads by direct
stress. However, if the plate is sufficiently thin, it bifurcates into the buckled

- shape, Figure 3.52. The compressive stress at which this occurs depends on the plate
width-to-thickness ratio, b/t. The design stress for a thin plate under compressive
loading is then the lower of yield stress or plate buckling stress, Figure 3.53.

Thus, in section design we deal with a trade-off: Thick-walled sections with higher
strength but lower stiffness performance, or thin-walled sections with higher
stiffness but lower strength performance due to plate buckling. Selection of the
best section proportion then depends on the relationship of strength requirement
to stiffness requirement for the section. This trade-off can best be illustrated with a
specific automobile body design example.

Plate buckling of

Thin-walled beam State of stress compression elements
l ‘\‘\ tension
s

compression

Figure 3.52 Deflection behavior of thin-walled members.
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design stress yield plate buckling
lower of yield —

or !
plate buckling

Oy

/GCROC(b_/tF

1

0 50 100 150
Width-to-thickness ratio
b/t

Figure 3.53 Plate buckling stress.

0
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In the above example, we examined the motivation for using thin-walled sections
for the case of global bending. Looking back at structural requirements for body
subsystems, Figure 3.60, we can see that many of the subsystems, but not all, are
stiffness dominated, and thin-wall sections are most efficient for those elements.

Understanding the relationship between section proportion and dominant requirement,
we can look at an actual section and infer the dominant requirement for the section
proportion. Figure 3.61 shows a typical automotive body structure with the measured

100000, 10 mm 1.0 mm

7strength rear rail
dominated fore-a
shock

1

10000 «bending; 4 ¢ oo

Required | < engine mount
strength 3
(N) g X brake cylinder support
1000 -

Stiffness

dominated
100 f T SR o T T | B e T o A
100 1000 10000 100000

Required stiffness (V/ mm)

Figure 3.60 Dominant structural requirement.

Strength

elements obh DO
b/t=33t0 50

Combined

stiffness and —

strength o 1

elements b/t=70to 100

Stiffness

elements

including all JaN

panels

b/t=100to 250

Figure 3.61 Section proportion determined by function
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(b/t) ratios for various sections. For those sections with lower (b/%), strength is the
dominant requirement, and these sections are associated with reacting loads in a
crash—roof crush, side impact, maintaining cabin integrity. For those sections with
moderate (b/t), a balance of strength and stiffness is required, and these sections are
associated with major subsystem attachment points—suspension attachments and
powertrain attachment. For those sections with high (b/t), the stiffness requirement is
clearly dominant, and these sections are associated with the overall stiffness of the body.

We have shown that many structural elements in automobile body design are
dominated by stiffness requirements. A mass-effective means to design for stiffness
performance is to use thin-walled sections which have a failure mode of buckling of
the compressive section elements. In the next section, we will look at the governing
equations for important modes of plate buckling.

3.5 Buckling of Thin-Walled Members

Perhaps the most significant difference between automotive sections and others
is the failure modes caused by plate buckling of section elements. In this section
we will develop tools to estimate plate buckling stress in section elements, and to
estimate the strength of a buckled section.

3.5.1 Plate buckling

In the convertible rocker sizing example above, we used the expression:

748355

GCR =WN/mm

to describe the buckling stress for the compressive cap of the rocker section. We
will now look at the physics of plate buckling and develop this and other buckling
relationships. .

Consider a flat plate of length a and width b where a > b, Figure 3.62. The plate lies
in the x—y plane and is loaded by compressive stress, f,, along the edges as shown.
In the buckled state, the plate will have deflections, w(x,y), normal to the plate in the
z direction. For this analysis, we will consider the plate to have simply supported
boundary conditions (no deflection and zero bending moment) along all edges.

z,w

S

e

Figure 3.62 Flat plate.

Looking at a small element of this plate, we identify the loads acting, Figure 3.63. On
the shaded y face of the element acts a bending moment per unit of length M,, which

results in direct bending stresses o, and a twisting moment, M, , which results in a
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Compressive stress in x direction: f
Moments per unit length: M,, My, My,
Distributed normal load per unit area: ¢

14

z

My=/oyz dz bending moment
which creates oy

-------------- Myy=/tyyz dz twisting moment
which creates 7y,

MX MX Y - T :

//// P moments acting on y face
X

Figure 3.63 Plate element loading.

shear stress, 7,,. Similar moments, M, and M,,, are applied to the x face. Also acting
on the element is a normal load per unit of area, g, and a compressive stress, f,.

By applying 1) static equilibrium of the element under these loads, 2) compatibility
of deformations within the plate, and 3) the material stress-strain relationship, the
plate equations result. For the development of these equations, the reader is referred
to texts on the theory of elasticity [9, 10, 11].

M, =—D[ 327?+?9;—?J
My, =-D(1- u)(—gj—a”;)

3

where D = 1—2(1Et—2) is the plate flexural rigidity and w(x,y) is the out-of-plane
—H
deflection of the plate which satisfies all these relationships.

To solve the plate equation, a function for the plate deflection is guessed and then
substituted into Equations 3.21 to test its validity. Not only must the deflection satisfy
the first of Equations 3.21, but the moments at the edges must satisfy the boundary
conditions. For our case of a simply supported plate those boundary conditions are:
My (x=0,y)=0 and My(x=a,y)=0
My(x,y=0)=0 and M, (x,y=b)=0
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By observation of buckled plates, a reasonable guess at the deflected shape is:

mm)sin(—’%), wherem,n=1,2,3,....
a

w = Amn sm(

which satisfies the boundary conditions. (An example of this shape is shown in
Figure 3.62 for m=2, n=1.) Substituting this assumed deformation into the first of
Equations 3.21 with g=0 gives:

2 2Y? b 4502
() - O )
a a

wheren,m=1,2,3,...

. (mnx) . (nmy), . .
Since the term 4,,, sm(T) sm(Ty) is not in general zero, the term in brackets

must be equal to zero, and solving for the compressive stress, f,, yields:

Dr2[ (b) n?(a\[
= =k e (3.23)
fx th? l:m(a) m (b)]
where:
fx = 0 the critical plate buckling stress with all edges simply supported
3
D = Plate flexural rigidity D = 12(%,7)

t = Plate thickness

a = Plate length

b = Plate width (for the compressively loaded edge)

m = Number of half sine waves in buckled plate along x axis, m=1,2, 3...

n = Number of half sine waves in buckled plate along y axis, n=1,2, 3. ..

We would like to find the minimum compressive stress which would induce this
deflected shape. This occurs at the minimum for the term in brackets. First observe
that this term is, for all values of 11, lowest when n=1. Physically, this occurs when the
deflected shape across the plate is one half sine wave. To investigate the bracketed
term with n=1, we plot it against plate length-to-width ratio, a/b, Figure 3.64. This
plot shows for long plates where a/b>1 a minimum value of four results. Thus the
critical compressive plate buckling stress for a simply supported plate is then:

- bmg. En’ 3.24
Ocr T T2 s 12(1- pu2)(b / t)? o2y

Where variables are those of Equation 3.23. For plates where a/b<1 use m=1, n=1 in

Equation 3.23 and:
Dr2[(bY (a\]
o= (2)+(5)] e

Where variables are those of Equation 3.23. However, for most practical applications
in automobile sections, a/b>1 and Equation 3.24 is used when the boundary
conditions are simply supported.
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1 2 3 b

The critical stress of Equation 3.24 was developed for simply supported boundary
conditions. With different boundary conditions, the form of Equation 3.24 may still
be used, but with a plate buckling coefficient, k, replacing the value of 4.

En?
e — 3.26
Ocr 12(1-u?)(b / )2 (3.26)
Figure 3.65 provides values for the plate buckling coefficient for several boundary

conditions found in practice [11, 12, 13]. Note the inclusion of shear and bending

k=4.00 5, k=6.97

Figure 3.65 Buckling constant for long plates with various boundary conditions.
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loading in this table. Whenever a plate is under a compressive state, it is subject
to buckling. In the bending stress case, the plate is subject to buckling only in the
compressive half of the web. In the shear case, Mohr’s circle can be used to look at
the stresses in an element rotated 45°, Figure 3.66. It can be seen that, while

the external loading is shear, on this rotated element one of the principle stresses
is compression. Figure 3.67 shows the diagonal waves typical of a shear

buckled plate.

buckled
n | e |

T T |
— N Ao ¢
l[a]l @‘” , .
— 7 ‘\ , i 1; .
stress for stress for < 4
element at 0° element at 45° a
rotation rotation Mohr's circle

Figure 3.66 Compressive stress in a shear panel.

e

Figure 3.67 Shear buckled panel.

3.5.2 Identifying plate boundary conditions in practice

Our discussion of plate buckling has been in the context of automotive beam
sections in which the plates are elements of the beam section. Given the complexity
of automotive beam sections, it is at times difficult to choose the most appropriate
boundary conditions and plate size. Our choices of simply supported, fixed, or free
are highly idealized over the true physical constraint. Some general rules to help in
this selection are shown in Figure 3.68a & b:
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1. Each bent corner forms a simply supported boundary condition when the bent
angle is greater than 40°. The plate width is then the distance from corner to
corner.

2. When a plate is supported by a flange of thickness equal to or greater than the
plate thickness, the boundary condition is fixed. The plate width is measured
from the center line of the weld.

3. When an edge is unconnected, the boundary condition is free.

Figure 3.69 provides an example application of these rules for a typical automotive
section.

Boundary Degrees of freedom Edge of
condition at edge of plate plate
simply supported  -no deflection e ™ 1
-rotation allowed ! A
fixed ‘no deflection T,
‘no rotation (slope zero) { ik
free -deflection allowed et
-rotation allowed \

Figure 3.68a Identifying plate edge conditions.

simply supported fixed 5 free
TrLANGE ™ pLATE free
—sfixed Fa—
e IrLANGE=TpLaTE
for for —
oA 0400 —*fixed
LrLANGE™ tpLaTE
Each bent corner When a plate is Un-
with angle >40° is ss. | supported by a flat flange connected
For angle less <40°, : where 7, jyor2p 47 the edge is
plate extends to next | boundary condition is free
corner fixed. Otherwise
boundary is ss.
plate size: plate size: plate size:
corner to corner from center line of weld from edge

Figure 3.68b Identifying plate edge conditions.
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Figure 3.69 Example of plate edge conditions.
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3.5.3 Post buckling behavior of plates

In the previous section we developed the ability to calculate the critical plate
buckling stress for an automotive section, as well as the load at which this buckling
will occur. We now will look at the behavior of plates in which the plate buckling
stress is exceeded.

In the earlier example of the convertible rocker section, we made an implicit
assumption that the onset of plate buckling of the rocker cap represents excessive
deflection and therefore failure of the beam. For certain structural elements which
the customer sees (quarter panel, roof, door panel), this is a valid assumption; a
structural element with the out-of-plane buckling deformation would appear to
have failed even though this deformation is elastic and will reverse when the load
is removed. However, there are also non-visual structural elements for which the
elastically buckled plate does not represent excessive deflection. For these elements
the plate may be loaded beyond critical plate buckling before ultimate failure
occurs. We now investigate the physical behavior of plates loaded beyond their
critical stress, (o7

To understand the post buckling behavior of a panel, first consider a slender beam
with compressive loads at each end, Figure 3.70a. If the load is gradually increased,
we will reach a critical load, P_,=m°EI/L? and the beam will undergo Euler buckling
(not plate buckling). If we now attempt to increase the end load beyond the critical
load, the beam will collapse. It has no ability to react increased load above the
critical beam buckling load. Compare that behavior to that of a buckled plate,
Figure 3.70b. Gradually increasing the compressive edge load, we will reach

the plate buckling stress and the plate will bifurcate into the buckled pattern of
deformation. However, unlike the slender beam, the load can continue to increase
without collapse of the plate. Eventually an ultimate compressive load, Figure 3.70b,
will be reached. ;

Buckled beam Buckled plate , -

ultimate
Per Per load
ultimate
load 5
deflection
Once buckled, a beam loses the Even after buckling, a plate
ability to carry increased load can carry increased load

(@) (b)

Figure 3.70 Comparison of buckling behavior.
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For those cases where the mere visual detection of a buckled pattern does not
represent excessive deformation, we would like to use this additional load-carrying
capacity of the buckled plate. We begin by looking at a simply supported plate
with an increasing compressive edge load, Figure 3.71a, and consider the stress
across the plate at a section some distance from the applied load. Below the plate
buckling stress, the stress distribution across the plate will be uniform and is given
by o=P/(bt). As the load is increased to plate buckling, the stress remains uniform
with o_,=P/(bt), Figure 3.71a. Continuing to increase the load above critical plate
buckling, the stress distribution across the plate becomes nonlinear. The stresses

at the edges of the plate increase more rapidly than the stress at the center of the
plate, Figure 3.71b. Eventually, by further increasing the load, the stress at the
edges of the plate reaches the material yield stress and the plate exhibits an
ultimate failure.

plate width: » Stress distribution across plate width

thickness: ¢ o o
b&}mnm uuj

Plate just at Plate loaded above
buckling stress buckling stress
(a) (b)

Figure 3.71 Post buckling stress distribution.

The difference between the load where a plate buckles and the load where the
buckled plate yields can be considerable, and for efficient structures we must take
advantage of this post buckled load carrying ability. In the next section, we will
develop tools to do this.

3.5.4 Effective width

In many plate applications, we need to know the relationship between the applied
compressive load, P, and maximum stress in the plate, o, after elastic plate buckling
has occurred. A convenient means to calculate the P-o; relationship is to replace the
real plate with an imaginary plate having an effective width, w, which is less than the
real plate width, Figure 3.72 [14]. The effective plate is assumed to have a uniform
stress of o, across it, Figure 3.73b.
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2 z
‘a;‘ \\\“ &
‘xsé“““‘
A ~ width of each
P b & side: w/2
Physical buckled plate with Effective unbuckled plate with
maximum stress: og uniform stress: oy
thickness ¢ thickness ¢
and width » and width w

Figure 3.72 Effective width concept.

Physical plate Effective plate
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Compressive load .
reacted by plate: P = _[0 o tdx P=ocgwt
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Figure 3.73 Determining effective width of a buckled plate.

For this effective plate, with currently unknown width w, the relationship between
load and maximum stress is:

Peppcrive prate = 9s(wt) (3.27)
where:
Py recrive prare = Load on plate

o, = Maximum stress on plate
w = Effective width of plate
t = Thickness of plate
We can use Equation 3.27 as a convenient way to calculate the applied load, P, given

o, providing we know the effective width, w. In the following, we develop a means
to calculate the effective width given a maximum plate stress, O,.
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Looking at the physical plate with non-uniform stress distribution and maximum
stress, o,, Figure 3.73a, the applied compressive load is given by:

b
PREAL PLATE = J.G (tdx) (3.28)
0

Looking at the general shape of the stress distribution for a buckled plate, Figure
3.73a, we take for the stress distribution across the plate:

o Ot ) [ Py coszﬂ (3.29)
2 2 b

where 6.>0,
This function gives us a stress of o, at the center of the plate and o, at the edges.

Now substituting Equation 3.29 into 3.28 and integrating yields:
i O3 N
Freavprate = tb( o (3:30)

as the force applied to the buckled plate which results in a maximum stress o,

Equating the load for each plate shown in Figure 3.73 and solving for the effective
width, w, gives the desired result:

P

REAL PLATE = 1}

EFFECTIVE PLATE

0. +0
tb(%) =0 s(u’t)

L 2 (3.31)
2 o

where:
w = Effective width of plate under the stress o

0. = Buckling stress for plate

o, = Maximum stress on plate

b = Actual width of plate
The above relationship gives us the width of an imaginary effective plate which
has a uniform stress of o across it. When we are interested in the load to induce a
maximum stress of 6,>0, in a buckled plate, we can use Equation 3.31 to determine

the effective plate and then Equation 3.27 to determine the load, F, to induce that
maximum stress.
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Our selection for the true stress distribution across the buckled plate, Equation
3.29, is based on reasonable fit to the observed plate stress distribution and also
computational convenience. Alternative empirical relationships for effective
width shown below give more accurate results in practice. These relationships are

compared in Figure 3.75:
w =0.894b ’f-ci
oy (3.32a,b)
w=b ’9—‘3—(1— 0.22 ,ﬁ&]
Oy Os
where: ’

w = Effective width of plate under the stress o
Oy = Buckling stress for plate
0, = Maximum stress on plate

b = Actual width of plate

Ocr
Oy

21 s yy=f h(l-o.zz I%J
0 O-S GS

10+ 2 3 4 5 o5/0cg

Figure 3.75 Comparison of effective width relationships.
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3.5.5 Thin-walled section failure criteria

With the ability to calculate the compressive load acting on a buckled plate when
given the maximum stress, we can now consider the ultimate failure load for the
thin-walled plate. Extensive testing has been done on the ultimate load-carrying
ability for a thin-wall section [15]. In these tests, a load was applied to a thin-walled
square steel section as shown in Figure 3.76, and the peak load, P, was identified.
Sections with a range of (b/t) ratio were tested from moderately thick walled,
(b/t)=50, to highly thin walled, (b/t)=200. The measured ultimate load, P, was
compared with five calculated values, Figure 3.77. These values include 1) the onset
of yield at the outer fiber, P,; 2) fully plastic yield, P,; 3) the onset of critical plate
buckling, P_,; 4) the onset of yield for the effective buckled section, P,,; and 5) the
onset of yield for a U section in which the compressive cap has been discarded, P,

610 mm F
. Pahea .
1016 mm /
/
t=0.762 mm
¢ I [I 38<b<150 mm S

Figure 3.76 Behavior of square thin-walled sections. (Courtesy of SAE International)

comp.
20 IR P . p
bending strength- initial yield j o Y
fully plastic state f ———————— - DPp
onset of plate buckling of 7 __ _________ |

compressive element Peg
yield of effective section j ‘‘‘‘ 1777 - Py
U section yield F _______ dds Py

Figure 3.77 Physics of peak load - PULT. (Courtesy of SAE International)
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The important result of this study is shown in Figure 3.78. For a wide range of (b/t)
seen in automotive construction, the best predictor of ultimate load is P, , the onset
of yield for the effective buckled section.

3 PP
/ a
P 2
_]?;L'T Pyg
1 PYU
1 | 1 P CR

Bty iy o O

Figure 3.78 Ultimate load predicted by yield of effective section.
(Courtesy of SAE International)
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3.5.6 Techniques to inhibit buckling

From the above example, it can be seen that the existence of plate buckling reduces
the ultimate load-bearing capacity of a section under compression. We may increase
the strength of the section if somehow we can increase the critical plate buckling
stress, o,. In this section we look at ways to do this.

The plate buckling relationship, Equation 3.26, can be grouped as shown:

% En? 1 333
Ock = (k)(lz(l—M)I(b/t)Z) o

This grouping suggests means to increase o, by increasing any of the three
bracketed terms. The first enclosed term relates to boundary conditions, the second
to normal stiffness of the plate, and the third to the width-to-thickness ratio. Several
practical means to increase these terms will be discussed:

* Boundary conditions: flange curls and flanged holes
* Normal stiffness of the plate: material, curved elements, foam filling
* Width-to-thickness ratio: reducing width with beads and added edges.

The plate width may be reduced by adding beads to a section. By adding a
longitudinal bead to a section, Figure 3.80, the plate width is effectively halved
and the critical stress increased by a factor of four. Adding corners, Figure 3.81,
can reduce plate width as shown, but in this case with some reduction in nominal
moment of inertia as we are moving material closer to the neutral axis. Therefore,
this technique is often used in sections under axial load as will be shown in the
chapter on crashworthiness. Figure 3.82 is an example of adding corners to reduce
plate width while maintaining moment of inertia. '
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Figure 3.80 Reducing plate width by adding a bead.

Note: / is reduced

but section is stiffer at
increased loads due to
buckling being inhibited

Figure 3.81 Reducing plate width by chamfering corners.

b
Flange buckling —
and cap buckling ™
are coupled

bl
Corners blocks . |
buckling interaction === =

and reduces width

Figure 3.82 Reducing plate width by adding corners.

While we have focused on plates as elements of beam sections, the idea of increasing
critical stress using added corners or beads also applies to panels where the loading
is in shear, Figure 3.83. Note that for crossing bead patterns it is important that the
beads do not fully intersect. Such intersections act as hinge points which reduce
plate normal stiffness considerably.

An example of altered boundary condition is a flange with the addition of a
flange curl, Figure 3.84. This changes the boundary conditions from free to simply
supported with the buckling coefficient increasing from 0.425 to 4.0. Similar
increases in buckling stress are seen in panels with flanged holes, Figure 3.85.
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Vertical & horizontal
Vertical non-intersecting
No beads beads beads

Relative buckling load: 1 3 6.5

Figure 3.83 Reducing plate width using beads-shear case.

No hole
Hole with no flange
Hole with flange angle
60°<p< 45°
6=90°

g 100% 0
Relative buckling load

Figure 3.85 Flanged hole effect on shear buckling.
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Plate normal stiffness can also be increased by curving the plate into a cylindrical
element, Figure 3.86. This simple geometry change can increase critical stress
dramatically [16, 17]. Yet another method to increase normal stiffness is by filling the
beam section with foam. An example of the effects of foam filling is included in the
section below on initial imperfections in plates.

Hiry

b
- b -
e . R

2 4.4 252
e ) ]
theoretical A-47)
G &iﬁ O = O’ +.250 " )+ 0.56
experiment where o_ is the buckling stress for:
ogc  curved element

0.25 (E Ocyp  Cylinder

Ocn = R o flat plate
- Cylinder buckling Buckling of curved element
(a) (b)

Figure 3.86 Buckling of curved elements.
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3.5.7 Note on the use of high-strength steel

High-strength steels now make up a large portion of the steel used in automobile
body structures. The motivation for this use is to gain higher strength and energy
absorption at a reduced mass. Often this change in steel grade is done by direct
substitution; only material and thickness is changed while keeping existing section
geometry unchanged. It is important to recognize that because of plate buckling, the
change in the strength is not directly proportional to yield stress. Take the previous
Z section example with dual-phase steel, o,= 650 N/mm? (94,000 psi) substituted

for mild steel, o,= 207 N/mm? (30,000 psi). This substitution does not achieve a
(650/207)=3.14 times increase in strength because the buckling stress of the web,
0x=468 N/mm? (68,000 psi) is now below yield and the section is no longer fully
effective as it was with mild steel. When substituting with higher-strength materials,
it is important to reexamine the effective properties of a section and add buckling
inhibitors which may not have been necessary with lower-strength steel.

3.5.8 Note on bifurcation and initial imperfection

The mathematical development of plate buckling considers an ideally flat plate
which snaps instantly—bifurcates—from a flat plate to the buckled deformation. In
practice, the plates making up the elements of an automotive section are imperfect,
containing as-fabricated out-of-plane geometry.

To see the effect of this imperfection on buckling behavior, consider an edge view of
a plate, Figure 3.88. Here we will greatly simplify our model to understand the most
basic physics, and will consider an analogy to the plate—a beam supported by an
elastic foundation of stiffness k, (N/mm/mm), Figure 3.89. The foundation stiffness
represents, for example, the additional rigidity of foam filling the section.
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e = e,sin(mx/L) T *
L

Figure 3.88 Initial imperfection in plate.

= e $3333
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plate geometry under %
compressive load

Figure 3.89 Elastic foundation model of initial imperfection.

The beam is given an initial unloaded ‘imperfect’ shape characterized by a half sine
wave with amplitude e, Figure 3.90 top.

e=egsin(mx/L) (3.34a)

The foundation springs in this initial condition are unstressed. The beam may
deflect from this shape a distance 1(x) under the action of compressive end
loads, P. We take as the deflected shape a half sine wave with'amplitude 7,
Figure 3.90 center,

n=n,sin(nx/L) (3.34b)

Cutting the beam at a distance x from the end, Figure 3.90 bottom, the bending
moment at the cut is

X
M(x) =—P(-+€)— [ km(€)(x— ) (3:340)
0

substituting the expressions for e, Equation 3.34a, and 7, Equation 3.34b, and
integrating gives:

2
M(x) = [—P(n0 +e5)+ kpno(%) :|sin %
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Initial unloaded shape:
e = e,sin( m/L)

Deflection due t ding: o
eflection due to loading n(x)
n = nysin( /L) P P

> <
X
Moment acting at cut x &
M(x)
P R m— T P
g P
v x-& \
kg 1(8) 68 etn

Figure 3.90 Equilibrium at beam cut.

Substituting Equations 3.34b and c into the beam equation:

°n M
u? EI
gives the following result:
2 Mo 1 (3.34d)
o Fem (1 + k—F) -1 )
P EI

where: ;
P = Applied compressive load

P, = Euler buckling load, P ,=EI(7/L)?
e, = Initial out-of-plane imperfection
7, = Out-of-plane deflection

EI = Bending stiffness of plate

k. = Stiffness per unit length which resists the out-of-plane deflection

Equation 3.34d gives us the deflection at the center of the beam, 7,, normalized to

the initial imperfection magnitude, ;. The deflection depends on the applied load,
P, normalized to the critical Euler buckling load, Do
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First consider the behavior without any foundation stiffness, k,=0. Equation 3.34d
with k=0 yields

M _ 1
e Sem . 1
p
Ty
. (3.34¢)
PCR .1.72 +1
€

Figure 3.91 plots the applied normalized compressive load, P/P_,, against the lateral
normalized deformation, 7,/e, at the center of the beam, Equation 3.34e. It can be
seen that the existence of an initial imperfection tends to ‘ease’ the beam into the
buckled shape rather than a sharp snap-over into the deflected shape at P_,. While
this model describes an imperfect beam, the physical behavior is analogous to a real
plate with an initial imperfection.

Critical load

1.0 —
Ideally straight P/ Peg
beam 0.5

Q. 1.:8; o1:10,5;15y,, .20
Lateral deflection 7,

Critical load

Beam with initial 1.0
imperfection P/Pcg
0.5

0 5 10 15 20
Lateral deflection 7,/¢,

Figure 3.91 Buckling behavior with imperfection.

In the earlier section on inhibiting buckling, the technique of increasing the normal
stiffness of the plate was mentioned. One embodiment of this technique is to foam
fill a section. To buckle, a plate element of the section must also deflect the foam,
and this action inhibits the onset of buckling by effectively increasing the normal
stiffness of the plate. This can be modeled, Figure 3.89, as a beam (the plate) on an
elastic foundation (the foam) by using Equation 3.34d. In this case, the factor k,/(EI)
is the ratio of foam compressive stiffness to beam stiffness. Figure 3.92 shows the
results of applying Equation 3.34d, and illustrates how the foam stiffness tends to
increase the buckling load above the critical load for the unstiffened beam.
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kp compressive stiffness of foam
EI plate bending stiffness

P buckling stress with foam added
P buckling stress without foam

1.3 k/EI=0.2
1.1 ke/EI = 0.1
1.0 kw/EI = 0 (no foam)
Compressive
load
P/P
= 0 Lateral deflection

AT SURET AR U BRI L
Figure 3.92 Plate buckling of a foam-filled section.

3.6 Automobile Body Panels: Plates and Membranes

A panel is a flat or curved surface with thin thickness and, along with the beam,

is a primary structural element in the automobile body, Figure 3.93. The bending
stiffness of thin-walled automotive panels is quite low, while the in-plane stiffness is
quite high. In this sense, a valid analogy for an automotive panel is a sheet of paper:
little resistance to bending, but if laid flat and shearing loads applied in the plane of
the paper, it provides considerable resistance. Only when a panel is highly curved
does it begin to provide much stiffness to out-of-plane loads.

P
I
In-plane Normal
loads loads

| l

A s

Membrane Shear Dent Vibration

Figure 3.93 Loading classification for panels.
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We will therefore divide the treatment of panels by the type of loads acting on the
panel: normal loading of curved panels, and in-plane loading of flat or curved
panels, Figure 3.93. In the next section we will look at loading of curved panels by a
point load normal to the surface. Panels may also be loaded by a distributed normal
load, for example by inertia during panel vibration; this topic will be treated later in
the chapter on vibration.

3.6.1 Curved panel with normal loading

The exterior panels of an automobile are largely influenced by the overall styling
of the vehicle. Because of this, structural performance is not the shape-defining
function. However, a small set of structural requirements are used to screen valid
shapes for curved exterior panels. These involve the reaction to normal point
loading, which we will now discuss.

A curved panel loaded normal to the surface at a point exhibits complex load-
deflection behavior, Figure 3.94. Initially, the load-deformation relationship is linear
and elastic and can be characterized by a stiffness, K. At some higher load, the
panel may begin to invert its curvature, Figure 3.94. This inversion may be either
soft, where the surface stays in contact with the load applicator, or hard, where the
surface snaps over and looses contact with the load applicator. The load where

a hard snap-over occurs is referred to as the critical oil-canning load, P, (from

the behavior of the bottom of an oiling can). A customer may judge the solidness

of a panel by pushing with a thumb, and both K and P, relate to the customer
perception of panel quality, with higher values being preferred.

-/ Oil canning load

Deflection

Figure 3.94 Curved panel behavior under normal load.

Dent resistance, another case of normal loading of panels, is measured by the kinetic
energy of a dart, directed normal to a surface, which leaves a permanent dent in the
panel. Again referring to Figure 3.94, this energy is proportional to the area under
the load-deflection curve up to the point where permanent deformation occurs.

The properties of panel stiffness, oil-can load, and dent resistance for a curved panel
are difficult to predict, and the equations below are a combination of analytical

and empirical considerations. All equations assume simply supported boundary
conditions for the panel [18, 19].
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3.6.2 Normal stiffness of panels

In modeling the normal stiffness of automotive panels, we assume the panel is large
and the distortion under a point normal load is localized and does not extend to the
boundaries. First consider the theoretical normal stiffness of a partial spherical shell
under a concentrated load:

x_B_Et (3.35)
where: -

R = Spherical radius (R>>t)

B = Constant: B=2.309 for a shallow shell, [6]

E =Young’s Modulus

p =Poisson’s ratio

t = Panel thickness
Automotive panels are generally doubly curved—curvature not the same in two

orthogonal directions—and Equation 3.35 can be generalized by replacing the
spherical curvature (1/R) with:

2 2
1 _\R)\RK) _111(L), 1(L (3.36)
REQ 2L.L, 21 Ri\L, ) R\ L
where:

R, = Equivalent radius for a doubly curved panel

L, L, = Rectangular panel dimensions

R,, R, = Radii of curvature in orthogonal directions, shown in Figure 3.96

A convenient means to express panel curvature is using the crown height H_, where:

2 2
e L~ g L (3.37a)
%0 8R4 WBR,

Substituting Equation 3.37a into Equation 3.36, gives:

1 4H (3.37b)
Rpy LiL,

To calculate normal stiffness for a doubly curved panel, use Equation 3.36 or 3.37 to
determine the equivalent spherical radius, R, then substitute into Equation 3.35.
The constant, B, in Equation 3.35 ranges from the shallow spherical value, B=2.309
to B=2.96 for a shallow doubly curved panel (H /t=4) to B=3.618 for a deeper doubly
curved panel (20<H /t<60) [18].
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3.6.3 Oil-canning resistance

The critical buckling load, P ., at which the panel will bifurcate and reverse its

curvature is given by
2114
P~ CRg7 Ef2 (3.38)
L,L,(1-u%)

where:
C=0.645-7.75x 107L, L, for L,in millimeters

R =45.929-34.1832+6.3971*

a=s bl [120-p%)
t | RR,

valid over the range (g R
—Land—%>2
1 L,

L
3 L,

L.L, <0.774m>

L
<—1<«3

3.6.4 Dent resistance

The denting resistance, W, is the minimum energy to dent the surface. Here the
definition of a dent is a 0.025 mm (0.001 in) permanent deformation in the panel.
Dent resistance depends on o, the yield at a dynamic strain rate (rather than the
more typical static value). The dynamic strain rate corresponding to denting (10 to
100 /sec) is many orders of magnitude higher than the typical static tensile test strain
rate (0.001 /sec). The ratio of dynamic to static yield strength of steels at strain rates
of up to 100 /sec is shown in Figure 3.95. The denting energy, based on empirical
curve fit, is [18]:

W =56.8 ——(6le v (3.39)

where:
K = Panel normal stiffness (Equation 3.35)

t = Panel thickness

o, = Yield strength at a dynamic strain rate
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2'0: Band includes
E strain rates
= 187 10-100 /sec
E _
@ 1.6
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g 1.2
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1.0 4

200 400 600
Static yield (N/mm?)

Figure 3.95 Dynamic yield stress for steel.
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3.6.5 In-plane loading of panels

In this section we will look at panels where the applied loads are within the plane of
the panel, Figure 3.93. This includes membrane panels which are curved, but over

a small element of the surface, the loads are tangent to the surface. A second case

of in-plane loading—that of shear loading of panels—will be treated later in the
chapter on body torsion.

3.6.5.1 Membrane shaped panels

Many of the structural elements of the underbody are panels, including floor pan,
motor compartment sides, dash, and wheelhouse inner panel. Unlike the exterior
panels, these underbody panels are largely shaped by structural requirements.
Therefore, our orientation in this section is that of design rather than analysis.

The question we would like to answer is: Given a set of loads applied to a panel,
what is the best panel shape to react to those loads? (Best here is defined as stiffest,
strongest, and lightest.) We begin with a simple observation: consider a small
element taken from a loaded panel and viewed from its edge, Figure 3.97. If the
loading on the panel is pure bending, the stress distribution is linear with zero stress
at the neutral axis, Figure 3.97a. Intuitively, much of the material of the section is
stressed at a relatively low level yet we are ‘paying’ for the mass of that material.

Et?

The panel stiffness in bending, D = ——————
5 &= A )

, is very low since the thickness in
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automotive panels is very small. Now consider a panel loaded by pure membrane
loads, Figure 3.97b. All the material of the section is uniformly stressed across the
thickness and contributes to reacting the applied load. Given this fully stressed
quality of a membrane, we would like to design the panel shape such that only
membrane loading is present.

(@) Moment loading

all
] \> material
not fully
stressed

(b) Direct loading
Rear wheel (membrane) o
house panel = fully

t —
- —_— stressed

(c) Mixed Ioadlng o
¢ i
case

Figure 3.97 Element from loaded panel.

For simplicity in understanding basic structural behavior, we will consider axially
symmetrical membranes, Figure 3.98. The membrane surface is defined by rotating a
generating line about the axis of symmetry. Consider a small element on the surface.
Two radii of curvature define the geometry of the element. A longitudinal radius, R,

Generating
Line

y=ftx)

Tangential radius Longitudinal radius Element
negative (outside)

Figure 3.98 Axially symmetric membrane geometry.
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which defines the radius of a longitudinal section of the element, and a tangential
radius, R;, which defines the radius of a tangential section of the element. The
longitudinal radius is defined by the curvature of the generating line at the point
where the element sits. The tangential radius is a line which is normal to the element
and extends to the axis of the membrane.

Acting on the element are tangential stresses, o;,,, and longitudinal stresses,

0, oner 85 shown in Figure 3.99, as well as an outward pressure, p. These stresses
are uniform across the thickness. The element must be in static equilibrium, and
balancing forces in the direction normal to the element, Figure, 3.99:

de d
PAS)ds') 20 (5) - +20 0 (tds)—zﬂ =0

from geometry, ds’=R, d0 and ds=R, d¢, and substituting into the above yields the
first equation a membrane surface must satisfy:

Pu¥mn. 910NG (3.40)

t R, R

L
where:

p = Pressure normal to membrane
t = Thickness of membrane

C.

Ty = langential stress

0, onc = Longitudinal stress
R, = Radius of curvature in tangential direction

R, = Radius of curvature in longitudinal direction

View A

Rr

OT4N OTAN

102N |\ /'
T N

View
normal to
element

Figure 3.99 Loads on membrane element.
Now cutting the membrane perpendicular to the axis, Figure 3.100, the cut portion

may be placed into equilibrium in the axial direction. The net upward force on the
cut section is F, and along the cut the longitudinal stress, o, ., acts. At the cut, the
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normal to the surface makes an angle a with the axis as shown. Static equilibrium
yields the second equation a membrane surface must satisfy:

F=(component of stress along axis)/(Area on which stress acts)

F=(0,oncsina)(2rt x)or F= (0L ong SIn@)(27 t Ry sina)

F=21tx(0; oy sina) or F=2rt R;0; one SIN? @ (3.41)
where:

F = Net force acting on a cut portion of membrane

a = Angle made between normal to the surface with the axis

t = Thickness of membrane

O,

Lone = Longitudinal stress

R, = Radius of curvature in tangential direction

Net force
on section

I

- r=Rsina=x
\
1 o V

o Y 07 oM
"Ry X LONG

(108G Sina) v,
Figure 3.100 Cut perpendicular to membrane axis.
Now look at the generating line, y=f (x), for the membrane, Figure 3.101. The

longitudinal and tangential radii may be defined at any point, (x,3), on the line using
analytical geometry [20]:

sino @
dx?
dy
. T __ 1
sin(or) = X cos(a)= (3.42)
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Figure 3.101 Membrane generating line.

With the set of Equations 3.40, 3.41, and 3.42 we can now determine the membrane
shape, defined by the generating line, y=f(x), for a specific loading. The sequence we
will follow is:

1. Define the loading

2. Substitute the loading into the force balance, Equation 3.41

3. Substitute into the resulting equation the geometric relationships of
Equations 3.42

4. A differential equation for the generating line will result, which we solve for
y=f(x) to define the shape of the membrane panel.
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3.6.5.2 Membrane analogy

In the above examples, we let the applied loads define the ideal shape for the
panel with the notion that a uniformly stressed membrane panel will result in a
light, stiff panel. We have used the special case of an axially symmetric membrane
to demonstrate basic principles and to ease computation. However, rarely in
automotive panel design practice will we have symmetric boundary conditions.
For general loading and boundary conditions, closed-form analytic solutions are
typically not available. However, much insight may be gained by visualizing panel
shape using the membrane analogy technique [21].

In this technique the boundary constraints and loading for the panel are accepted,
and we imagine a thin rubber membrane or a soap film [22] stretched under

the action of the loads and constraints. Both the rubber membrane or soap film

are structures with zero bending stiffness, so they must react to loads in a pure
membrane state. An example of this analogy is shown in Figure 3.103 [23]. Here the
objective is to define the shape for a building roof when loaded by uniform dead
weight. A model of the roof is visualized using a membrane analogy—a light fabric
cloth saturated with plaster. The desired four restraints are applied at the corners,
and the weight of the plaster provides the uniform downward load on the inverted
structure. The shape taken by the fabric is that of a membrane having uniform stress
(no bending) across the structure’s thickness.

s

Figure 3.103 Membrane shaped roof structure.
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Modeling sheet metal structures as ideal membranes is certainly an approximation.
Comparing some attributes between actual sheet metal and ideal membrane
behavior: -

Idealized Membrane Behavior: Can accept either tensile or compressive stress

Actual Sheet Metal Behavior: Buckling can occur under compressive stress
This is a serious limitation to the practical application of membrane panels. Proper
design must seek to generate tensile loads only, or assure the buckling stress will not
be exceeded. In the case of load floors or strut towers, tensile stresses are assured
due to the unidirectional nature of the load.

Idealized Membrane Behavior: All stress lies in plane of surface (direct stress only)

Actual Sheet Metal Behavior: Bending stresses can be reacted
This is a highly beneficial property of real panels. Because membrane geometry can
balance only the set of loads used to define it, the panel should collapse when the

load deviates even slightly as it does in practice. That this does not occur is due to
the ability to generate bending moments in the real panel.

Idealized Membrane Behavior: Boundary conditions are ideal (boundary loads are
tangent to surface)
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Actual Sheet Metal Behavior: Boundary conditions do not agree completely with
theoretical requirements

This provides a general design constraint on the geometry of the structure at the
boundary of a membrane panel. The required tangent reactions can practically be
achieved only imperfectly and require bending moments to be generated in the
reaction structure.

Despite these cautions, membrane structures in the automotive body are highly
efficient means to react both distributed and point loads.

3.7 Summary: Automotive Structural Elements

In this chapter we have looked at how automotive structural elements respond
to loading, how they deflect, and how they fail. We developed equations to
predict stiffness and strength given the section geometry, the material and the
bending moment, torque, or applied force. This has given us a set of section
design tools.

However, to apply these tools the relationship between loads applied to the body
system and the resulting loading on a particular section must be known. We need
to flow down structural requirements from the global body level to the individual
section. An example of this flow down for the B Pillar section is shown in Figure
3.110. In the subsequent chapters we will look at this flow down of requirements
for several global body system cases including body bending, body torsion,
crashworthiness, and vibration.

. Section

i

I XX MMAX

B pillar
section
design

requiremen

reqauirements

Figure 3.110 Flow of body strength and stiffness requirements.
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