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Chapter 4 | Design for Body Bending

In this chapter we consider the overall body structure supported and loaded similar
to a single beam. The supporting points and loads are applied symmetrically to

the vehicle center line; that is, loads on the right side are the same as loads on the
left side. We will consider two types of body bending requirements: strength and
stiffness.

4.1 Body Bending Strength Requirement

A most basic structure requirement is to locate and retain the vehicle subsystems

in the correct positions. Powertrain, occupants, suspension, etc. must be supported
by the body structure. Consider a vehicle at rest with the weight of the vehicle
subsystems being supported by the body structure, which we will idealize as a
beam in the side view, Figure 4.1. A requirement for this structure is that it does not
fail under this loading condition.
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Figure 4.1 Body loaded by subsystem weight.

Let us look at the bending moments being applied to the structure under this
condition. Using standard bending moment analysis techniques, we can identify
the shear loads and moments being applied at any position along the length of the
structure, Figure 4.2 [1]. A strength requirement for this body structure is to react
these moments without failure.

More severe bending conditions than static weight loading can be imagined. The
first is dynamic loading where the inertia loads of the subsystem exert larger
forces during use than in the static condition. This condition can be addressed by
multiplying the forces and moments of the static case by a dynamic acceleration
factor. A typically used factor is 2-g loading—application of twice the static loads.
A second condition is jacking or towing, where one support point is moved to an
end of the vehicle, Figure 4.3. For this condition, we have taken an extreme case in
which passenger loads are present. Although not typical, this represents a possible
case for which the customer would not expect structural failure. Both front or rear
jacking result in a larger maximum bending moment than that under static loading,
as shown in Figure 4.4.
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Figure 4.2 Shear and bending moment due to subsystem weight.
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Figure 4.3 Front towing or jacking condition.
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Figure 4.4 Envelope of moments.
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Chapter 4 | Design for Body Bending

Considering all the above conditions, we define an envelop of maximum bending
moments which the body structure must react without excessive permanent
deformation, Figure 4.4. To apply this requirement for practical design, we seek

a simple test configuration which will produce an approximation to this bending
moment envelope.

To define this test configuration, consider the body supported at the suspension
points and loaded by just one or two loads (H point load) at the seating position.
Abeam loaded in this way will have the bending moment diagram shown in
Figure 4.5a. We can superimpose the diagram for this case over the bending -
moments for the vehicle, Figure 4.5b. Now, by varying the magnitude of the H
point loads, we can approximate the envelope of maximum moments. The resulting
values for the loads become the bending strength requirement for that vehicle. This
simpler condition is referred to as the H Point Bending Test because, in practice, the
loads are applied at the seating location (H point).

Single
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deformation under load
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lpog]t (Nmm) N\
oads

H point loading Bending strength requirement
(a) (b)

Figure 4.5 Equivalent load at passenger position.

The H Point Bending Test set-up is shown in Figure 4.6. The body is supported at
the suspension attachments (usually the strut or spring attachment) with ball and
socket conditions. The loads are applied in increments through a fixture loading the
seat attachment points or adjacent rocker section. Vertical deflection measurements
are taken along the longitudinal structural elements. For each load increment, the
maximum deflection along the length is plotted on a load-deflection curve. The
maximum load is increased in load-unload cycles to determine at what load there
remains a permanent deformation of the structure which would affect vehicle
performance. This load, F, in Figure 4.6, is the measured bending strength for the
body, and can be compared to the bending strength requirement as calculated by
the procedure shown in Figure 4.5b.
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Figure 4.6 H point bending test convention.

Such a standardized bending test allows the comparison of competitive vehicles.
Figure 4.7 shows the maximum bending moment for a sampling of 20 vehicles.
Note that the body bending strength requirement depends on the bending moment
analysis for the particular vehicle under consideration. Those bending moments
depend on the placement of the subsystem mass, and the longitudinal dimensions
of the vehicle, particularly the wheelbase.
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Figure 4.7 Bending test strength benchmarking. (Data courtesy of the American Iron
and Steel Institute, UltraSteel Auto Body)

125



Chapter 4 | Design for Body Bending

4.2 Body Bending Stiffness Requirement

From the H Point Bending test, we can measure bending stiffness—the slope of the
load-deflection curve in the linear region. We now will develop the rationale for
setting a bending stiffness requirement.

Consider the feeling of solidness as the vehicle drives over road irregularities.
Solidness is a subjective feeling that the vehicle is “well put together,” “vault-like,”
and not “loose” or “shaky.” This subjective feel has been correlated to engineering
parameters; one of the more significant is body vibration resonance.

The body structure acts like a vibrating beam with free end conditions, Figure 4.8a.
As with a simple beam, the body has resonant frequencies for which a small dynamic
force at the resonant frequency can cause large deformations. Although the number
of resonant frequencies is infinite, we will concentrate on the lowest frequency of
primary bending, Figure 4.8b (we will defer looking at torsional frequencies to a

later chapter).
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Figure 4.8 Body vibration test and behavior.

Figure 4.9 shows benchmark data for body bending resonant frequency for 47
vehicles. Three conditions are shown; Body shell (no components, doors, or glass),
body shell with windshield, and full vehicle. The body shell frequencies with or
without glass are similar, and are in general higher than the full vehicle condition.
This is because the additional subsystem mass in the vehicle condition reduces the
resonant frequency, as we will discuss below.

Customer testing in ride mules [2] where the bending resonant frequency could be
varied, Figure 4.10, have shown that, to achieve the feeling of solidness, a desirable
range for vehicle bending frequency is from 22-25 Hz. This frequency range is
relatively free from major exciting forces and responders, and is also in a range in
which humans are less sensitive to vibration.
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w = weight per unit length
M= total mass = wL/g

Uniform beam vibration

(@)

EI = Section stiffness

Simply supported static test
(b)

Figure 4.11 First-order model for bending frequency.

Now consider the same beam but loaded with a single static load at its center span,
Figure 4.11b. The beam is supported at points representing the suspension points—
the length between supports is the wheelbase. The stiffness of such a beam is related
to the support length and section bending stiffness (EI):

48E]
K== (4.2)
3
El = &
48
where:
[ = Wheel base

M = Rigidly mounted mass
K = Required bending stiffness
We can now eliminate (EI) between Equations 4.1 and 4.2 by substituting Equation

4.2 for (EI) into Equation 4.1, and we are left with a relationship between bending
resonant frequency and static bending stiffness, K.

(3 3
®, =224L ) | K=
48 M (4.3)

3
o _22.4(1)5 K
" Ja8\L) VM

where:
| = Wheel base

L = Overall length
M = Rigidly mounted mass
K = Required bending stiffness of the body

o, = Desired bending resonant frequency for the vehicle (rad/sec)
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Thus given a target for vehicle bending frequency, o , the lengths I and L, and the
rigidly mounted mass, M, we can identify the required H point bending stiffness,
K. Rigidly attached masses are those which participate fully in the vibration of the
body structure and do not include those masses which are isolated with bushings.
For preliminary design, the rigidly attached mass is taken as 0.4 to 0.6 times the
vehicle curb mass, with the larger value relating to luxury vehicles.
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Chapter 4 | Design for Body Bending

Note that the bending stiffness requirement for a specific vehicle depends on the
parameters in Equation 4.3. Thus vehicles which have higher mass loading (highly
optioned luxury cars for example) or cars with long overall length (four-door sedans
vs. two-seat sport coupes, for example) will require higher static bending stiffness to
achieve the same frequency target. Benchmark data for bending stiffness is shown in
Figure 4.13.
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Figure 4.13 Bending stiffness test and benchmarking. (Courtesy of the American Iron and
Steel Institute, UltraLight Steel Auto Body)

In addition to adequate bending stiffness being important for structural feel, a high
bending stiffness is also significant in reducing the relative deformations which
cause squeaks and rattles during normal use.

To summarize, we have shown how both strength and stiffness requirements may
be established for body bending. Typical values for these requirements are shown in
Figure 4.14 for a midsize vehicle. We will now look at the design of body structure to
meet these requirements. The next section treats design for the strength requirement,
followed by a section on design for the stiffness requirement.

Bending strength

nominal value
F= 6680 N
no permanent deformation

\1\ s Bending stiffness

nominal value
restraints at suspension attachments K= 7000 N/mm

Figure 4.14 Typical bending requirements: Midsize vehicle.

130



4.3 Internal Loads During Global Bending: Load
Path Analysis

First we will consider the design of structure to meet the body strength requirement.
Our objective is to understand how the global body requirement flows down to
loads on structure elements such as the beams in the side frame. Once we have
loads on individual beams, we can then use the techniques discussed in Chapter 3 to
design the appropriate beam sections.

We will idealize the body as a set of structural surface and bar elements. A structural
surface [4] is a flat element which is loaded in shear along its edges. Loads normal to
the surface, or bending moments, cannot be reacted, Figure 4.15a. A bar element is a

linear element which can only react loads along its axis, either end loads or shearing
loads along the length, Figure 4.15b. Using only structural surfaces and bars, we can
construct the model for the auto body shown in Figure 4.16.

(a)
idealized
surface
element -
react in-plane loads only not
no moments transmitted at edges allowed

(g ) | shear loads /end =
idealized acs loads A
bar / ;

element
react down-axis loads only not
no moments transmitted at ends ~ allowed

Figure 4.15 Idealized structural elements.

reactions at

suspension
attachments bending
(or bumper Rp loads applied
attachments) to each side
Rp surface

Figure 4.16 Structural surface and bar body model.
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Chapter 4 | Design for Body Bending

We can now load this model as in an H point bending test by applying a downward
load F in the plane of the side structural surface, Figure 4.16, and supporting the
structure with edge loads R, and R,. Note that this loading is symmetrical side-to-side.

The magnitude of the applied load, F, represents the bending strength requirement
which we would like to react with just a small amount of permanent deformation.

We would like to know the loads that are applied to each of the structural elements, a
through f, in Figure 4.17. Once we know these maximum internal loads, we can then
design each element for strength. This process is known as flow down of requirements,
from a global requirement to a requirement for a specific structural element.

~
g ! Note: ~

loads on left same as those on right

Figure 4.17 Internal loads for structural surface model.

By exploding the structure [5], we can use free-body analysis to identify these
element loads, Figure 4.17. We begin by considering equilibrium of the full body,
(see Figure 4.17 upper left corner) and solve for the unknown reaction forces R, and
R,. Summing moments about the front axle and equating to zero:

2Rp(a+b+c+d)-2F(a+b)=0
Summing forces in the vertical direction and equating to zero:
2Rp+2R, -2F =0
Solving these for the reaction forces gives:

(c+d) R —p_ (a+th) (4.4)

T (a+b+c+d)’ R (a+b+c+d)

132



Next we will put each element, a through f, into static equilibrium beginning with
an element, 2, which is loaded by one of the reaction forces.

Looking at the exploded structure we can begin by putting the structural surface a
into equilibrium. Remembering that we can only have shear loads along edges, this
panel has the known reaction force R, along the front edge (and —R, along the rear
edge by static equilibrium in the vertical direction). An unknown load Q acts on the
top and bottom edges, as shown in Figure 4.18. Summing moments about point o
and equating to zero:

Qh-Rpa=0
" (4.5)
Q= Rp 71‘

Now taking each element, a through f, Figure 4.17, we can use equilibrium to
determine all internal loads.

« P
element b B
b
0 it
element a ’
Ry
point o 7\~

-~

element b’ —_, %

Figure 4.18 Internal loads on motor compartment panel.

For the upper bar element, b, Figure 4.18, the applied shearing load is Q from
element a, and we can have an end force P,. Equilibrium along the horizontal
direction gives P, =Q. Similarly, for element b", we find P,” =Q.

For the dash panel, c, Figure 4.19a, the applied loads are R, from element a, with
reactions at the outer edges of P_, so P = R,. The cowl panel, d, Figure 4.19b, is
loaded by the upper bar, b, and has reaction loads, P, atits edges, so P=Q. The
front portion of the floor pan, e, Figure 4.19c¢, is loaded on each side by the lower bar,
b’, with load Q and by the side panel, f, by an equal and opposite load, P,=Q.

Finally, looking at the side frame, structural surface f, Figure 4.20, we have the
vertical load R, from the dash, Q rearward at the belt line from the cowl panel, Q
forward at the base of the front hinge pillar from the floor, and similar loads from
the panels at the rear of the vehicle.
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Figure 4.19 Internal loads under bending.

Ry= F(c+d)/(a+b+c+d) Rp=F(a+b)/(a+b+c+d)
Figure 4.20 Free-body of side frame during vehicle bending.

Figure 4.21 summarizes the results for these equilibrium analyses. We have
identified the load paths and loads resulting from the bending strength requirement
for each element of the body. Each element must be capable of reacting the loads
shown without excessive permanent deformation for the overall body structure

to meet the bending strength requirement. Let us look at three of these structural
subsystems in more detail to see how this information can be used in design.
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Figure 4.21 Summary: Internal loads for structural surface model.

The motor compartment side panel, element 4, is loaded by the shearing loads
shown in Figure 4.22a. This panel must react these loads in a bending strength test.
However, this high, thin panel can be prone to elastic plate buckling under this
loading condition, Figure 4.22b. Using the principles developed in Chapter 3, we
can look at ways to increase the shear buckling critical stress. One mass-effective
method is to add ribs to reduce the width of the buckling plate, Figure 4.22c.

e —
Shear loading \ﬁ"’/x % l Rp T!‘
(a) A element & SVl F
a
No ribs
(b)
With ribs
(¢

=
Figure 4.22 Buckling of motor compartment side panel.
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The cowl, element d, is loaded as shown in Figure 4.19b. Under these loads we can
identify the bending moments along this element in the plan view, Figure 4.23.
Given this moment diagram, we can now design a section to react this moment
without failing using yield of the effective section as the failure criterion. This will
ensure that the cowl will be adequate under global bending.

1500 mm 900 mm
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Figure 4.23 Loads on cowl surface during bending.

Finally, consider the side frame element f, loaded as shown in the bending test,
Figure 4.20. This element is made of several beams: front hinge pillar, A pillar,

roof rail, B pillar, C pillar, and rocker, Figure 4.24. Our objective is now to see

what moments are applied to each beam by these loads so that we may design the
beam sections. As a framework of beams, this structural subsystem is statically
indeterminate; that is, we cannot use equilibrium equations only to determine the
moments in each beam. The moments also depend on the relative stiffness of each of
the beams. Using the loading shown in Figure 4.25, a small finite element model of
the side frame may be applied to identify internal bending moments for each beam,
Figure 4.26. Once the moments are known for a beam, the sections can be designed
which react the moments without yield of the effective section.

5 [ Do

Apillar Rocker B pillar C pillar

Roof rail

Figure 4.24 Side frame beams.
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Figure 4.25 Side frame planar beam model.
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Figure 4.26 Finite element analysis for internal loads.

4.3.1 Summary: Bending strength

In this section, we have shown how the applied loads in the global bending strength
test can be flowed down to the loads on each individual structural subsystem of the
body. To accomplish this flow down of load requirements, we used a highly idealized
body structure of simple structural surfaces and bar elements, Figure 4.21. We set
each element into static equilibrium to find the internal element loads. Then, knowing
the subsystem loads, we showed how the section design principles developed in the
previous chapter can be used to find the appropriate sections to react these loads.

We have thus gone from a strength requirement on the body system to ensuring the
strength of each structural element in the body under bending.
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4.4 Analysis of Body Bending Stiffness

In the previous section we examined how the bending strength requirement
implies a strength requirement for each structural element, and how we can

use these requirements to design the elements. We will continue to focus on the
global bending stiffness requirement and flow down that requirement to stiffness
requirements for a primary structural subsystem—the side frame.

We focus on the side frame due to its effect on bending stiffness, and model

the body structure as shown in Figure 4.27. We consider the structure from the
front suspension attachment rearward to the front of the side frame as rigid and
connected with two pinned joints to the side frame [6]. One pinned joint is at the
base of the A pillar, and one is at the base of the hinge pillar. Similarly, we use a
rigid element from the rear suspension attachment forward to the side frame and
attached in the same way as shown in Figure 4.27. With this configuration, the side
frame is loaded as in our earlier free-body shown in Figure 4.20.

Pin Rigid
connections elements

Figure 4.27 Very basic side frame finite element model. (Courtesy of the American Iron
and Steel Institute, UltraLight Steel Auto Body)

We will follow the design procedure shown in Figure 4.28. Beginning with the
global bending stiffness requirement, we will create a side frame design concept
by making an initial estimate for the section size of each of the beam elements in
the side frame. We will then predict the bending stiffness performance using a
finite element model based on Figure 4.27. We will then compare the estimated
performance to the required stiffness and adjust the beam sizes until the
requirement is met at acceptable mass.
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Figure 4.28 Systems design procedure.

Consider example data for this model. Figure 4.29 shows the initial guess for beam
section size—height, width, and thickness for the rectangular sections. These beams

are used in the simple finite element model [7] shown in Figure 4.30, in which
each beam is rigidly connected to adjacent beams at a node point. The model is
restrained at the front suspension attachment point by restraining deflection in all
three directions (but allowing rotation about all three axes), and restrained at the

rear suspension attachment point in the vertical direction and out-of-plane direction.

A downward load is applied at the node where the B pillar attaches to the rocker,

simulating the H point bending load, Figure 4.30.
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jilr?]Z;;aig]nes ﬁ/ Lok
Y
(@l in mm) L.x A [ 7s0
: 500 1000 1000 250
Sect y 35 50 75
ections
it ) 25[@ . 35% 25%;5 25%
40 Z z 4
Roof rail A pillar B pillar C pillar
above belt  above belt
y 100 ) 50
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Figure 4.29 Example data for side frame model.
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Body bending stiffness:

K=6681 N/6.4 mm =1044 N/mm per side
=2088 N/mm body bending stiffness
(30% of the 7000 N/mm target)

Figure 4.30 First-order analysis of side frame with rigid joints.

The result of this analysis is the deflected shape of the side frame. By taking the ratio
of the applied load to the deflection at the node of load application, we can calculate
the bending stiffness for the side frame, Figure 4.30.

4.4.1 Importance of joint flexibility

If we were to compare the actual stiffness to what we have predicted with this
model, we would find the predicted stiffness is approximately twice the actual. We
have neglected a very important physical behavior of the thin-walled beam sections:
whenever two or more thin-walled beams are joined, there is considerable localized
deformation, Figure 4.31. This localized deflection has the effect of a flexible joint
between the beams [8]. Thus, our assumption that the beams are rigidly connected
to each other is in error. By adjusting the finite element analysis (FEA) to contain
flexible joints, we can achieve much better correlation with actual stiffness. Rather
than attaching a beam end rigidly to a node, we will instead attach the beam to a
node through a rotational stiffness representing the joint, Figure 4.32.

high deflection
localized at joint

Figure 4.31 Observed localized deformation at joint.
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Figure 4.32 Modified model with joint flexibility.

The rotational stiffness value is determined by extracting the physical joint from the
body structure, restraining all beam connections except one, and applying a moment
at that beam connection, Figure 4.33. The resulting rotational deflection is measured
and a moment-rotational angle curve plotted. The slope of this curve is the joint
stiffness. Benchmark data for side frame joints of four vehicles are shown in

Figure 4.34, and joint stiffnesses for five different joints are compared.

The absolute value for joint stiffness is somewhat difficult to interpret. For example,
is a joint stiffness of 0.2x10° Nm/rad (1.77x10° in Ib/rad) a very stiff or very flexible
joint? To answer this question, it is helpful to compare the joint stiffness to the
bending stiffness of the beam to which it is attached, Figure 4.35a. We can then
define joint efficiency, f, as the ratio of the combined stiffness of the beam with joint
to the stiffness of the beam alone (assuming a rigid joint).

¢ $=(6,-0,)/(a-b)
I.’ M=aF

K, = slope of Mvs. ¢ plot

Figure 4.33 Measuring joint rates.
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data from four bodies
A pillar to hinge pillar

Hinge pillar to rocker f
A pillar to roof side rail §

B pillar to roof side rail j&

B pillar to rocker

typical
values
0.20x10°
0.20x10°
0.01x10°

0.01x10°

0.20x10°

108 10* 105
joint rate (N m / Rad)

106

Figure 4.34 Typical joint rates for side view.

K

_ “BEAM&JOINT SYSTEM
/= K
BEAM
Since the beam stiffness and joint stiffness are in series,
_ KiomrKpeam
Kgamecjomr system =
Kionvr + Kppam

Substituting Equation 4.7 into 4.6 gives,

f= Kjomr

Kjomr + Kpeam

Note that for a beam loaded by an end moment, Figure 35b,
_M_2E

K =
BEAM ~ g T [
Then the joint efficiency, f, is given by
B Kjomr
) K + 2k
JOINT * 7
1
= o
LKjomr

where:
L = Beam length
EI = Beam section stiffness
Ko = Joint stiffness
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Figure 4.35 Joint efficiency.

When the joint stiffness, K]OM, is much larger than the beam stiffness, (2EI/L), the
denominator of Equation 4.9 is approximately one, and the efficiency approaches
100%. Thus a 100% efficient joint would be rigid with all of the beam stiffness being
utilized. A very low efficiency indicates most of the deformation of the beam-joint
system is caused by the joint deformation.

Consider again our side-frame model of Figure 4.29. We now apply reasonable
joint stiffnesses to three of the joints, Figure 4.36 and re-run the FEA. The resulting
~ side frame stiffness, Figure 4.37, is 83% of that with rigid joints, Figure 4.30, and is
in better agreement with physically measured values. We are now content that we
have a valid model to predict side frame stiffness given an initial guess at beam
section sizes. What if our initial guess does not give a stiffness which meets the
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required bending stiffness? Intuitively, we would begin to increase section sizes or
joint stiffnesses until we attain adequate bending stiffness following the iterative
loop of Figure 4.28. But which beams to adjust first, and once we achieve the
requirement, how can we be sure that it is the minimum mass solution? In the next
section, we describe a means to efficiently improve the structure’s stiffness.

K,;=0.38x10" Nmm/rad—__

K,;=2.8x107 Nmm/rad —,

K,=3.5x107 Nmm/rad —

Figure 4.36 Model with flexible joints.

Body bending stiffness= 2688 //mm
1735 N/mm
Figure 4.37 Effect of joint stiffness on bending stiffness.

4.4.2 Strain energy and stiffness

As the bending load is applied to the body structure, the structure deflects at the
point of load application. As the applied force moves through this displacement,
it does work. This external work is stored as strain energy in each of the structural
elements as they deform under the load. The strain energy in a structural element
may be calculated if we know the applied moments.

For example, in Figure 4.38 the strain energy of an end-loaded beam is developed as
a function of the end moments on the beam, resulting in the relationship:

i

CaEam :EE—I(Mlz + MM, +M,?) (4.10)
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where:
L = Beam length

EI = Section stiffness
M, , = Applied moment at each end

(Mz _Ml)x
L

For end loaded beam  M(x)= M, +

L i L i
Strain energy for beam e:IMy 2o é";dk

0 0

i
e=E(M12 + MM, + M,*)

Figure 4.38 Strain energy of a beam loaded at ends.

The strain energy for a joint of stiffness K]omr/ Figure 4.39, with applied moment, M,
and resulting angle of rotation, ¢, is:

My, M
2 Koy (4.11)
o 9°K JOINT
2
where:
K]OINT = Joint stiffness

M = Applied moment at each end
¢ = Deflection angle (rad)

Thus, knowing the moment applied to a structural element—either a beam or
joint—we can identify the strain energy stored in it by using Equation 4.10 or 4.11.

We can now answer the question of which beam or joint to improve first to meet the
body bending stiffness requirement most efficiently:

To improve the stiffness of a structural system, increase the performance of the structural
element with the highest fraction of strain energy.
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Figure 4.39 Strain energy of a joint.
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While the use of strain energy in this very simple example is not essential, in more
complex systems such as the side frame it is much more difficult to identify which
beam or joint to improve. Strain energy for these complex structures becomes a
critical tool for iterative improvement of the structure. For more complex structural
systems, strain energy can be calculated, using the FEA model which evaluates
Equations 4.10 and 4.11, for each beam and joint within the software.

Once we have sized the sections to meet the bending stiffness requirement, we
consider the bending strength requirement. We follow the procedure shown in
Figure 4.42 and look at the maximum stress in each beam to ensure the stress is
within the design stress level. With thin-wall design, careful attention is given to the
compressive stresses to ensure they are within the plate buckling stress limits.

If stress is greater than the design stress we have a choice of:
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1. Increasing the buckling design stress by inhibiting elastic plate buckling using
the methods described in Chapter 3

2. Choosing a material with increased yield when buckling is not the limiting
failure condition

3. Reducing the stress by increasing the section properties.

design for stiffness
stiffness £
\ requirement
7 design N
_concept

design for strength
|/ strength
| 1\ requirement :
: design S :
_ g concept |
stiffness acceptable P

design concept passed on  fi strength o s
for strength development p’e'c“on Do s

when o> opegien

stiffiess | change ||
5\ prediction 4| beams |
e Ty p | with highest

energy

' AP acceptable: done

Figure 4.42 Iterative process to meet stiffness and strength requirements.

4.4.3 Note on the bending stiffness changes due to side doors

The model we have used for bending performance has neglected side doors. It has
been shown experimentally that the static bending stiffness is unchanged with

or without doors attached. To understand this non-obvious behavior, consider

the deflected shape of the side frame with an idealized door in place, Figure 4.43.

To add to the global bending stiffness, the door system must generate the loads
shown at the hinges and latch. However, current designs for the hinge and latch

do not have sufficient stiffness to generate these loads. Alternative designs for door
attachment can provide this stiffness. For example, Figure 4.44 shows a highly rigid
hinge attachment design [9]. -
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Figure 4.43 Effect of door on body bending stiffness.

Figure 4.44 Through-section door hinge attachment. (Courtesy of the American Iron and
Steel Institute, UltraLight Steel Auto Body)

4.4.4 Summary: Bending stiffness

In this section, we have shown how the global bending stiffness requirement can
be flowed down to identify the required properties of individual beams and joints.
We used a simple Finite Element Analysis of the side frame to predict deflections
and also element strain energy. Strain energy informed us regarding which beams
have the most influence on global bending stiffness. We have also shown how joint
stiffness plays an important role in global bending stiffness performance.

Often the structural element which most influences global bending stiffness is a joint
rather than a beam element. In the following section, we look at principles of joint
design for stiffness.
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4.5 Principles of Good Joint Design

In the previous section we showed the importance of the joints between beams to
body stiffness. In this section we will discuss design principles which result in joints
with high stiffness.

First, we classify two cases for joint bending stiffness: in-plane bending and out-
of-plane bending. Consider the intersection of the rocker beam and B pillar beam,
Figure 4.45. The two beams define a plane, and when the applied moment causes
beam rotation within that plane we have the case of in-plane bending. Now consider
the same joint but loaded in a way that causes the B pillar to rotate out of the plane
containing the two beams, Figure 4.46. This is the out-of-plane bending case. In most
instances, in-plane bending joint stiffness is of interest under global body bending,
while the out-of-plane bending joint stiffness is of interest under global body
torsion. In the following, we will focus on design principles for in-plane bending but
realize that the general conclusions follow for the out-of-plane case.

B pillar to rocker Joint

Moments and rotations are in 3
the plane defined by beams

Figure 4.45 In-plane bending. (Photo courtesy of A2Mac1.com
Automotive Benchmarking)

Moment and rotation are in plane
perpendicular to the plane defined by beams

Figure 4.46 Out-of-plane bending.
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We will develop principles for stiff joints by first looking at a case of an undesirable
flexible joint, that is one with much local deformation where the beams join. In

this simplified joint, two beams with rectangular section join in a planar T shape
similar to the B pillar to rocker joint, Figure 4.47. The section width for the B pillar
is smaller than the width of the rocker section. The rocker is restrained at either
end, and a rearward load is applied at the top of the B pillar beam, creating the
stress distribution shown in Figure 4.48. Because we are dealing with thin-walled
sections, the corners of the section have a relatively higher stress than the center of
the walls. We can idealize this stress distribution by assuming that all of the stress is
taken by the corners of the section, as shown in Figure 4.49. Now isolating the top
surface of the rocker section and considering it as a simply supported plate, we can
see that the corner loads from the B pillar are applied to the central portion of this
plate, Figure 4.50. As a thin-walled plate, it has little bending rigidity to react these
centrally applied normal loads, and there is considerable deformation of the plate as
shown in Figure 4.51.

wy

w ]

Applied force

B pillar

Rocker

NN

Ny, Nl

/

Figure 4.47 Simplified joint of thin-walled sections under in-plane bending.

direct shear
stress stress

Figure 4.48 Stress distribution for loaded joint.
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e

<>

direct shear
stress stress

Figure 4.49 |dealized stress distribution for thin-walled section.
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View down
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Figure 4.50 Reaction stresses generated by deforming top plate.

top plate of beam deformation at centerline of plate

SS
A % at
SS
A
A
Deformation at
cross section A-A

Figure 4.51 Deformation of top plate for joint with beams of unequal width.
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This condition, in which a corner load from one beam normally loads a plate surface
of the connecting beam, is the basis for the high joint flexibility we are trying to
avoid. As an improvement to this joint configuration, consider that both beams

are now of the same width, Figure 4.52. Now the corner loads from the B pillar are
reacted by shearing in the side surface of the rocker. Considerably less deformation
occurs under this shear action, and the joint flexibility is greatly reduced. This
provides a guideline for stiff joint construction:

For high joint stiffness, the shear walls of the connected beams should be aligned at the
joint and flow smoothly from one beam to another.

w;=w,
VVJ
view down
axis of beam
/]
w,

Figure 4.52 Joint with beam side walls coincident.

To better understand this improved joint configuration, consider the shear sides of
the two beams. Let us model these shear walls with shear resistant members and
bars and load them as shown, Figure 4.53. To understand how the applied in-plane
load flows through the joint, each element can be placed into static equilibrium,
Figure 4.54. This analysis shows that the applied load can be reacted efficiently by
shear and compression. However, two areas must be treated carefully; the shear
panel at the intersection of the beams, panel B, is relatively highly loaded in shear
and can be prone to shear buckling. Also, the bar elements at the front and rear

of the B pillar, bar S, and S, are relatively highly loaded in compression and are
also prone to compressive buckling. One means to solve both of these concerns

is by using the rib pattern shown in Figure 4.55a. The V rib pattern increases the
shear buckling stress of the panel, while the vertical ribs provide a path for the
compressive load. Examining Figure 4.54, note that the corner force, X, acting on
bar S, is reduced as the span, b, is increased; X, =hF/b. One means to increase this
span is to provide a filleted transition, as shown in Figure 4.55b.
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154

System free body
F <

B point 0
2 o 2
QzT l

Y Fy=R-F=0
R=F

D> M,=Fh-0Q,L=0

Qz:ﬁ

L

Figure 4.53 Internal loads: In plane bending.
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Figure 4.54a Free body diagram: In plane bending.
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Figure 4.54b Free body diagram: In plane bending.

added ribs to
inhibit shear
buckling

fillet decreases
compressive
corner stresses

added ribs to react
compression

(a) (b)

Figure 4.55 Modification to joint shear wall.

Figure 4.56 shows experimental data for in-plane bending stiffness of three

alternatives to the untreated planar T joint we have been analyzing [10]. A doubler
plate over the shear wall, Figure 4.56a, inhibits shear buckling, although with some

mass penalty. A filleted transition, Figure 4.56b, reduces the forces applied by the
corners by increasing the distance between the corner forces. Finally, by adding a

bulkhead under the upper section corners, Figure 4.56c, an additional load path is
provided to react the corner loads but at some mass penalty. Similar data for out-of-

plane bending alternatives [11] are provided in Figure 4.57.

155



Chapter 4 | Design for Body Bending

I 400 mm
[ ——=]* section size: 50 x 50 mm x 1.6 mm

800 mm

Stiffness relative to base joint with no treatment
1.9 2.1 1.8

Doubler plate Filleted transition Bulkheads

(@) (b) (c)

Figure 4.56 Increasing joint rigidity for in plane bending.

i 1400mm
“-—|*+ section size: 50 x 50 mmx 1.6 mm
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Stiffness (10¢ Nm/rad)
Figure 4.57 Effect of added bulkheads on out of plane joint rigidity.

4.5.1 Examples of body joint design

We have discussed joint design principles using an idealized set of rectangular beams.
Now let us look at the application of these principles to more representative joints.

A-pillar-to-hinge-pillar joint
Figure 4.58a shows an A pillar and hinge pillar from a typical vehicle. The A-pillar
surface is just behind the windshield edge, while the hinge pillar outer surface is
considerably inboard due to positioning of the hinge attachment. This creates an
undesirable lack of continuity for the shear surfaces of these two beams at the belt line.
With careful coordination of exterior styling and door hinging, it is possible to achieve

_ the alignment of the shear surface for both beams and a much stiffer joint, Figure 4.58b.
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front view

Shear elements not aligned in front Shear elements aligned
view with resulting distortion at joint (joint much stiffer)

(a) (b)
Figure 4.58 Hinge-pillar-to-A-pillar joint.

Hinge-pillar-to-rocker joint

Typical construction for the hinge-pillar-to-rocker joint is shown in Figure 4.59a. In
many cases, there is an offset, s, between the inner shear plane of the rocker and the
inner shear plane of the hinge pillar, Figure 4.59b. While we would ideally like these
planes to be aligned with s=0 for the stiffest joint, other constraints may prevent this
from occurring. When s>0, the rocker section distorts under in-plane loading, as shown
in Figure 4.59¢. In this case, the rocker distortion behaves as a series of springs reacting
the rotational motion of the hinge pillar, Figure 4.60a. (This is similar to the behavior of
thin-walled sections under a point load which we looked at in Chapter 3.) The larger
the offset, s, the more flexible is each slice of the rocker section. Figure 4.60b plots the
joint efficiency vs. the rocker section stiffness for various offset dimensions. It can be
seen that for relatively small offsets (s>5 mm), the joint efficiency is greatly reduced.

Ideal joint with
shear planes in Offset, s, between Deflected shape when
alignment beam shear walls offset, s, present
(a) (b) (c)

Figure 4.59 Lower-hinge-pillar-to-rocker joint.
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Figure 4.60 Joint efficiency of alternative rocker sections.

Floor-cross-member-to-rocker joint

The floor-cross-member-to-rocker joint shown in Figure 4.61 is loaded in out-
of-plane bending. If the spot-weld flanges are perpendicular to the tensile and
compressive loads in the top and bottom of the cross-member section, Figure 4.61a,
the welds will be in peel and have considerable local distortion. By forming the
weld flange as shown in Figure 4.61b, the loads are more nearly transferred in shear
and a much stiffer joint results.

Flange distortion and weld peel Loads transferred in shear
(Poor) (Better)
(a) (b)

Figure 4.61 Seat-cross-member-to-rocker joint construction: Out-of-plane bending.

158



4.5.2 Joint behavior at abrupt geometric transitions

Thus far we have been considering the localized deformation at the physical
attachment between two or more beams. Often we see a similar large localized
defection within a single beam, which contains an abrupt geometric transition,
Figure 4.62. Even though no physical joint is present, we can treat the transition

area as a joint stiffness with a beam on either side. A notable example is a beam with
two relatively straight portions and a central curved portion, Figure 4.63. If we look
at in-plane bending for this beam, we would see that the curved portion has high
localized angular deformation and acts as a flexible joint connecting the two straight
portions of the beam. Isolating the curved portion and applying moments to either
side gives rise to compressive stresses along the top surface and tensile stresses
along the bottom surface, Figure 4.63a.

Now consider a side view of the curved section of the beam, Figure 4.63b. The
compressive load, P, acts on the top surface of the section, and we can see that an
upward force, w, is required to place the surface into static equilibrium, Figure
4.63b. The magnitude of this upward force is given by:

- (4.12)
R
where:

w = Compressive force per unit length acting on web
P = Compressive force acting on the strip

R = Radius of curvature of the strip.

continuous beam
with discontinuities

discontinuities
behave as
effective joints

Figure 4.62 Changes in section causing local flexibility.
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Figure 4.63 Effective joint for a curved beam.

P
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This force, w, is a compressive force provided by the web of the beam pushing

the upper and lower beam surfaces apart. Because the magnitude of this force

is inversely proportional to the beam radius, beams with more abrupt curvature
(smaller R) have a higher compressive force in the web. This compressive web force
distorts the section, as shown in Figure 4.64a, and results in joint-like behavior. To
improve this joint stiffness, the radius of curvature should be increased, or radial
ribs included which react the compressive web loads, Figure 4.64b.

Often, the geometric transition is in a straight beam for the purpose of clearing some
component of the vehicle, Figure 4.65. Again, a smooth transition will result in a
stiffer effective joint, even at the expense of reducing beam section well before the
component, Figure 4.66.

Distortion of Radial ribs to react
curved section compression
(a) (b)

Figure 4.64 Stabilizing curved beam.
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Figure 4.66 Smoothness of section transition.

4.5.3 Summary-Joint design

Two types of joint loading were defined—in-plane and out-of-plane, Figures 4.45
and 46. For in-plane loading, several design principles for stiff joint construction
were presented. Shear walls of the connected beams should be aligned and flow
smoothly from one beam to another, Figure 4.58. Even with the shear walls aligned
in this way, however, the side wall at the beam intersection is relatively highly
loaded in shear, and can be prone to shear buckling. Also the front and rear corners
of the loaded beam place high compression stresses in the side wall, which is prone
to compressive buckling, Figure 4.53. Careful placement of ribs or bulkheads can
provide load paths for these conditions, Figures 4.55, 56, and 57. A severe geometric
transition in a single beam can act as a flexible joint. To make this transition as stiff
as possible, it should be gradual and smooth, Figures 4.64 and 66.
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