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In this chapter we consider the overall body structure being twisted. As we did with
the bending in Chapter 4, we will consider two types of body torsion requirements:
strength and stiffness.

5.1 Body Torsion Strength Requirement

In defining the torsion strength requirement, we are seeking a vehicle-use condition
which applies a maximum torque to the body, and yet a condition where the user
would expect the body to recover its shape with little to no permanent deformation
upon removal of the torque. The twist ditch maneuver is such a condition. Here, one
wheel falls into a ditch and becomes unsupported, Figure 5.1. Putting the vehicle
into static equilibrium for this condition, we see the twist ditch torque, T, , is
given by
t
Tyax =Waxie 5 SL
where:
W xx = Weight for the axle with the highest static load,

A
t = Track for that axle.

unsupported
wheel

Figure 5.1 Body loaded in twist ditch condition.

A test set-up for this strength requirement is shown in Figure 5.2. The vehicle

is supported at the suspension attachment points at one end, and loaded at the
suspension attachment points at the other end. At the loaded end an upward
deflection, &, is imposed on one side and an equal downward deflection imposed on
the other side, producing a twisting couple. Load cells at the loaded end measure
the magnitude of the twisting couple. The angle of twist of the body, ¢, is also
measured as

o= 2_5_ (5.2)

where:
0 = Deflection at each loaded suspension attachment

w =Width at the loaded points
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permanent —es angle of twist ¢=25w

deformation

Figure 5.2 Torsion test convention.

For this requirement, we expect the body to suffer little permanent deformation
after the twist ditch torque is removed. The chart in Figure 5.3 shows the twist ditch
torques for a range of vehicles.

(71 Ib) (Nm)
7000
6000 218215 Range for 20

Twist ditch 5000
torque 4000
3000

2000

1000
0

Figure 5.3 Torsion strength benchmarking.
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5.2 Body Torsion Stiffness Requirement

From the body torsion test, we can measure a torsion stiffness—the slope in the
linear region of the applied couple vs. angular rotation, ¢. We will now develop the
rationale for a body torsion stiffness requirement. Two important functions require
high torsional stiffness:

1. To ensure good handling properties, the body should be torsionally stiff relative
to the suspension stiffness [1].

2. To ensure a solid structural feel and minimize relative deformations which result
in squeaks and rattles.
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5.2.1 Ensure good handling

As the vehicle turns a corner, it rolls on the suspension ride springs, Figure 5.4.

This rolling causes a weight transfer from the inside wheels to the outside wheels
and can affect the steering characteristics of the vehicle. During suspension design,
the body is assumed to be rigid, and suspension parameters are set with this
assumption. We wish to set a body torsional stiffness requirement high enough such
that this assumption of body rigidity is approximately correct. We can do this by
making the torsional stiffness of the body many times stiffer than the roll rate of the
suspension system.

Roll gain: Degrees of vehicle roll per g of lateral acceleration: 6/

Figure 5.4 Vehicle roll stiffness.

Figure 5.5 illustrates the vehicle in a rolled condition. Assuming for now that the
body is infinitely rigid, we can derive the roll stiffness based on the ride spring
rates [2]. Typical values are shown with the resulting roll stiffness, K, , equal to
approximately 1000 Nm/° (738 ft Ib/°). Now view the system of roll springs of the
front and rear suspension and the torsional stiffness of the flexible body as a series

torque applied to vehicle by lateral acceleration

2 2
4 KRIDE FRONT o ! KRIDE REAR

K ROLL = K ROLL FRONT A ROLL REAR — 2 9

typical values:

t=1560 mm

Kpipg = 23.4 N/imm

Krorr = 57000 Nm/rad =1000 Nm/deg

Figure 5.5 First-order estimate of vehicle roll stiffness.
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connection of springs, Figure 5.6. We wish to have the stiffness of this spring system,
which includes the torsionally flexible body, Figure 5.6b, approximately equal to
the ideal system consisting of only the suspension roll rates, Figure 5.6a. The graph

of Figure 5.7 plots the ratio of the stiffness with a torsionally flexible body, K
the suspension stiffness with a rigid body, K

ROLL/

to
EFF’
against the ratio of body torsional

stiffness to suspension roll stiffness. We wish to have K, /K, . to approach one.
Therefore we need the body torsional stiffness, K, to be 10 times the suspension

roll stiffness, Keorir
a torsional stiffness requirement at K
handling reasons.

K ROLL REAR

K ROLL FRONT

K ROLL FRONT R()LL REAR

£

Ideal rigid body
(a)

BODY

to achieve K, /K, ,,=0.9. For typical passenger cars, this places

=10000 Nm/° (7375 ft Ib/°) for suspension

ROLL FRONT

ROLL REAR

Ksopy

ROLL FRONT

ROLL REAR

Including body torsional stiffness

(b)

Figure 5.6 Vehicle roll stiffness with torsionally flexible body.

Kop = K o1 Ksopy
§ ROL K rorr + Kpopy
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KBOD} K ROLL  IROLL 41
BODY y
/—-—‘-——"‘ AS Ky / Kpopp =1

08 the body appears
Kprr 0.6 // rigid compargd to
Krowr 0.4 th? suspension

/ stiffness
0.2
o 2 4 6 8 10 Ksooy/ Krowus

Figure 5.7 Effective torsional rate of flexible body and suspension.
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5.2.2 Ensure solid structural feel

The second vehicle function demanding high torsional stiffness is to ensure the

feel of solidness over road irregularities. This is related to the fundamental natural
frequency of the body twisting mode; in general, higher natural frequency yields a
more desirable solid feel. Figure 5.8 shows benchmark torsional resonant frequency
data for several vehicles. As with bending vibration, sufficiently solid feel results
when the vehicle torsional frequency is in the 22 to 25 Hz range.

60

50

Torsion frequency (Hz)

no with full vehicle

windshield  windshield
_.__‘__l
body shell

Figure 5.8 Torsional frequency benchmarking.

Consider the torsional resonance as a single-degree-of-freedom mass-spring
oscillator where the point mass is the effective inertia of the rigidly attached vehicle
subsystems and the spring is the torsional rigidity of the body. Thus, the body
torsional stiffness requirement is related to the vehicle torsional frequency target.
Figure 5.9 shows the measured torsional stiffness for several vehicles meeting this
desirable vehicle torsional frequency range. A value of 12,000 Nm/° (8850 ft1b/°) is
seen as a good level of performance to meet both structural feel and also minimize
relative deformations which cause squeaks and rattles.

Earlier we noted that the torsional stiffness requirement must satisfy two functions:
1) ensure good handling properties, and 2) ensure solid structural feel. Note

that the suggested torsional stiffness based on structural feel, 72000 Nm/°

(8850 ft Ib/°), exceeds the stiffness based on suspension roll stiffness, 10000

Nm/* (7400 ft Ib/°), so we select the greater of these as the requirement. (However,

in the case of performance vehicles and race cars, the increased suspension roll
stiffness of these vehicles makes the suspension stiffness function the dominant
requirement for torsion.)
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Figure 5.9 Torsional stiffness test and benchmarking. (Courtesy of the American Iron and
Steel Institute, UltraLight Steel Auto Body)

To summarize, we have shown how both strength and stiffness requirements may
be established for body torsion. Typical values for these requirements are shown in
Figure 5.10 for a midsize vehicle. We will now look at the design of body structure to
meet these requirements. The next section treats design for the strength requirement,
followed by a section on design for the stiffness requirement.

Torsion Strength

nominal value
T= 6250 Nm
no permanent deformation

Torsion Stiffness
nominal value
restraints at suspension attachments K= 12000 Nm/°

Figure 5.10 Typical torsional requirement for a mid-size vehicle.

5.3 Internal Loads During Global Torsion:
Load Path Analysis

First we will consider the design of structure to meet the body strength requirement.
As with the bending case, our objective is to understand how this global body
requirement flows down to loads on structure elements. Once we have the loads

on individual structural elements, we can then design those elements using the
principles of Chapter 3.

5.3.1 Shear-resistant members

Early computer modeling of body torsional behavior during the 1970s idealized
the structure as a framework of beams, Figure 5.11, very similar to our side-frame
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model for bending. However, these early analyses consistently predicted a more
torsionally flexible structure with stiffness at 10-30% of experimental values. When
panels were added to the model, the predictions were much more accurate. These
early studies showed that surfaces—shear-resistant members—are the dominant
structure in reacting torsion loading, and that they can explain the behavior of the
body loaded in torsion. Therefore, in the models of this chapter we will idealize the
body structure as a set of shear-resistant members.

Rotational
deflection

¢

Beam Test
model
without
panels

Figure 5.11 Beam model without panels.

We will begin by looking at a very simple model of a body: a closed box,

Figure 5.12. The structural elements making up this box are structural shear surfaces
first introduced in our analysis of the body strength in bending, Figure 5.13. We
imagine the box loaded at the front corners with a twisting couple and an equal

and opposite couple acting on the rear corners. The magnitude of this couple is the
torsional strength requirement developed in the previous section. We are interested
in how these applied loads flow into the individual surfaces [3].

Figure 5.12 Box model.
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react in-plane loads only not allowed
no moments transmitted at edges

Figure 5.13 Idealized surface element.

Now let us explode the box and look at the internal loads on each surface,

Figure 5.14. These loads can be determined, as we did with the bending strength
analysis, by setting each surface into static equilibrium [4]. To begin, look the front
left applied force. It must be reacted by both the front surface left edge and the side
surface front edge, as shown in Figure 5.14b. Let a be the fraction of the applied

load taken by the front surface, and (1) the fraction taken by the side surface

where 0<a<1. Now set the front surface and side surfaces into equilibrium by

taking moments at a corner, Figure 5.15a and b. Finally, consider the bottom surface
equilibrium. The forces on this surface must be equal and opposite to those applied by
the front surface (along the front edge), and by the side surface (along the side edge),
Figure 5.15c. Equilibrium of the bottom then tells us that a=1/2 or the applied force is
shared equally by the front and side surfaces, regardless of the dimensions of the box.

tr
Exploded box ~ Left front corner

(@) (b)

Figure 5.14 Box model internal loads.
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(a) (b) (c)
Figure 5.15 Free body of box model.

From the analysis of this simple structure under torsional loading, we see that 1) all
surfaces are loaded, 2) that the internal loads are independent of material properties,
and 3) that each surface is necessary to react the applied torsional couple: removal of
any single surface will not allow the required equilibrium and the box will collapse.
Also note that the shear flow—the shear force per unit of length of the edge it acts
upon—is equal for all edges, Figure 5.16.

Twisting forces, F, at corners g= (edge force)/(edge length)
Edge forces Shear flow

Figure 5.16 Monocoque box in torsion.
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Note that the shear-resistant structural elements representing each face of the box do
not have to be flat surfaces, as we have shown in the illustration of

Figure 5.13. A shear-resistant member is any element which can resist the match-
boxing deformation shown in Figure 5.18 top. This could be a flat panel as we have
shown, a crowned panel, a panel with a hole or ribs, or a framework of beams,
Figure 5.18 bottom. Examples of shear-resistant beam frameworks include the side-
frame, rear hatch opening, and windshield ring, among others. Less-conventional
shear-resistant members include diagonal straps in which only the strap under
tension reacts the shear loads, and panels which have been loaded beyond their
shear buckling load. Such buckled panels will still resist shearing deformation,
with the buckled waves acting as tension members—this state is referred to as
diagonal tension.
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f Shear resistant member: Any structure
which resists match-boxing deformation

Examples:
flat or panel with shear beam tension
crown gusseted buckled framework Cross
panel corners panel straps

(diagonal tension)

Figure 5.18 Shear-resistant members.

In preparation to look at a more realistic model for the body subjected to torsion
loading, let us consider a box-shaped passenger cabin loaded by a torque at the
front face and an equal and opposite torque at the rear face, Figure 5.19a.

(@)

Figure 5.19 Passenger cabin internal loads.
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We again place each surface into static equilibrium, Figure 5.19b, but this time we
will use a matrix formulation [5]. The three independent equilibrium equations can

be written as

+wQ, +hQ,=T equilibrium of front face
-LQ,+wQ,=0 equilibrium of top face
-LQ, +hQ,=0 equilibrium of side face
We can now define a column matrix of applied torques
[T
T =0V (5.3)
| 0
a column matrix of shear loads
_Ql
Q=|Q,| (5.4)
Qs
and a coefficient matrix
w h 0
A=l 0 -L w|. (5.5)
-L 0 h
With these definitions, the equilibrium equations can be written as
AQ=T (5.6)
and as we are interested in the internal shear loads, this can be solved as
Q=A"T (5.7)
which gives for this case:
2 hL K> —hwl||T

Qs = wL -wh w? ||0

HL
T e e o

T TL

T
orQl_?u;' Qz“zhr Q3—27,Uh

We now have the tools to allow us to look at the more realistic model for the body

subjected to torsion loading, Figure 5.20. This is the same shear surface and bar
model we used in the analysis of bending loads. Now we will apply the twist
ditch torque as force couple, R =T,,,,/w’, acting on the motor compartment side

surfaces. An equal and opposite couple is applied to the rear surfaces to place the

body system into equilibrium. The model is now exploded, and the unknown

internal loads drawn with the assumed positive directions, Figure 5.21. Note that
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the loads are symmetrically opposite about the plane dividing the body into right
and left sides. As in the bending case, we begin by examining a surface which has an
external load applied: the right motor compartment side surface a.

Figure 5.21 Internal loads under twist ditch load.

Proceeding by placing surface a into equilibrium, we find the internal shearing

load, Q, on the top and bottom edges, Figure 5.22. The load on the upper edge is
reacted by the bar, b, and we see a load, P,, is required at its end to place the bar into
equilibrium. Similarly, the load on the bottom edge of the surface is reacted by bar, b".

As in the bending case, we see the motor compartment side, surface g, is loaded in
shear, and we can use the principles developed in Chapter 3 to design this panel to
meet these shear loads. As the magnitude of shear loads differs from the bending
case, the worst case—bending or torsion—is used to size the panel.
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Figure 5.22 Internal loads on motor compartment panel.

Isolating the cowl surface, surface d in Figure 5.23, we see a rearward load applied
by the left bar b and, due to asymmetry, an equal forward load applied by the
right bar. To place the cowl surface into equilibrium, equal and opposite loads,

P,, are applied at the ends of the cowl. We can now identify all the loads applied
to the cowl during twist ditch torsion loading, and can determine the moment
diagram shown in Figure 5.24. We can now design a cowl section to react these
moments without failing. With a thin-wall section, we must account for buckling,
and determine if the elements of the section in compression are buckled. But

we must note that the twist ditch torsion load may be in either the clockwise or
counterclockwise direction. Therefore the moments on-the cowl may be reversed in
sign, and the compressed side of the section reversed. The designed section must
accommodate both conditions.

element

w
R T )
' F
0 7 PD:%Q R, |

Q Pp

Figure 5.23 Internal loads on cowl and package shelf.
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Moment diagram
when direction of
1500 mm 900 mm torque is reversed

PD
] A
_,.// I
0
Q
RS MO TR |
_._\
—

Py Shear Moment

Figure 5.24 Internal loads on cowl bar.

We can now turn our attention to the cabin surfaces, Figure 5.25. Note that,

like our earlier simple model of a six-sided box, the cabin forms a space totally
enclosed by surfaces, although now we have eight sides. The cabin is loaded by a
twisting couple applied to the dash by the motor compartment sides, 2 and a”. The
couple has the same magnitude as the twist ditch torque. A similar, but opposite,
arrangement occurs at the rear of the cabin structure with the couple applied to the
rear surface.

element a T >
wll |l
] Cabin
‘w\‘ element o’

Figure 5.25 Twist ditch loads transmitted to cabin as a torque.

Again we explode the cabin surfaces and label the seven unknown shear loads, Q, to
Q,, as shown, Figure 5.26. As with the box model, we can set each surface into static
equilibrium and express the set of equilibrium equations in matrix form. Beginning~
with the dash surface with an external torque applied, we sum moments about a
corner point and set to zero,

h,Q+wQ,~-T=0 equilibrium of dash surface
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Figure 5.26 Shear loads on cabin panels.

Proceeding with equilibrium equations for all seven surfaces (only one side surfaces
gives an independent equation), we end up with seven linear equations with seven
unknown shear loads. These equations may be expressed in matrix form as we did
with the simple six-sided box case in Equations 5.3 though 5.6:

(h, w O 0 0 0 o7
L. 9 = = 0 B0
A SN B 0 g .0
L, a0 0 -w g0
o N0 0 0 w 0
iy 40 0 0 0 -w
(00 0 (=) [Lp(h,~hy)+Ly(h -h)|/ Ly -Ly B

Q
Q
Qs
Q
Qs
Qs

2 s-Q7

.

oo*]ooo'ﬂj

dash
windshield
roof
backlight  (5.8)
rear seat panel
floor
side frame

In this set of equations, AQ=T, the applied torque is known and we wish to
find the internal shearing loads Q, to Q.. With the cabin dimensions, we can
substitute numerical values for the coefficient matrix, A, and solve for the shearing

loads, Q=A"T.

Several important points should be made on determining internal shear loads:

1. The loads were identified independently of material, so whether steel, aluminum,
plastic or other, the structural elements must react these loads under body torsion

2. Each surface must be present to react its loads, otherwise the body will collapse

3. Each structural surface has the ability to react shear loads, and the actual
structural element can be a beam framework, a curved panel, or others as

discussed previously and shown in Figure 5.18.
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5.3.2 Summary: Torsion strength

In this section, we have shown how the applied torque in the global torsion strength
test can be flowed down to the shear loads on each individual structural element. To
accomplish this flow down of requirements, we used a model consisting of simple
structural surfaces and bar elements, Figure 5.26. We set each element into static
equilibrium to find a set of equations for the shear loads, set them into matrix

form, and solved by inverting the coefficient matrix, Equation 5.8. Then, knowing
the subsystem loads, the section design principles developed in the Chapter 3 can
be used to find the appropriate structural elements to react these loads. We have
thus gone from a torsion strength requirement on the body system to ensuring the
strength of each structural element under torsion.

5.4 Analysis of Body Torsional Stiffness

In the previous section we examined how the torsion strength requirement implies
loading on each structural element, and how we can ensure that each element is
sufficiently strong. We will now focus on the global torsion stiffness requirement
and flow down the requirement to shear stiffness requirements of the individual
structural elements.

We begin by looking again at the six-sided box model, but now we look at the
elastic angular deflection of the box under a torsional load, T, Figure 5.29. The
angular deflection, 6, is the relative rotation between the front and rear surfaces.
The torsional stiffness of the box, K, is the ratio T/6. We wish to develop an equation
which will predict torsional stiffness given the box dimensions, surface thicknesses,
and material properties. To do this we will use energy methods, and we first
develop an equation for the shear strain energy of a surface [6].

Twist ditch Equivalent Uniform shear
load torque load flow loads

Figure 5.29 Van box model for torsional deformation.
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5.4.1 Shear strain energy of a surface

When a surface is loaded in shear, the surface distorts into the diamond shape
shown in Figure 5.30, and energy is stored as in an elastic spring. The shear strain
energy, e, for a surface in uniform shear is given by:

o J‘ 2 v (5.9)
VOLUME

where:
© = Shear stress

y = Shear strain

and the integral is over the panel volume.

Figure 5.30 Panel under uniform shear.

We assume that the panel is in uniform shear, and bothz and y are constant over
the panel. This equation can be expressed in a useful form in terms of the panel
dimensions, 4, b, t, the material shear modulus, G, and the shear flow, g:

2 2

T=1, V =abt, and Gzl, then e = J' T_dV__.T abt

B Y CTEIMCTE
VOLUME

, ab

2(Gt)
Note that the stored energy is inversely proportional to shear rigidity, (Gt). That
is, surfaces with higher shear rigidity have lower stored strain energy for a given
loading. We will now use this result for shear strain energy to determine the
torsional stiffness of a closed box structure.

d (5.10)

5.4.2 Energy balance for torque-loaded box

Look again at the closed box of Figure 5.29. As the applied torque, T, rotates through
the angle, 6, it does an amount of work, W=%T#. This elastic work is stored within
the panels as shear strain energy. By equating external work to the total stored
energy, we can determine an expression for rotational deflection:

Work done by external torque = Total shear strain energy in all surfaces
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From Equation 5.19,
ab

o 08
ALL SURFACES (Gt) SURFACE i

Recall that shear flow for a closed box, Figure 5.16, is

)

=%~ "on ~ 2wh

Substituting into the above,

2
1re- E(L) [ ab_ ]
2 2\ 2wh ALL SURFACES (Gt) Jsurrace i

2
ezT(_l_) [ﬂ]

2wh ALL SURFACES (Gt) lsurrace i
T 1
—=(2wh
= 2= (2uh)’

&
ALL SURFACES (Gt) SURFACE i

The important result below gives the torsional stiffness of a closed six-sided box in

terms of the properties for each surface.
1

K = (2wh)’

(53 G 3 N £ N = N ) B
(Gt) Jsyrrace 1 L(GH) Isyrracez  L(G) Jsurrace 3 L(GH) lsurpace 4 L(GH) Jsurpace s L(GE) Jsurrace 6
(5.11)

where:
K = Torsional stiffness of box R

G = Shear modulus

w = Width of box

h = Height of box

a, b = Dimension of a side surface

t = Thickness of side surface

5.4.3 Series spring analogy

To gain a physical understanding of the way the rigidity, (Gt), for each of the six
surfaces combine to give the torsional stiffness of the box, consider a set of six linear
springs in series, Figure 5.31. Now look at the mathematical formulation for such
springs in series which relates the combined stiffness to the stiffness of each spring;

1 1 1 1 1 1 1
=t —t—t—F—+—
e K K K K

=~

4 5 6
1 (5.12)

BT

~
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K right side surface e

{ ab
K, left side surface
K, top surface Kzp
K, bottom surface
K; front surface
K ? rear surface

l Krorsion Boby l )

Figure 5.31 Spring analogy for torsional stiffness.

Rearranging the box torsional stiffness equation, Equation 5.11 can be rewritten as:
1

K = (2wh)*
1 1 1 1 1 1

E - %, - -

+ - + -
31PN = | O - 21 W ) 1 1

(5:13)

Compare the form of Equation 5.12 for linear springs in series with Equation 5.13

for our box in torsion. View the quantity ((i;bi)—) for each surface in Equation 5.13 as
a

analogous to the stiffness K; in Equation 5.12, and the forms are the same except for

the constant, (2wh)”. It can be seen that each surface of a box in torsion contributes to

the torsional stiffness in the same way that each spring contributes to the equivalent

stiffness in a series of springs.

As we pull at the end of a series of springs, Figure 5.31, the deflection is dominated
by the most flexible spring in the group. If our objective is to increase stiffness, the
most efficient way is by increasing the stiffness of the least stiff spring—stiffening
the more-stiff springs will do little. This suggests a strategy to meet torsional
stiffness requirements:

To increase torsional stiffness, identify which surface is the most flexible—lowest (@)
—and improve it. o
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In the above example, the estimated torsional stiffness was 100 times stiffer than -
anticipated. The problem is not with Equation 5.13 but with our use of ideal flat
panels for each surface. In doing so, we have assumed that the surfaces remain
perfectly flat during loading. In this unlikely case, the stiffness is very high as
anyone who has twisted a closed shoe box knows. In reality, the surfaces of a vehicle
body differ considerably from an ideal flat plate; they often have considerable
out-of-plane shape such as crown, they have holes and cut-outs, often they are a
framework of beams with flexible joints. Despite these realities, Equation 5.13 is still
valid if we use the effective shear rigidity, (Gt)EFF, for these real surfaces.

5.4.4 Effective shear rigidity for structural elements

Using the effective shear rigidity, (Gt),,, for each real-world panel in Equation 5.13,
we can predict torsional stiffness for a body structure. To determine (Gt),,, we
consider the behavior of a test panel in a pinned frame fixture, Figure 5.33. This test
fixture is made of four rigid bars connected at their ends by pin joints. Two of the
joints are connected to ground, a shearing load is applied at the opposite side, and
deflection is measured in line with the load. With no panel in the fixture, it offers no
resistance to deformation, and deforms in a diamond shearing shape as shown in
Figure 5.33.
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(G =(£ )(ﬁ)z S(é) Where S is panel stiffness
S \a a)  from test, (F/o)

Figure 5.33 Test for effective (Gt).

Now consider a flat panel to be connected along the bars, and under load the panel
will be deformed in a state of uniform shear, Figure 5.33. We wish to relate the
applied load and measured deflection to the shear rigidity, (Gt), of the flat panel.
Using the definition of shear modulus, we can arrive at the simple relationship:

T F 6

G:—, ’L':-——, = —
Y at 4 b (5.14)

{5142 ()
Where:

(Gt) = Inferred shear rigidity for the panel
5 = Measured stiffness, (slope of the load F vs. deflection & curve)

a = Panel dimension of the side to which the load is applied

b = Adjacent side dimension ¥

This test suggests a means to determine the effective shear rigidity for any real
world-panel: Imagine the panel held in the fixture of Figure 5.33, apply a shearing
load, F, and measure the resulting deflection, 8. From the plot of F vs. 6, find the
stiffness, S (slope). The effective shear rigidity is then given by Equation 5.14. The
generation of the stiffness, S, may be determined by an actual physical test, by a
strength-of-material type analysis, or by finite element analysis.

Now we have a strategy for calculation of vehicle torsional stiffness: use the surface
model of Figure 5.29 and the resulting Equation 5.13 as before, but substitute effective
shear rigidity for each real-world shear-resistant element as found from

Equation 5.14

Examples using effective shear rigidity

To illustrate the use of Equations 5.13 and 5.14 we will look at four shear-resistant
members: a van rear hatch perimeter, a general crown panel, the windshield-
adhesive system, and the body side frame.
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The above example shows the influence of the hatch opening on torsional stiffness of
a van. In practice, efforts are made to use the hatch door to increase the shear rigidity
of the rear surface. Typically, the hinge and latch are not sufficiently stiff to do this,
and mechanisms to wedge the door into the opening are used, Figure 5.36 & 5.37.

hinge

opening
distortio

v ciie

Figure 5.36 Van hatch latch effect on torsional stiffness.

188



opening
distortion ;

wédge > _,l l.__

side pillar \J

hatch

Figure 5.37 Van hatch wedge effect on torsional stiffness.
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5.4.5 Torsional stiffness of a vehicle cabin

Earlier we looked at the internal loads of a sedan cabin, Figure 5.46. The torsional
stiffness of that cabin can be found by generalizing Equation 5.13 from the six-sided
box to a cabin with more surfaces enclosing the volume, Figure 5.47. Again, the
work done by the external torque will equal the shear strain energy in all surfaces:

lre- 1 Z[ﬂ]
e asoreaces 2 LG Jsurrs

Dividing both sides by T?,
o _ ( q )2 z [area of surface i]
T T ALL SURFACES (Gt )EPF SURF i
K = 1 (5.16)

( q )2 2 [area of surface i]
T ALL SURFACES (Gt)EFF SURF i

where (g/T) is found by solving the matrix equation Q=A"'T, Equation 5.7, and q is
the resulting shear flow on any non-loaded surface.
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6 sided box Cabin surfaces
uniform shear flow, ¢ uniform shear flow, ¢

Figure 5.47 Uniform shear flow in cabin.

These relationships provide a calculation procedure for the torsional stiffness of a
realistic cabin structure:

1. Apply a torque, T, to the structure and solve for the internal shear loads, Q.
using Q=A"'T (An example of this was done in earlier in Figures 5.27 & 5.28 and
Equation 5.8.)

2. Find the shear flow, g, by taking any of the surfaces not loaded by the external
torque and dividing that shear load by the length of the side over which the load
acts. Then form the ratio (4/T) with the torque being the value used in step one

3. Determine the effective shear rigidity, ( Gt) s for each panel using Equation 5.14

4. Substitute the values for (9/T), (Gt),,,, and surface area into Equation 5.16 to
determine the torsional stiffness of the cabin.
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5.4.6 Summary: Torsion stiffness

We have investigated the torsional behavior of enclosed structures constructed

of shear-resistant surfaces. Using energy principles, we developed Equation 5.16,
which relates the shear stiffness of the individual surfaces making up the cabin
structure to the body torsional stiffness, Figure 5.26. For perfectly flat panels, this
shear rigidity is (Gt)—the product of shear modulus and thickness. However,

for the real surfaces which make up the cabin surfaces, we need to identify the
effective shear rigidity, (Gt),,,. This is done by visualizing the real surface loaded in
a shear test fixture, Figure 5.33. By evaluating the load and deflection in this test
fixture, the effective shear rigidity for the panel can be determined using Equation
5.14. As with the strength load case, we found that all surfaces must be present to
provide torsional stiffness, and that the least stiff surface dominates the stiffness of
the body. A convenient way to visualize the cabin torsional stiffness is as a series
combination of springs, with each spring being one panel’s effective shear rigidity,
Figure 5.31.

5.5 Torsional Stiffness of Convertibles and
Framed Vehicles

Our focus in this chapter on torsion has been on the body as a monocoque structure,
that is, enclosed by shear-resistant surfaces. This focus is motivated by the efficiency
of this type of structure in reacting torsional loading. However, other alternatives
exist, Figure 5.49, although they seldom approach the torsional stiffness efficiency
achieved by the monocoque structure, Figure 5.50. In this section we will discuss
some of the most notable alternative structures.

Convertible Body-on-frame Backbone

Figure 5.49 Alternatives to monocoque body structure.
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Figure 5.50 Body-on-frame torsional stiffness benchmarking.

5.5.1 Torsional stiffness of convertibles

We have stressed the need for all surfaces of the vehicle body ‘box” to be present to
react torsional loads. In a convertible, we have removed the top of the box, and lost
the ability to react loads via shear resistant surfaces. This can be visualized with
the series spring analogy, Figure 5.51, where the series chain is ‘broken’ with the
absence of the top surface. In order to provide adequate torsional rigidity, we add
another spring in parallel—a lower load path—to resist torsional loads. A common
means to provide this load path is to use differential bending of the rocker beams.

right side g, .
left side g,
.@ poats Lower
K, <=
’ load path
bottom K,

front K; \—
Need to add a lower

load path in
l convertibles

rear K

Figure 5.51 Convertibles with top shear-resistant member removed.

Consider the lower structure of a convertible to be idealized as two cross members
and two side rail beams, Figure 5.52a. The front cross member shown is located

at the dash, and the rear cross member is located at the rear seat back. In this
model, both cross members are viewed to be infinitely stiff in torsion about their
longitudinal axis, but very flexible in bending. Now let a torque be applied to the
front cross member, and a reacting torque applied to the rear cross member. The
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deformed shape will be as shown in Figure 5.52a. Looking at the side rail beam in
the side view, Figure 5.52b, we see it has zero slope at its ends. This is because the
cross members are infinitely rigid in torsion and will have zero twist along their
cross-car axes. Also, because of the cross members’ flexibility in bending, the side
rails are not twisted down their axis. Thus the side rail is in a state of pure bending
with zero slope at either end, and it is this differential bending which gives this
framework its torsional rigidity.

front and rear cross members
infinitely stiff in torsion
very flexible in bending

(@
side view of
side rail beam I
(b) |

($/2)(w/2)
simil'arity to ‘ ; L2 I v
cantilever behavior -

(c)

Figure 5.52 Convertible lower structure.

We now quantify the effect of differential bending on torsion stiffness. The structural
elements, Figure 5.52, are loaded by a torque, T, and rotate through a total angle,

¢ an angle of (¢/2) at one end and (-¢/2) at the other. The downward motion at the
front of the side rail is (w/2)(¢/2), with an identical upward motion at the rear of

the side rail. Looking at the rail in the side view, Figure 5.52b, we can see that the
behavior for the front half is identical to a cantilever beam of length (L/2),

Figure 5.52c. Using the deflection equation for a cantilever

. FE?
Tip Defection = —
ip Defection ol
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we can calculate the force, F, required for a deflection of (w/2)(¢/2).

el

This end force appears at both ends of the front cross member, so we have the
applied torque needed to achieve the deflection ¢. This yields a first-order equation
for torsional stiffness, K, of a frame with differential bending;:

T_wF_w 3El(w_¢)(z)3
o ¢ ¢ 4 AL
6w2EI
K= “23

(5.17)

where:
EI = Side rail bending stiffness
L = Length between front and rear cross members

w = Frame width

Differential bending is frequently applied to structure for convertibles. In that
application, the torsionally rigid cross members are realized in practice by a

large closed box section at the dash and at the rear seat back, Figure 5.53. This
approximates the very rigid six-sided box model we have used earlier but on the
scale of a cross member rather than the whole cabin. A difficulty with realizing
differential bending in practice is the cross-member-to-side-rail joint. The zero-
slope end condition in the side rail requires a very large bending moment to be
transferred by the cross member, Figure 5.53 bottom. This large moment can cause
stress concentrations at the joint, which can lead to durability problems if not
treated during design.
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EBasad in e Boxed in seat back
dash >

hgh torsional M rocker is in
rigidity of ideal box differential bending

Figure 5.53 Convertible structural elements: Differential bending.

5.5.2 Torsional stiffness of body-on-frame vehicles

A common arrangement for both passenger and utility vehicles is the body-on-frame
configuration. In this configuration, a body shell is attached to a ladder frame with
several elastomeric body mounts, Figure 5.54. These body mounts allow relative
motion between the frame and body, both in the vertical direction (compression),
and in lateral direction (shear). The primary function of the body mounts is the
isolation of structure-borne noise and vibration from the frame into the body.
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Figure 5.54 Body mounts.
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If we consider a torque being applied to the frame though the suspension, the frame
and body will tend to twist about different longitudinal axes, Figure 5.55. This type
of twisting action causes shearing deformation in the body mounts, which reduces
the stiffness of this system; the torsional stiffness of the vehicle can be less than the
sum of the torsional stiffnesses of the body and the frame.

body twist axis

-

frame twist

axis

Torque applied
to frame

Figure 5.55 Body-on-frame idealized torsion model.

To understand how the frame, body, and body mounts combine to give a vehicle
torsional stiffness, consider Figure 5.56a. Here we have the system of the body, with
torsional stiffness K, the frame, with torsional stiffness K,, and four body mounts at
each corner, spaced by width, w, and length, L. The mount is viewed as two linear
springs: one in the horizontal direction (shear stiffness k,), and one in the vertical
direction (compressive stiffness k, ), Figure 5.56b.

body

torsional
stiffness K,
Body-on-
frame frame
model torsional
stiffness X,
w
body attachment
(b) ky compressive stiffness
Body
mount  shear stiffness ky
model

frame attachment

Figure 5.56 Torsion model definitions.
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A torque, T, is applied at the front of the frame, Figure 5.57, with an equal and
opposite torque applied at the rear. The frame then twists through ¢, about its own
twist axis in the plane of the frame, and the body twists through an angle ¢, about
its twist axis at height, 1, above the frame. Note that ¢, and ¢, are very small angles
so sin¢=0 and cos$ =1. The vehicle system can be exploded to show the internal
loads, F, and F,, and we can put both the body and frame into static equilibrium,
Figure 5.57. Now, examining the kinematic relationships, Figure 5.58, we can
identify the deflection across the mount:

w w
SVERTICAL = D) ¢, - o ¢

01 aterar =h9;

Finally, we write the constitutive relationship (load-deflection behavior) for the
mount. A set of four equations result with the unknowns Fx, Fy, ¢, ¢

wF, - 2, - K,9, =0
wF, +K,0, =T
E, - Kyho, =0
w w
PY +KYE¢1—KYE¢2:O

IM=0
Fw-2Fyh-K,4,=0

Figure 5.57 Equilibrium relationships.
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Figure 5.58 Kinematic and constitutive relationships.

We may solve this set and then take the ratio of T/¢, to arrive at the vehicle torsional
stiffness, K,.,=T/¢,:

Kyey =K, +K v +2h%k,p
1
2%, K, (5.18)

+

w? w?

25 (2
where:

K, and K, = Torsional stiffness of the body and frame, respectively,

V[:
1+

kx and k, = Mount stiffnesses in the horizontal and vertical directions
h = Height of the body twist axis above the plane of the frame,
w = Width between body mounts

v = Body-frame coupling term which indicates how tightly coupled are the
twisting actions of the frame and body; larger v is greater coupling.

Equation 5.18 shows that the vehicle torsional stiffness consists of all of the

frame stiffness, K, plus a portion of the body stiffness, K, y, plus the unexpected
term, 21°K y. This last term depends on the shear stiffness, k,, of the mounts. To
understand this behavior, we take typical values for a body-on-frame sedan, and
for the body mount select an extremely soft shear stiffness and vary the mount’s
compressive stiffness, Figure 5.59. Note that the frame torsional stiffness is typically

very low in comparison to the body.
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very soft shear mount ky=20 N/mm
400 |

Kven 300 X, body stiffness
body on frame
stiffness 200 |

(10°Nmm/rad)

100 |

0 K, frame stiffness

T |
0 2000 4000

Mount compressive stiffness &, (N/mm)

Figure 5.59 Body-on-frame torsional stiffness: Mounts soft in shear.

The resulting behavior, Figure 5.59, shows that for compressively soft mounts, the
body is not coupled to the twisting motion of the frame and the vehicle stiffness
approaches that of the frame alone. For compressively stiff mounts, the body and
frame are highly coupled, and the vehicle stiffness approaches the sum of the body
and frame stiffnesses.

Now using the same vehicle data, let us additionally vary the shear stiffness of the
body mount. The result, Figure 5.60, shows that by increasing the shear stiffness of
the body mounts, we can increase vehicle stiffness beyond the sum of the body and
frame torsional stiffness. Physically, the reason for this is that the body and frame
have different twist axes. By increasing the mount shear stiffness, the body and
frame fight against one another for the axis to twist about. The combined twist axis
is above the frame. As the combined twist axis moves above.the frame, the frame
itself becomes a shear-resistant member, Figure 5.61. This shearing of the frame
contributes to a greater torsional stiffness for the vehicle system. Thus, the shear
stiffness of the frame becomes an important design consideration.

mount point shear stiffness, k,

600 ky=400 N/mm
Kty 500 + 200
body on frame 400 /'/’_
stiffness 300 oo 28 K; body stiffness
6
(10°Nmm/rad) 2004
e K, frame stiffness
0 T T
0 2000 4000

Mount compressive stiffness &, (N/mm)

Figure 5.60 Body-on-frame torsional stiffness: Varying mount point shear stiffness.

204



bottom
view of
frame

Figure 5.61 Shear of frame during torsion.

5.5.3 Torsional stiffness of a ladder frame

As discussed above, the ladder frame influences vehicle torsional rigidity not only
by its torsional stiffness but also by its shear stiffness. In this section, we will look
briefly at both of these conditions.

The evolution of the automobile frame, Figure 5.62, has tended towards closed
sections for both side rails and cross members to improve torsional stiffness. Also,
improved joints at the crossmember-to-siderail have improved both torsional and
shear stiffness. To understand this evolution, let us look at a simple frame of two
side rails and two cross members loaded at both ends by equal and opposite torques,
Figure 5.63. Loaded in this way, at any section along the perimeter, there will be a
moment in the cross vehicle direction, M,,, as shown in Figure 5.64a. This moment
acts as a uniform torque for the cross member, and a linearly varying bending

] 1934 channel section frame

3 _l_l_ 1949 box section frame

I::I 1970 box section frame

D 1990 hydroformed section

Figure 5.62 Typical frame configurations.
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moment for the side rail. There will also be a fore-aft moment, M,,, which will be a

linearly varying bending moment for the cross member and a uniform torque for the
side rail, Figure 5.64b. Thus, all members are loaded both in bending and in torsion.

Cross
member

Cross car moment Cross
(a) member
; torsion
Fore-aft moment Cross
(b) member
bending

Figure 5.64 Frame: General case.

It is helpful to consider two limiting cases for this simple frame. The first we have
already looked at under differential bending—the case of cross members being very
rigid in torsion. In that case the torsional rigidity of the frame is due only to bending
of the side rails, Equation 5.17. Now consider another limiting case where the

cross member is infinitely rigid in bending and very flexible in torsion, Figure 5.65.
For this case, each side rail is twisted through the same angle, ¢, with no bending
occurring. The torsional stiffness of the frame is due only to twisting of the side rails,
and the frame stiffness is the sum of the torsional stiffness of the rails,

K= 2(_GI_EFF ] (5.19)
L
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where:
G = Shear modulus

J e = Torsion constant of side rail

L = Length of side rail

Side rail
twisted

through
angle ¢

Figure 5.65 Cross members infinitely rigid in bending and very flexible in torsion.

In these two limiting cases, we see that both twisting as well as bending of the
side rails can add to the frame torsional stiffness. (We could have considered these
limiting cases with the side rails as infinitely stiff, and drawn parallel conclusions
about bending and twisting of the cross members.)

For the general case of frame torsion, both the cross members and side rails are
under both bending and torsion, as in Figure 5.64. A Finite Element Analysis may be
used to understand the relative contribution of each of these conditions. Figure 5.66
shows data for a generic planar frame of steel with section size 100 mm (4 in.) square
and 1 mm (0.04 in.) thick. A torsional stiffness of 2030 Nm/° (1500 ft Ib/°) results with
the strain energy distribution shown. The torsion strain energy is larger than the
bending strain energy for both the cross members and the side rails. This implies
that increasing the torsional properties would have the largest influence on frame
stiffness. This sensitivity to torsional section properties is typical for most common
automotive frames. Note also the relatively low torsional stiffness value compared
with the typical monocoque body values of 10,000-12000 Nm/o (7375-8850 ft Ib/°).

1.2

L=3000 mm = B bending energy

—7 £1.0 -
‘”g] :5??1'2";0,1 U g Wik B torsion energy
JG=69x 100 Nmm? = O
K=2030 Nm/° § 6
[ L% 4
? 2
4) .9

» 0

side member cross member

Figure 5.66 Strain energy in frame under torsion.
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Finally, in discussing body-on-frame torsional behavior, the importance of
frame shear stiffness, k;, was pointed out, Figure 5.61. This plan-view shearing
stiffness depends greatly on the crossmember-to-siderail joints, Figure 5.67a.

As an approximation for describing this stiffness, consider a frame consisting of
rigid beam elements connected by flexible joints with stiffness, k. Loading the
frame in shear with a load, F, a deflection, §, will result. Using energy principles,
we can write the shear stiffness of the frame, k,, as seen at each body mount
attachment:

4k,
where:
k= Frame shear stiffness in plan view
kI = Joint stiffness
L = Length of side rail
o F body
— A\
L, attachment Errant
AR ks ky compressive
mount stiffness
shear ky
stiffness
frame i
~ attachment o
LI Ak frame shear
= 5. 2 stiffness
Frame plan view Body mount and frame
with shear load shear stiffness in parallel
(a) (b)

Figure 5.67 Frame shear stiffness as seen at mount attachment.

For a typical joint stiffness of k=1x10° Nmm/rad (8.85x10° in Ib/rad) and a 4500 mm
(177 in.) long frame, using Equation 5.20 yields k,~200 N/mm (1142 Ib/in). This value
is very near the shear stiffness for a body mount. In our analysis of the body-on-
frame, Figure 5.60, we found that a body mount with sufficient shear stiffness

can increase the vehicle torsional rigidity beyond the sum of the body and frame
stiffnesses. However, the body mount acts as a spring in series with the frame shear
stiffness, and the frame shear flexibility puts an upper limit on the stiffness of the
combined body mount-frame, Figure 5.67b. In efforts to increase the frame shearing
stiffness, we can increase the joint rate with gussets added to the cross-member-
to-rail joints, or in the extreme case, with an X configuration of rails added to the
frame, Figure 5.68.
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Figure 5.68 Shear stiffness of frame.

5.5.4 Torsional stiffness of backbone frame vehicles

For cases where vehicle packaging allows, a large central closed section can be a
very effective structure for torsional stiffness. Usually this structure arrangement

is limited to seating arrangements where a large high tunnel can be tolerated, such
as open two-seat sport cars. For preliminary sizing of a backbone structure, the
equations for closed thin-walled sections may be used for both strength and stiffness
estimates, Figure 5.69. As these sections tend to have large width-to-thickness ratios, -
careful attention must be paid to elastic shear buckling of the walls. Frequently,
diagonal rib patterns on the backbone sides are used to inhibit shear buckling.

_TL
- S GJ EFF
442, .
1 ‘1 J o = EAgLoswt
T
N
l 2 Apycrosent

Figure 5.69 Backbone frame.

209



Chapter 5 | Design for Body Torsion

5.5.5 Torsional resistance of sandwich plates

An infrequently used but effective means to resist torsional loads is with a thick
plate in the space between the occupant’s foot and the ground clearance plane. For
mass efficiency, this plate is constructed as a laminate with thin outer faces of a stiff
material, and a shear resisting core of low density, Figure 5.70a. Under torsional
loading, the plate deforms as shown in Figure 5.70b and the means of reacting the
external torsion loads is by plate bending.

(a) Sandwich plate

(b) Twisting plate

Myy ¢
Figure 5.70 Under-floor thick plate.

To develop a first-order model of this condition, consider the out-of-plane deflection
ata point, (x,y), to be given by

w = Cxy
where C = a constant

This describes the twisted shape shown in Figure 5.70b. For this shape, the angle of
rotation at each end of the plate, (+L/2), is given by

ow L
—=¢=Cy, ¢=2C—
> 9=Cy, ¢ >

or the total angle of rotation, 6, for the plate from front to rear is

0=2¢=CL
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Now consider the applied moments required to distort the plate into this shape.
Using the plate equations from Equation 3.21, the moments depend on the second
partial derivatives of the deflection function above:

ox2 " yr T owdy
Pw  w

MX_ (ax—2+/lay2]=0
?w d*w

MY=—D( 574‘5]/—2—):0

2.
My, =-D(1- u)(%) =-DC(1- )

So, not surprisingly, the applied moment along all edges is the twisting moment,
M,,, per unit of edge length, Figure 5.70b. A means to interpret this moment is to
divide the plate along each side into small, equal increments of width and length, Ax
and Ay, Figure 5.71a. Now consider a series of couples applied along each edge of
the plate of magnitude FAx along the width and FAy along the length. These couples
provide the twisting moment, M, , according to:

M, Ax=FAx along the width, and M, Ay=FAy along the length.

The magnitude of these forces is therefore
F=Myy

(a) Applying twisting
moment

(b) Equivalent corner
loading

Figure 5.71 Plate twisting.
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Now consider this series of up and down forces aldng the edges of the plate, Figure
71a. The forces cancel in up-down pairs except at the corners of the plate where they
sum to a corner force of 2F. Thus an equivalent loading for the plate is by corner

forces, Figure 5.71b, with magnitude

2F =2My,, =2DC(1~ u)
So the twisting couple acting on the plate is

T =QF)W =2DC(1- p)W

The torsional stiffness for a general plate is then

K= T_ 2DC - W = 2[)(1_#)_VK
0 CL L
where:
K = Torsion stiffness of a plate
inrinBl
(L-#?)

W = Plate width
L = Plate length

(5.21)

In the example below, we will consider the specific case of a sandwich plate with
very stiff material (high E) for the faces, and a much more flexible material (low E)
but shear resistant for the core.
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