

Optimization Using Microsoft Excel "Solver"

Microsoft Office Excel 2016

Seungjae Min Department of Automotive Engineering Hanyang University

해찾기 (Solver) 설치

- "옵션 → 추가기능" 메뉴를 선택하여 "해찾기 추가 기능"을 선택
- "데이터 → 분석" 메뉴에 "해 찾기" 메뉴가 등록됨

	데이터	검토 보기 ♀ 수행할 작업을	을 알려 주세요.
관리(<u>A</u>): Excel 추가 기능 V 이동(<u>G</u>)			위 수준 표시 ?., 해 찾기
추가 기능 ? ×	가상 예측 분석 ▼ 시트	는 그룹 그룹 부분합 특 · · · · · · · · · · · · · · · · · · ·	위 수준 숨기기
사용 가능한 추가 기능(<u>A</u>):	예측	윤곽선	5 분석
□ 분석 도구 ^ 확인 □ 분석 도구 - VBA	해 찾기	기 매개 변수	×
☐ 유로화 도구 ✓ 해 찾기 추가 기능 취소	-	표 설정:① \$4\$1	E.
찾아보기(<u>B</u>)	C)	상: ◉최대값(M) ○최소(N) ○지정값:(V) [0
자동하(1)			E
N840	ব	한 조건에 종속:(<u>U)</u>	
			^ 추가(<u>A</u>)
			변화(<u>C</u>)
			삭제(<u>D</u>)
			모두 재설정(<u>R</u>)
~			< > 월기/저장(L)
해 찾기 추가 기능] 제한되지 않는 변수를 음이 아닌 수로 설정(K)	
최적화와 방정식의 해를 구하는 방법을	하	i법 선택:(E) GRG 비선형	✓ 옵션(₽)
제공합니다.		해법 완만한 비선형으로 구성된 해 찾기 문제에 대해서는 GRG Nc 비선형 문제에 대해서는 LP Simplex 엔진을 선택합니다. 찾기 문제에 대해서는 Evolutionary 엔진을 선택합니다.	nlinear 앤진을 선택합니다. 지 않은 비선형으로 구성된 해
		도움말(H) 해	찾기(<u>S</u>) 닫기(<u>O</u>)

Solver in Microsoft Excel - 2

Algorithm (Microsoft Excel 도움말 참조)

- Nonlinear Problems
 - Microsoft Excel 해 찾기에는 Leon Lasdon(Austin의 Texas대학)과 Allan Waren(Cleveland 주립 대학)이 개발한 비선형 최적 코드 Generalized Reduced Gradient(GRG2)가 사용됩니다.
- Linear Problems
 - 선형과 정수 문제는 변수 경계를 사용하는 간단한 방법(Simplex Method)과 John Watson과 Dan Fylstra(Frontline Systems, Inc)가 개발한 분기와 경계법(Branch and Bound Method)이 사용됩니다.
- Non-smooth Problems
 - Frontline Systems에서 개발한 다양한 genetic algorithm과 local search 기법을 포함한 Evolutionary Solving Method가 사용됩니다.
- 해 찾기에 사용되는 내부 해결 과정에 대한 자세한 정보
 - Frontline Systems, Inc.
 P.O. Box 4288
 Incline Village, NV 89450-4288
 (775) 831-0300, info@solver.com, http://www.solver.com

데이터 → 해 찾기(Solver)

• 예제

Minimize
$$f(\mathbf{x}) = (x_1 - 1.5)^2 + (x_2 - 1.5)^2$$

subject to $g_1(\mathbf{x}) = x_1 + x_2 - 2 \le 0$
 $g_2(\mathbf{x}) = -x_1 \le 0$
 $g_3(\mathbf{x}) = -x_2 \le 0$

	А	В	С	D
1			initial	optimum
2	design variables	x1	0	
3		x2	0	
4	objective function	f	=(C2-1.5)^2+(C3-1.5)^2	
5	constraints	g1	=C2+C3-2	
6		g2	=-C2	
7		g3	=-C3	

최적설계문제 설정

목표 설정:① 대상: ○ 최대	#값(M)	\$D\$4 ○ 지정값:W	0		셀 참조:(E) \$C\$5	제한 조건:(N) 0 🌆
변수 셀 변경:(<u>B</u>) \$D\$2:\$D\$3 제하 조거에 조4	≻ /11)				확인(Q) =	취소(C)
\$C\$5 <= 0 \$C\$6 <= 0 \$C\$7 <= 0	(<u>u</u>)			추가(<u>A</u>) 변화(<u>C</u>) 삭제(<u>D</u>) 모두 재설정(<u>R</u>) 읽기/저장(<u>L</u>)	옵션 모든 해법 GRG 비선형 Evolutionary 수렴도: 미분 계수 ○ 전진 ◎ 중앙 Multistart 모집단 크기:	? ×
☑ 제한되지 않는 해법 선택:(E)	는 변수를 음이 아닌 수 GRG 비선형	·로 설정(K)	~	옵션(P)	임의 초기값: □변수의 필수 경계	0
해법 완만한 비선형의 비선형 문제에 찾기 문제에 대	으로 구성된 해 찾기 문 대해서는 LP Simplex 역 해서는 Evolutionary 연	제에 대해서는 GRG 엔진을 선택하고 완 민진을 선택합니다.	Nonlinear 엔? 만하지 않은 비	진을 선택합니다. 선형으로 구성된 해		

Some Common Sources of Problems

- Time or iteration limit was reached
- Precision is too large
- Convergence to the solution is too slow
- Model is poorly scaled
- Choice of initial solution is inadequate
- Solution was affected by limitations on finite precision compter arithmetic
- Solution is right and your expectation is wrong

Solver Options

모든 해법 GRG 비선형 Evolutionary		모든 해법 GRG 비선형 Evolutionary		모든해법 GRG 비선형 Evolutionary	
제한 조건 정밀도:	0.000001	수렴도:	0.0001	수렴도:	0.0001
□ 단위 자동 설정 사용		미분계수		변이율:	0.075
□ 반복 계산 결과 표시		○ 전진 ○ 중일		모집단 크기:	100
정수 제한 조건으로 해 찾기		Multistart		임의 초기값:	0
□ 정수 제한 조건 무시		모진다 크기:	100	개선을 포함하지 않는 최대 시간:	30
정수 최적화 비율(%):	1		100		
제한 조건 해 찾기		□ 변수의 필수 견제	U	□ 연주의 필수 경계	
최대 시간(초):					
반복 횟수:					
Evolutionary 및 정수 제한 조건:					
최대 부분 문제:					
최대 최적 해:					

해찾기 옵션 (1)

- 제한되지 않은 변수를 음이 아닌 수로 설정
 - 제한 조건 추가 대화 상자의 제한 조건 상자에 하한값을 설정하지 않은 모든 변경 가능한 셀의 하한값을 0으로 가정
- 정밀도: 0과 1 사이의 소수
 - 제한 조건 셀 값이 목표와 일치하는지, 상한이나 하한값을 만족시키는지 값 의 정밀도를 제어, 0.0001이 0.01보다 정밀도가 높음
- 단위 자동 설정
 - 입력값과 출력값의 크기가 많이 다를 때(예, 수백 만 달러의 투자액으로 수 익율을 최대화) 이 옵션을 선택
- 반복계산결과표시
 - 해 찾기의 중간 과정을 표시
- 최대계산시간
 - 문제를 해결하는 데 걸리는 시간을 제한
- 최대계산 횟수
 - 계산 횟수를 제한하여 문제를 해결하는 데 걸리는 시간을 제한

해찾기 옵션 (2)

- 정수 최적화 비율: [정수 제한 조건이 있는 문제]
 - 목표 셀에 대해 허용되는 참인 최적 해와의 차이의 비율(백분율), 허용 한도 가 높을 수록 해결 속도가 빠름
- 수렴도: 0과 1 사이의 소수 [비선형문제]
 - 마지막 5개의 반복 계산에 대해 목표 셀에서 바꾼 값이 수렴도 상자에 지정 한 숫자보다 작으면 해 찾기가 중단, 수렴도 값이 작을수록 해를 찾는 시간이 오래 걸림
- 미분 계수: 목적 함수와 제한 조건 함수의 편미분 계수를 추정할 때 차이 를 지정
 - 전진: 제한 조건 값이 완만하게 변하는 문제에 사용
 - 중앙: 한계 가까이에서 제한 조건이 급격히 변하는 문제에 사용, 더 많은 계 산을 해야 하지만 해를 개선할 수 없다는 메시지가 나타날 때 사용
- Multistart 사용: 전역최적해를 얻기 위해 다수 포인트에서 최적화 수행
 - 모집단 크기: 최적화를 수행할 포인트 개수 (최소값 10, 최대값 200)
 - 임의 초기값: 최적화의 초기값 설정 (설정하지 않은 경우 임의값 선택)

해찾기 옵션 (3)

- 변이율: 0과 1 사이의 소수
 - Generation이 진행됨에 따라 변이가 진행될 확률
- 모집단 크기: 10과 200 사이의 정수
 - Generation이 진행될 포인트 개수
- 임의 초기값: 0과 1 사이의 실수
 - Generation의 초기 수행 위치(초기값)
- 개선을 포함하지 않는 최대 시간
 - 최적화 과정에서 목적 함수의 개선이 없을 시 수렴할 최소 시간

보고서 (1)

- 해답
 - 목표 셀과 변경할 셀을 원래 값과 최종 결과값, 제한 조건 및 제한 조건에 대한 정보로 나타냅니다.
- 민감도
 - 해 찾기 모델 설정 대화 상자의 목표 셀 상자에 있는 수식이나 제한 조건을 바꾸면 해가 어떻게 변하는지에 대한 정보를 나타냅니다.
 - 정수 제한 조건이 있는 모델이면 이 보고서를 만들 수 없습니다.
 - 비선형 모델에 대한 보고서에는 한계 기울기와 라그랑지(Lagrange) 승수 가 제공되며
 - 선형 모델에 대한 보고서에는 한계 비용, 잠재 가격, 허용 증가값과 감소값
 이 있는 목표 셀 계수, 제한 조건의 오른쪽 범위 등이 나타납니다.
- 한계값
 - 목표 셀과 변경할 셀의 값을 상한값, 하한값, 목표값 등과 함께 나열합니다.
 - 정수 제한 조건이 있는 모델이면 이 보고서를 만들 수 없습니다.
 - 하한값은 변경할 다른 모든 셀을 고정해도 제한 조건을 만족할 때 셀이 가 질 수 있는 가장 작은 값이고 상한값은 가장 큰 값입니다.

보고서 (2)

해 찾기 결과	×
해를 찾았습니다. 모든 제한 조건 및 최적화 조건 만족되었습니다.	이 보고서
 ○해 찾기 해 보존 ○ 원객 값 복원 	해당 우편물 종류 한계값
□해 찾기 매개 변수 대화 상자로 돌아가기	□ 개요 보고서
확인 취소	시나리오 저장…
해를 찾았습니다. 모든 제한 조건 및 최적화	조건이 만족되었습니다.

GRG 엔진을 사용하는 경우 최소한 로컬에 최적화된 해를 발견했습니다. 단순 LP를 사용하는 경우에 는 전역에 최적화된 해를 발견했음을 의미합니다.

Microsoft Excel 16.0 해답 보고서

워크시트 이름: [통합 문서1]Sheet1
보고서 작성일: 2017-09-29 오후 8:49:27
결과: 해를 찾았습니다. 모든 제한 조건 및 최적화 조건이 만족되었습니다.
해 찾기 엔진
엔진: GRG 비선형
해 찾는 시간: 2.75 조.
반복 횟수: 2 부분 문제: 0
해 찾기 옵션

최대 시간 제한 없음, 반복 횟수 제한 없음, Precision 0.000001, 반복 계산 결과 표시 수렴도 0.0001, 모집단 크기 100, 임의 초기값 0, 미분 계수 증앙 최대 부분 문제 제한 없음, 최대 정수 해 제한 없음, 정수 허용 한도 1%

목표 셀 (최소)

셀	이름	계산 전의 값	계산 값
\$D\$4	f optimum	4.5	0.5

변수 셀

-	_	_				
	섵	1	이름	계산 전의 값	계산 값	정수
	\$D3	\$2	x1 optimum	0	1	Contin
	\$D3	\$3	x2 optimum	0	1	Contin

제한 조건

	_				
셀	이름	셀의 값	수식	상태	조건과의 차
\$D\$5	g1 optimum		0 \$D\$5<=0	만족	0
\$D\$6	g2 optimum		-1 \$D\$6<=0	부분적 만족	1
\$D\$7	g3 optimum		-1 \$D\$7<=0	부분적 만족	1

	А	В	С	D
1			initial	optimum
2	design variables	x1	0	1
3		x2	0	1
4	objective function	f	4.5	0.5
5	constraints	g1	-2	0
6		g2	0	-1
7		g3	0	-1

Microsoft Excel 16.0 민감도 보고서 워크시트 이름: [통합 문서1]Sheet1 보고서 작성일: 2017-09-29 오후 8:49:27

이름

이름

\$D\$2 x1 optimum

\$D\$3 x2 optimum

\$D\$5 g1 optimum

\$D\$6 g2 optimum

\$D\$7 g3 optimum

한계

0

0

-1

0

기울기

계산

값

값

0

-1

-1

1

1

계산 라그랑지

승수

변수 셀

셀

제한 조건

셀

Microsoft Excel 16.0 한계값 보고서 워크시트 이름: [통합 문서1]Sheet1 보고서 작성일: 2017-09-29 오후 8:49:27

-	목표 셀	
셀	이름	값
\$D\$	f opti	1

변수	하한값	목표 셀	상한값	목표 셀
셀 이름 값	한계값	결과	한계값	결과
\$D\$x1 op 1	0	2.5	1	0.5
\$D\$x2 op 1	0	2.5	1	0.5

Solver in Microsoft Excel - 12

중간결과 보기

- 설계변수 및 목적함수 값의 수렴상황을 저장
- 매 iteration을 시나리오로 저장한 후, 도구 > 시나리오 를 통하여 요약시트 생성

제하 조건 전민도	0.000001	해 찾기가 일시 정지되었습니다. 현재의 (스마다	해가 워크시트에 표시되어
세진 포인 8일포.	0.000001	800. 	
□ 단위 자동 설정 사용			
☑ 반복 계산 결과 표시		계속 적지	세 년이오 저작
정수 제한 조건으로 해 찾기			
□ 정수 제한 조건 무시			
정수 최적화 비율(%):	1	시나리오 저장	×
제한 조건 해 찾기			1
최대 시간(초):		시나리오 이름:	
반복 횟수:			
Evolutionary 및 정수 제한 조건:		*101	÷1.4
최대 부분 문제:		~~~	쉬소
최대 최적 해:			

시나리오: 최적화 과정 확인

• "데이터 → 예측" 메뉴에서 "가상 분석 → 시나리오 관리자" 이용

시나리오 관리자			×		
시나리오	(<u>C</u>):				
sc1 sc2	^	추가	(<u>A</u>)		
sc3		삭제	1(<u>D</u>)		
		편집	(E)		
		병합	(<u>M</u>)		
	~	요약	<u>(U)</u>		
변경 설: \$D\$2:\$D\$3 설명: 만든 사람 YS12345 날짜 9/29/2017 수정한 사람 YS12345 날짜 2017-09-29					
	표시(<u>S</u>)	Ę	¹⁷		

시나리오 요약	?	×				
보고서 종류						
이사리오 요약(S)						
○ 시나리오 피벗 테이블 보고서(₽)						
0 111 12 12	12	100				
결과 셀(<u>R</u>):	.5					
결과 셀(<u>R</u>): D4,D5,D6,D7	12					

시나리오 요약						
	현재 값:	s1	sc2	sc3		
변경 셀:						
\$D\$2	1	0	1	1		
\$D\$3	1	0	1	1		
결과 셀:						
\$D\$4	0.5	4.5	0.5	0.5		
\$D\$5	0	-2	0	0		
\$D\$6	-1	0	-1	-1		
\$D\$7	-1	0	-1	-1		
차고, 형제 가 여이 비나리이 이야 비그 너가 자서되 때에						

참고: 현재 값 열은 시나리오 요약 보고서가 작성될 때의 변경 셀 값을 나타냅니다. 각 시나리오의 변경 셀들은 회색으로 표시됩니다.

Test Problems: Unconstrained (1)

- A quadratic function: $f(x_1, x_2) = (x_1 + 2x_2 7)^2 + (2x_1 + x_2 5)^2$ $x^{(0)} = \begin{bmatrix} 0 & 0 \end{bmatrix}^T, \langle x^* = \begin{bmatrix} 1 & 3 \end{bmatrix}^T \rangle$
- Rosenbrock's parabolic valley: $f(x_1, x_2) = 100(x_2 x_1^2)^2 + (1 x_1)^2$ $x^{(0)} = [-1.2 \ 1.0]^T, \langle x^* = [1 \ 1]^T \rangle$
- Beal's function: $f(x_1, x_2) = [1.5 x_1(1 x_2)]^2 + [2.25 x_1(1 x_2^2)]^2 + [2.625 x_1(1 x_2^3)]^2$ $x^{(0)} = [1 \quad 1]^T, \langle x^* = [3 \quad 0.5]^T \rangle$
- Powell's quartic function:

$$f(x_1, x_2, x_3, x_4) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4$$
$$x^{(0)} = \begin{bmatrix} 3 & -1 & 0 & 1 \end{bmatrix}^T, \langle x^* = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T \rangle$$

Test Problems: Unconstrained (2)

• Wood's function:

 $f(x_1, x_2, x_3, x_4) = \left[10(x_2 - x_1^2)\right]^2 + (1 - x_1)^2 + 90(x_4 - x_3^2)^2 + (1 - x_3)^2 + 10(x_2 + x_4 - 2)^2 + 0.1(x_2 - x_4) + (1 - x_3)^2 + 10(x_2 - x_4) + (1 - x_3)^2 + 10(x_2 - x_4) + (1 - x_3)^2 + ($

- Freudenstein and Roth function: $f(x_1, x_2) = \{-13 + x_1 + [(5 - x_2)x_2 - 2]x_2\}^2 + \{-29 + x_1 + [(x_1 + 1)x_2 - 14]x_2\}^2$ $x^{(0)} = [0.5 \quad -2]^T, \langle x^* = [5 \quad 4]^T \rangle$
- A nonlinear function of three variables:

$$f(x_1, x_2, x_3) = \frac{1}{1 + (x_1 - x_2)^2} + \sin\left(\frac{1}{2}\pi x_2 x_3\right) + \exp\left[-\left(\frac{x_1 + x_3}{x_2} - 2\right)^2\right]$$
$$x^{(0)} = \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}^T, \left\langle x^* = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T \right\rangle$$

Test Problems: Unconstrained (3)

• Fletcher and Powell's helical valley:

$$f(x_{1}, x_{2}, x_{3}) = 100 \left\{ \begin{bmatrix} x_{3} - 10\theta(x_{1}, x_{2}) \end{bmatrix}^{2} + \begin{bmatrix} \sqrt{x_{1}^{2} + x_{2}^{2}} - 1 \end{bmatrix}^{2} \right\} + x_{3}^{2}$$

where $2\pi\theta(x_{1}, x_{2}) = \begin{cases} \arctan\frac{x_{2}}{x_{1}} & \text{if } x_{1} > 0 \\ \pi + \arctan\frac{x_{2}}{x_{1}} & \text{if } x_{1} < 0 \end{cases}$
 $x^{(0)} = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix}^{T}, \left\langle x^{*} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{T} \right\rangle$

• Powell's badly scaled function:

$$f(x_1, x_2) = (10000x_1x_2 - 1)^2 + [\exp(-x_1) + \exp(-x_2) - 1.0001]^2$$
$$x^{(0)} = \begin{bmatrix} 0 & 1 \end{bmatrix}^T, \left\langle x^* = \begin{bmatrix} 1.098 \times 10^{-5} & 9.106 \end{bmatrix}^T \right\rangle$$

• Brown's badly scaled function:

$$f(x_1, x_2) = (x_1 - 10^6)^2 + (x_2 - 2 \times 10^{-6})^2 + (x_1 x_2 - 2)^2$$
$$x^{(0)} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T, \langle x^* = \begin{bmatrix} 10^6 & 2 \times 10^{-6} \end{bmatrix}^T \rangle$$

Solver in Microsoft Excel - 17

Test Problems: Constrained (1)

Rosen-Suzuki

Minimize
$$f = x_1^2 + x_2^2 + 2x_3^2 - x_4^2 - 5x_1 - 5x_2 - 21x_3 + 7x_4 + 100$$

subjet to $g_1 = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_1 - x_2 + x_3 - x_4 - 8 \le 0$
 $g_2 = x_1^2 + 2x_2^2 + x_3^2 + 2x_4^2 - x_1 - x_4 - 10 \le 0$
 $g_3 = 2x_1^2 + x_2^2 + x_3^2 + 2x_1 - x_2 - x_4 - 5 \le 0$
 $-100 \le x_i \le 100$
 $x^{(0)} = (0, 0, 0, 0)$
 $x^* = (-0.18, 0.93, 1.86, -1.16), f^* = +53.7, \text{ activeset} = \{1, 3\}$

Test Problems: Constrained (2)

 Betts, J.T., An accelerated Multiplier Method for Nonlinear Programming, *J. of Optimization Theory and Applications*, Vol.2, No.2, Feb. 1977

> Minimize $f = (x_1 - 1)^2 + (x_1 - x_2)^2 + (x_3 - 1)^2 + (x_4 - 1)^4 + (x_5 - 1)^6$ subjet to $h_1 = x_4 x_1^2 + \sin(x_4 - x_5) - 2\sqrt{2} = 0$ $h_2 = x_2 + x_3^4 x_4^2 - 8 - \sqrt{2} = 0$ $-10 \le x_i \le 10$ $x^{(0)} = (0, 0, 0, 0, 0)$ $x^* = (1.166, 1.182, 1.380, 1.506, 0.610), f^* = 0.24$

Example: Two-bar planar truss design

 The members are thin-walled tubes of steel, pinned together at the point F where a downward load of magnitude 2P is applied as shown. We will assume that the wall thickness of the tube is fixed at some value t and that the half-span is fixed at some value B. The design problems is to select d = the mean diameter of the tube, and H= height of the truss.

$$ho = 0.3 \ lb/in^3$$

 $P = 33,000 \ lb$
 $B = 30 \ in$
 $t = 0.1 \ in$
 $E = 30 \times 10^6 psi$
 $\sigma_a = 100,000 \ psi$

Solver in Microsoft Excel - 20

Formulation & Graphical Solution

Convergence History (1)

• Starting from a feasible initial design point (5, 50)

Convergence History (2)

• Starting from an infeasible initial design point (0.1, 5.0)

