
ADS - A FORTRAN PROGRAM FOR AUTOMATED

DESIGN SYNTHESIS

VERSION 2.01

���������	
��

by
G. N. Vanderplaats

ACKNOWLEDGMENTS

The original ADS program was developed under sponsorship of NASA. Additional enhancements
contained herein were funded by the Optimization Software Users, supported by EDO, Inc., Santa
Barbara, CA.

 ENGINEERING DESIGN OPTIMIZATION, Inc.
1275 Camino Rio Verde, Santa Barbara, CA 93111

Contents

Section 1
Introduction . 1
1 .1 Program Enhancements and Modifications Since Version 1.00 . 2

Section 2
Program Options. 4
2 .1 Strategy . 4
2 .2 Optimizer . 5
2 .3 One Dimensional Search . 6
2 .4 Allowable Combinations of Algorithms . 6

Section 3
Program Flow Logic . 9

Section 4
Program Options. 14
4 .1 Calling Statement . 14
4 .2 Definitions of Parameters in the ADS Calling Statement . 14
4 .3 Overriding ADS Default Parameters . 18
4 .4 User Supplied Gradients . 23
4 .5 Restarting ADS . 24
4 .6 Choosing an Algorithm . 25

Section 5
Examples . 27

Section 6
Main Program for Simplified Usage of ADS . 39

Section 7
References. 41

Appendix A
Quick Reference to ADS Options . 44

Appendix B
Useful Information Stored in Arrays WK and IWK. 46

Appendix C
Subroutines Needed for ISTRAT, IOPT and IONED 48

Appendix D
ADS Subroutines . 50

Appendix F
In Case of Difficulty . 53

Appendix G
ADS Internal Parameter Description . 55

Figures
Figure 1. Program Usage; All Default Parameters and Finite Difference Gradients 10
Figure 2. Program Flow Logic; Override Default Parameters, Finite Difference Gradients . . 11
Figure 3. Program Flow Logic; Override Default Parameters and Provide Gradients 13
Figure 4. Restarting ADS . 24
Figure 5. Three Bar Truss. 27
Figure 6. BETAMC Concept . 54
Figure 7. Relationship Between Constraint G and the Parameters CT and CTMIN 55

Tables
Table 1. Strategy to be Used. 4
Table 2. Optomizer Options . 5
Table 3. One-Dimensional Search Options . 6
Table 4. Combinations of Algorithms Allowed . 7
Table 5. Parameters in the ADS Argument List . 14
Table 6. Real Parameters Stored in Array WK. 18
Table 7. Definitions of Real Parameters Stored in Array WK . 20
Table 8. Integer Parameters Stored in Array IWK . 22
Table 9. Definitions of Integer Parameters Contained in Array IWK 23
Table 10. Sequence of Algorithms . 26
Table 11. Changes in Parameters . 29
Table 12. Real Parameters Stored in Arrays WK . 46
Table 13. Integer Parameters Stored in Array IWK . 47

Sample Code
Sample Code 1. Example 1 - All Default Parameters . 30
Sample Code 2. Example 1 - Output . 31
Sample Code 3. Example 2 - Modify Default Parameters . 32
Sample Code 4. Example 2 - Output . 33
Sample Code 5. Example 3 - Gradients Supplied by the User. 35
Sample Code 6. Example 3 - Output . 38
Sample Code 7. Program for Simplified Usage of ADS . 40

ADS (Version 2.01) - 1

Section 1

Introduction
ADS is a general purpose numerical optimization program containing a wide
variety of algorithms. The problem solved is:

Minimize F(X)

Subject to:

Gj (X) .LE. 0 j=1, m

Hk (X) .EQ. 0 k=1, L

XLi .LE. Xi .LE. XUi i=1, n

The solution of this general problem is separated into three basic levels:

1. Strategy - For example, Sequential Unconstrained Minimization or
Sequential Linear Programming. The purpose of a strategy is to convert
the original constrained problem into a sequence of approximate problems
using various techniques. A strategy is not used for unconstrained
problems. In that case, the parameter, ISTRAT, is set to zero.

2. Optimizer - For example, Variable Metric methods for unconstrained
minimization or the Method of Feasible Directions for constrained
minimization. The optimizer performs the actual function minimization of
either the original problem (if ISTRAT=O) or the approximate problem (if
ISTRAT is greater than zero).

3. One-Dimensional Search - For example, Golden Section or Polynomial
Interpolation. The one-dimensional search is called by the optimizer and,
in some cases, the strategy. By choosing the Strategy, Optimizer and One
Dimensional Search, the user is given considerable flexibility in creating
an optimization program which works well for a given class of design
problems.

Additionally, we may consider another component to be problem formulation.
It is assumed that the engineer makes every effort to formulate the problem in
a format amenable to efficient solution by numerical optimization. This aspect
is perhaps the most important ingredient to the efficient use of the ADS
program for solution of problems of practical significance.

 2 - ADS (Version 2.01)

This manual describes the use of the ADS program and the available program
options. Section 1.1 describes the enhancements and modifications to the ADS
program subsequent to Version 1.00 (ref. 1). Section 2 identifies the available
optimization strategies, optimizers and one-dimensional search algorithms.
Section 3 defines the program organization, and Section 4 gives user
instructions. Section 5 presents several simple examples to aid the user in
becoming familiar with the ADS program. Section 6 gives a simple main
program that is useful for general design applications.

1.1 Program Enhancements and Modifications Since
Version 1.00

Since the release of Version 1.00 in May of 1984, numerous modifications and
enhancements have been made to the program. Many of these are minor and
are transparent to the casual user. These include various formatting changes,
internal logic enhancements to improve program flow, and a few actual bugs
in the FORTRAN. Because of the robustness of the basic program, where bugs
exist, their correction often is detected only in special test cases. Examples of
this are correction of an error in using the absolute convergence criteria and
correction of polynomial one-dimensional search when a constraint is being
followed. Other enhancements include checking to insure the initial design
does not violate any side constraints, and checking to be sure the combinations
of strategy, optimizer and one-dimensional search are valid.

Enhancements to the program, beyond the original capability, include addition
of equality constraint capability throughout the program and addition of a new
strategy.

Equality constraints are now available in all options of the program, whereas
in Version 1.00 they were only available when using penalty function
strategies. Specifically, equality constraints have been added to optimizers 4
and 5. Here, two approaches were investigated. The first was to formally treat
them in a mathematical sense. This requires considerable program logic and
usually insures rather precise following of the constraints, but at some
efficiency cost. The second approach, and that used here, was to treat equality
constraints via a linear penalty function and an equivalent inequality
constraint. The basic concept is to first change the sign on the constraint, if
necessary, so that the scalar product of the gradient of the constraint with the
gradient of the objective function is negative. The constraint is then converted
to a non-positive inequality constraint and a linear penalty is added to the
objective. The penalty, together with the conversion to an Inequality constraint
have the effect of driving the original equality constraint to zero at the
optimum, but without demanding precise accuracy, with its corresponding
inefficiency. This is in keeping with the general philosophy of ADS of finding
a near optimum design quickly.

ADS (Version 2.01) - 3

A new strategy (ISTRAT=9), called Sequential Convex Programming,
developed by Fleury and Briabant (ref. 2), has been added to ADS. The basic
concept of this strategy is that a linear approximation to the objective and
constraint functions is first created, just as in sequential linear programming.
However, during the approximate optimization sub-problem, either direct or
reciprocal variables are used, depending on the sign of the corresponding
components of the gradients. This creates a conservative convex
approximation to the optimization problem in comparison to a simple
linearization. In reference 2, the method was applied to structural optimization
problems in which all design variables were positive.

It was shown that move limits were not required during the sub-problem and
that the method converged quickly to the optimum. When incorporating the
algorithm into ADS, move limits were included, but they are less stringent
than for sequential linear programming. This is based on the experience that
the design space can become ill-conditioned in some general applications.
Also, reciprocal variables are only used if the design variable is positive.

In earlier versions of ADS, when scaling was performed, the scaled constraints
were printed. In this version, the constraints are unscaled prior to printing. In
the one-dimensional search, the variables and function values are now
unschooled prior to printing. Also, in all printing, a number, followed by a
decimal are now used instead of the earlier Exx.xx format, to improve
readability.

Perhaps the most significant program modification is in the scaling algorithm
itself. The original scaling algorithm appeared quite sophisticated and, when it
worked, it seemed very good. However, in those cases where it produced poor
scaling, the results were often disastrous. Unfortunately, it was not possible to
predict when it would or would not work. A particularly disturbing feature
was that, sometimes the scaled constraints were satisfied within a small
tolerance during optimization, but at the end when the unscaled values were
printed, they were greatly violated. This provided the important information
that the user had probably not carefully scaled the constraints to begin with.
However, this is not obvious to most users and so it often led to practical
difficulties when using ADS.

A completely new scaling algorithm has been used in Version 2.00 which is in
many ways similar to the time honored normalization method used in the old
CONMIN program. However, in addition to normalizing the design variables,
the objective and constraints are also scaled. If the problem is naturally well
scaled, the scale factor will be unity, but if the function and gradient
information suggests a better scaling, this will be attempted. On test problems,
this has been found to be a significant improvement over the previous scaling
routine.

 4 - ADS (Version 2.01)

Section 2

Program Options
In this section, the options available in the ADS program are identified. At
each of the three solution levels, several options are available to the user.

2.1 Strategy

Table 1 lists the strategies available. The parameter ISTRAT will be sent to the
ADS program to identify the strategy the user wants. The ISTRAT=0 option
would indicate that control should transfer directly to the optimizer. This
would be the case, for example, when using the Method of Feasible Directions
to solve constrained optimization problems because the optimizer works
directly with the constrained problem. On the other hand, if the constrained
optimization problem is to be solved by creating a sequence of unconstrained
minimizations, with penalty functions to deal with constraints, one of the
appropriate strategies would be used.

ISTRAT Strategy to be Used

0 None - Go directly to the optimizer.

1 Sequential unconstrained minimization using the exterior
penalty function method (refs. 3, 4).

2 Sequential unconstrained minimization using the linear extended
interior penalty function method (refs. 5-7).

3 Sequential unconstrained minimization using the quadratic
extended interior penalty function method (refs 8, 9).

4 Sequential unconstrained minimization using the cubic interior
penalty function method (ref 10).

5 Augmented Language Multiplier method (refs. 11-15).

6 Sequential Linear Programming (refs. 16, 17).

7 Method of Centers (method of inscribed hyperspheres),
(ref. 18).

8 Sequential Quadratic Programming (refs. 13, 19, 20).

9 Sequential Convex Programming (ref. 2).

Table 1. Strategy to be Used

ADS (Version 2.01) - 5

2.2 Optimizer

Table 2 lists the optimizers available. IOPT is the parameter used to indicate
the optimizer desired.

In choosing the optimizer (as well as strategy and one-dimensional search) it is
assumed that the user is knowledgeable enough to choose an algorithm
consistent with the problem at hand. For example, a variable metric optimizer
would not be used to solve constrained problems unless a strategy is used to
create the equivalent unconstrained minimization task via some form of
penalty function.

IOPT Optimizer Options

0 None - Go directly to the one-dimensional search. This option
should be used only for program development.

1 Fletcher-Reeves algorithm for unconstrained minimization (ref.
21).

2 Davidon-Fletcher-Powell (DFP) variable metric method for
unconstructed minimization (refs. 22, 23).

3 Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric
method for unconstructed minimization (refs. 24-27).

4 Method of Feasible Directions (MFD) for constrained
minimization (refs. 28, 29).

5 Modified Method of Feasible Directions for constrained
minimization (ref. 30).

Table 2. Optimizer Options

 6 - ADS (Version 2.01)

2.3 One Dimensional Search

Table 3 lists the one-dimensional search options available for unconstrained
and constrained problems. Here IONED identifies the algorithm to be used.

2.4 Allowable Combinations of Algorithms

Not all combinations of strategy, optimizer and one-dimensional search are
meaningful. For example, constrained one-dimensional search is not
meaningful when minimizing unconstrained functions.

Table 4 identifies the combinations of algorithms which are available in the
ADS program. In this table, an X is used to denote an acceptable combination
of strategy, optimizer and one-dimensional search. An example is shown by
the heavy line on the table which indicates that constrained optimization is to
be performed by the Augmented Lagrange Multiplier Method (ISTRAT=5),
using the BFGS optimizer (IOPT=3) and polynomial interpolation with
bounds for the one-dimensional search (IONED=3). From the table, it is clear
that a large number of possible combinations of algorithms are available.

IONED One-Dimensional Search Options (refs. 3, 31, 32)

1 Find the minimum of an unconstrained function using the
Golden Section Method.

2 Find the minimum of an unconstrained function using the
Golden Section Method followed by polynomial interpolation.

3 Find the minimum of an unconstrained function by first finding
bounds and then using polynomial interpolation.

4 Find the minimum of an unconstrained function by polynomial
interpolation/extrapolation without first finding bounds on the
solution.

5 Find the minimum of an constrained function using the Golden
Section method.

6 Find the minimum of an constrained function using the Golden
Section Method followed by polynomial interpolation.

7 Find the minimum of an constrained function by first finding
bounds and then using polynomial interpolation.

8 Find the minimum of an constrained function by polynomial
interpolation/extrapolation without first finding bounds on the
solution.

Table 3. One-Dimensional Search Options

ADS (Version 2.01) - 7

.

Appendix A contains an annotated version of Table 4 for convenient reference
once the user is familiar with ADS.

To conserve computer storage, it may be desirable to use only those
subroutines in the ADS system needed for a given combination of ISTRAT,
IOPT and IONED. Appendix C provides the information necessary for this.
Appendix D lists the ADS subroutines with a very brief description of each.

Optimizer

Strategy 1 2 3 4 5

0 X X X X X

1 X X X 0 0

2 X X X 0 0

3 X X X 0 0

4 X X X 0 0

5 X X X X X

6 0 0 0 X X

7 0 0 0 X X

8 0 0 0 X X

9 0 0 0 X X

One-Dimensional Search

1 X X X 0 0

2 X X X 0 0

3 X X X 0 0

4 X X X 0 0

5 0 0 0 X X

6 0 0 0 X X

7 0 0 0 X X

8 0 0 0 X X

Table 4. Combinations of Algorithms Allowed

 8 - ADS (Version 2.01)

In writing a program to call ADS, the user should be aware that subroutine
names should not be duplicated. This is seldom a problem with ADS because
each routine begins with the letters ADS, followed by a three digit number.
The exception is the ADS routine itself, which has no trailing numbers. Thus,
the user need only be sure not to use subroutines with this numbering
sequence.

ADS (Version 2.01) - 9

Section 3

Program Flow Logic
ADS is called by a user-supplied calling program. ADS does not call any user-
supplied subroutines. Instead, ADS returns control to the calling program
when function or gradient information is needed. The required information is
evaluated and ADS is called again. This provides considerable flexibility in
program organization and restart capabilities.

The algorithms in ADS are called gradient based methods. That is they require
the calculation of the gradients of the objective and constraint functions. In
most applications, the user does not choose to calculate gradient information
(often it is not possible because of the implicit nature of the problem).
Therefore, the default case is that ADS will calculate all needed gradient
information using a first forward finite difference scheme. The exception to
this is that, if a variable is at its upper bound, a first backwards finite
difference step is taken. This is because the bounds on the design variables are
considered to be absolute and ADS will not consider a design outside the
specified bounds, even during gradient computations. The exception to this is
that, if the bounds are nearly equal, the resulting finite difference step may
violate the lower bound.

Also, ADS has numerous internal parameters that control the optimization
process. These all have default values that are used unless the user specifically
changes them.

Thus, ADS can be used in four principal modes:

1. Default control parameters and finite difference gradients.

2. Override default parameters, use finite difference gradients.

3. Default control parameters and user-supplied gradients.

4. Override default parameters and user-supplied gradients.

The first mode is the simplest “black box” approach. In the second mode, the
user overrides the default parameters to “fine tune” the program for efficiency.
In modes 3 and 4, the user supplies all needed gradient information to the
program.

 10 - ADS (Version 2.01)

Figure 1 is the program flow diagram for the simplest use of ADS. The user
begins by defining the basic control parameters and arrays (to be described in
Section 4). The gradient computation parameter, IGRAD, is set to zero to
indicate that finite difference gradients will be used. The information
parameter, INFO, is initialized to zero and ADS is called for optimization.
Whenever the values of the objective, OBJ, and constraints, G(I), I=l, NCON,
are required, control is returned to the user with INFO=l. The functions are
then evaluated and ADS is called again. When INFO=0 is returned to the user,
the optimization is complete.

Figure 1. Program Usage; All Default Parameters and Finite Difference Gradients

YESNO

Begin

Dimension Arrays

Define Basic Variables

IGRAD=0

INFO=0

Call ADS (INFO . . .)

INFO=0

Evaluate Objective
and Constraints

Exit
Optimization is

Complete or an Error
Was Detected

ADS (Version 2.01) - 11

Figure 2 is the program flow diagram for cases where the user wishes to
override one or more internal parameters, such as convergence criteria or
maximum number of iterations. After, initialization of basic parameters and
arrays, the information parameter, INFO, is set to -2. ADS is called to initialize
all internal parameters to their default values and allocate storage space for
internal arrays. Control is returned to the user, at which point these parameters,
for example convergence criteria, can be overridden. At this point, the
information parameter, INFO, will have a value of -1 and must not be
changed. ADS is called again and the optimization proceeds. Section 4.3
provides a list of internal parameters which may be modified, along with their
locations in the work arrays WK and IWK. A more detailed explanation of
these parameters is given in Appendix F.

Figure 2. Program Flow Logic; Override Default Parameters, Finite Difference Gradients

Begin

Dimension Arrays

Define Basic Arrays

IGRAD=0

INFO=-2

Call ADS (INFO. . .)

If INFO=0, Exit. Error was Detected

Else Override Default Parameters in
Arrays WK and IWK if Desired

Call ADS (INFO. . .)

Evaluate Objective
and Constraints

Exit Optimization
is Complete

NO YESINFO=0

 12 - ADS (Version 2.01)

Figure 3 is the flow diagram for the case where the user wishes to provide
gradient information to ADS, rather than having ADS calculate this
information using finite difference methods. In Figure 3, it is also assumed
that the user will override some internal parameters, so the difference between
Figures 2 and 3 is that IGRAD is now set to 1 and the user will now provide
gradients during optimization. If the user does not wish to override any default
parameters, INFO is initialized to zero and the first call to ADS is omitted (as
in Figure 1). Now, when control is returned to the user, the information
parameter will have a value of 1 or 2 (if INFO = 1, the optimization is
complete, as before). If INFO = 1, the objective and constraint functions are
evaluated and ADS is called again, just as in Figure 2. If INFO = 2, the
gradient, DF, of the objective function is evaluated as well as the gradients of
NGT constraints defined by vector IC.

ADS (Version 2.01) - 13

Figure 3. Program Flow Logic; Override Default Parameters and Provide Gradients

B eg in

D im en sio n A rray s

D efin e B as ic A rray s

IG R A D = 0

IN F O = -2

C a ll A D S (IN F O . . .)

If IN F O = 0 , E x it. E rro r w as D e tec ted

E lse O v errid e D efau lt P a ram eters in
A rray s WK an d IWK if D es ired

C a ll A D S (IN F O . . .)

E v alu a te O b jec tiv e
an d C o n stra in ts

E x it O p tim iza tio n

Y E S

Y E SIN F O = 0

N OIN F O = 1

is C o m p le te

E va lua te G rad ien t o f O b jec tiv e
and S pecified C o ns tra in ts

 14 - ADS (Version 2.01)

Section 4

Program Options
In this section the use of the ADS program is outlined. The FORTRAN Call
statement given to ADS is given first, and then the parameters in the calling
statement are defined. Section 4.3 identifies parameters that the user may wish
to override to more effective use of ADS. Arrays are designated by bolding
print.

4.1 Calling Statement

ADS is invoked by the following FORTRAN calling statement in the user's
program:

CALL ADS (INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV, NCDN,
X, VLB, VUB, OBJ, G, IDG, NGT, IC, DF, A, NRA, NCOLA, WK, NRWK,
IWK, NRIWK)

4.2 Definitions of Parameters in the ADS Calling
Statement

Table 5 lists the parameters in the calling statement to ADS. Where arrays are
defined, the required dimension size is given as the array argument.

Parameter Definition

INFO Information parameter. On the first call to ADS, INFO=0 or -
2. INFO=0 is used if the user does not wish to over-ride
internal parameters and INFO = -2 is used if internal
parameters are to be changed. When control returns from ADS
to the calling program, INFO will have a value of 0, 1, or 2. If
INFO=0, the optimization is complete. If INFO = 1, the user
must evaluate the objective, OBJ, and constraint functions,
G(I), I = 1, NCON, and call ADS again. If INFO = 2, the user
must evaluate the gradient of the objective and the NGT
constraints identified by the vector IC, and call ADS again. If
the gradient calculation control, IGRAD = 0, INFO = 2 will
never be returned from ADS, and all gradient information is
calculated by finite difference within ADS.

Table 5. Parameters in the ADS Argument List (Page 1 of 4)

ADS (Version 2.01) - 15

ISTRAT Optimization strategy to be used. Available options are
identified in Tables 1 and 4.

IOPT Optimizer to be used. Available options are identified in
Tables 2 and 4.

IONED One-dimensional search algorithm to be used. Available
options are identified in Tables 3 and 4.

IPRINT A four-digit print control. IPRINT = IJKL where I, J, K and L
have the following definitions:
I ADS system print control.
0 - No print.
1 - Print initial and final information.
2 - Same as 1 plus parameter values and storage needs.
3 - Same as 2 plus scaling information calculated by ADS.
J Strategy print control.
0 - No print.
1 - Print initial and final optimization information.
2 - Same as 1 plus OBJ and X at each iteration.
3 - Same as 2 plus G at each iteration.
4 - Same as 3 plus intermediate information.
5 - Same as 4 plus gradients of constraints.
K Optimizer print control.
0 - No print.
1 - Print initial and final optimization information.
2 - Same as 1 plus OBJ and X at each iteration.
3 - Same as 2 plus constraints at each iteration.
4 - Same as 3 plus intermediate optimization and one
dimensional search information.
5 - Same as 4 plus gradients of constraints.
L One-Dimensional search print control (debug only).
0 - No print.
1 - One-dimensional search debug information.
2 - More of the same.

Example: IPRINT=3120 corresponds to 1=3, J=1, K=2 and
L=0.
NOTE: IPRINT can be changed at any time control is returned
to the user.

IGRAD Gradient calculation control. If IGRAD = 0 is input to ADS,
all gradient computations are done within ADS by first
forward finite difference. If IGRAD = 1, the user will supply
gradient information as indicated by the value of INFO.

Parameter Definition

Table 5. Parameters in the ADS Argument List (Page 2 of 4)

 16 - ADS (Version 2.01)

NDV Number of design variables contained in vector X. NDV is the
same as in the mathematical problem statement.

NCON Number of constraint values contained in array G. NCON is
the same m + L in the mathematical problem statement given
in Section 1.0. NCON = 0 is allowed.

X(NDV+l) Vector containing the design variables. On the first call to
ADS, this is the user's initial estimate to the design. On return
from ADS, this is the design for which function or gradient
values are required. On the final return from ADS (INFO=0 is
returned), the vector X contains the optimum design.

VLB(NBV+1) Array containing lower bounds on the design variables, X. If
no lower bounds are imposed on one or more of the design
variables, the corresponding component(s) of VLB must be
set to a large negative number say -1.0E+15.

VUB(NDV+1) Array containing upper bounds on the design variables, X. If
no upper bounds are imposed on one or more of the design
variables, the corresponding component(s) of VUB must be
set to a large positive number, say 1.0E+15.

OBJ Value of the objective function corresponding to the current
values of the design variables contained in X. On the first call
to ADS, OBJ need not be defined. ADS will return a value of
INFO=1 to indicate that the user must evaluate OBJ and call
ADS again. Subsequently, any time a value of INFO=l is
returned from ADS, the objective, OBJ, must be evaluated for
the current design and ADS must be called again. OBJ has the
same meaning as F(X) in the mathematical problem statement
given in Section 1.0.

G(NCON) Array containing NCON constraint values corresponding to
the current design contained in X. On the first call to ADS, the
constraint values need not be defined. On return from ADS, if
INFO=1, the constraints must be evaluated for the current X
and ADS called again. If NCON=0, array G should be
dimensioned to unity, but no constraint values need to be
provided.

IDG(NC0N) Array containing identifiers indicating the type of the
constraints contained in array G.
IDG(I) = -2 for linear equality constraint.
IDG(I) = -l for nonlinear equality constraint.
IDG(I) = 0 or 1 for nonlinear inequality constraint.
IDG(I) = 2 for linear inequality constraint.

Parameter Definition

Table 5. Parameters in the ADS Argument List (Page 3 of 4)

ADS (Version 2.01) - 17

NGT Number of constraints for which gradients must be supplied.
NGT is defined by ADS as the minimum of NCOLA and
NCON and is returned to the user.

IC(NGT) Array identifying constraints for which gradients are
required. IC is defined by ADS and returned to the user. If
INFO=2 is returned to the user, the gradient of the objective
and the NGT constraints must be evaluated and stored in
arrays DF and A, respectively, and ADS must be called again.

DF(NDV + 1) Array containing the gradient of the objective corresponding
to the current X. Array DF must be defined by the user when
INFO= 2 is returned from ADS. This will not occur if
IGRAD=0, in which case array DF is evaluated by ADS.

A(NRA,
NCOLA)

Array containing the gradients of the NGT constraints
identified by array IC. That is, column J of array A contains
the gradient of constraint number K, where K = IC(J). Array
A must be defined by the user when INFO=2 is returned from
ADS and when NGT.GT.0. This will not occur if occur if
IGRAD = 0, in which case, array A is evaluated by ADS.
NRA is the dimensioned rows of array A. NCOLA is the
dimensioned columns of array A.

NRA Dimensioned rows of array A. NRA must be at least NDV + 1

NCOLA NCOLA is the dimensioned columns of array A. NCOLA
should be at least the minimum of NCON and 2*NDV. If
enough storage is available, and the gradients are easily
provided or are calculated by the finite difference, then
NCOLA = NCON + NDV is ideal.

WK(NRWK) User provided work array for real variables. Array WK is
used to store internal scaler variables and arrays used by ADS.
WK must be dimensioned at least 100, but usually much
larger. If the user has not provided enough storage, ADS will
print the appropriate message and terminate the optimization.

NRWK Dimensioned size of work array WK. A good estimate is
NRWK = 500 + 10 * (NDV + NCON) + (NCOLA + 3) +
N*(N/2+1), where = MAX(NDV, NCOLA)

IWK (NRIWK) User provided work array for integer variables. Array IWK is
used to store internal scalar variables and arrays used by ADS.
IWK must be dimensioned at least 200, but usually much
larger. If the user has not provided enough storage, ADS will
print the appropriate message and terminate the optimization.

Parameter Definition

Table 5. Parameters in the ADS Argument List (Page 4 of 4)

 18 - ADS (Version 2.01)

4.3 Overriding ADS Default Parameters

Various internal parameters are defined on the first call to ADS which work
well for the “average” optimization task. However, it is often desirable to
change these in order to gain maximum utility of the program. This mode of
operation is shown in Figures 2 and 3. After the first call to ADS, various real
and integer scalar parameters are stored in arrays WK and IWK respectively.
Those which the user may wish to change are listed in Tables 6 through 9,
together with their default values and definitions. If the user wishes to change
any of these, the appropriate component of WK or IWK is simply re-defined
after the first call to ADS. For example, if the relative convergence criterion, is
to be changed to 0.002, this is done with the FORTRAN statement.

WK(12) = 0.002

because WK(12) contains the value of DELOBJ

Modules Where Used

Parameter Location Default ISTRAT IOPT IONED

ALAMDC 1 0.0 5 - -

BETAMC 2 0.0 7 - -

CT(1) 3 -0.03 - 4, 5 -

CTL 4 -0.005 - 4, 5 -

CTLMN 5 0.001 - 4, 5 -

CTMIN 6 0.004 - 4, 5 -

DABALP(2) 7 0.0001 - ALL -

DABOBJ 8 ABS(FZ)/
1000

ALL - -

DABOBM 9 ABS(FZ)/
500

ALL - -

DABSTR 10 ABS(FZ)/
1000

ALL - -

DELALP(3) 11 0.005 - - 1, 2, 5, 6

DELOBJ 12 0.001 - ALL -

DELOBM 13 0.01 ALL - -

DELSTR 14 0.001 ALL - -

Table 6. Real Parameters Stored in Array WK (Page 1 of 2)

ADS (Version 2.01) - 19

1 IF IOPT = 4, CT = -0.1
2 If IONED = 3 or 8, DABALP = 0.001
3 If IONED = 3 or 8, DELALP = 0.05
4 If ISTRAT = 9, RMVLMZ = 0.4

FZ the objective function value for the initial design

DLOBJ1 15 0.1 - ALL -

DLOBJ2 16 1000.0 - ALL -

DX1 17 0.01 - ALL -

DX2 18 0.2 - ALL -

EPSPEN 19 -0.05 2, 3, 4 - -

EXTRAP 20 5.0 - - ALL

FDCH 21 0.01 - ALL -

FDCHM 22 0.001 - ALL -

GMULTZ 23 10.0 8 - -

PSAIZ 24 0.95 8 - -

RMULT 25 5.0 1, 5 - -

RMVLMZ 26 0.2 6, 7, 8, 9 - -

RP 27 10.0 1, 5 - -

RPMAX 28 1.0E+10 1, 5 - -

RPMULT 29 0.2 1, 5 - -

RPMIN 30 1.0E-10 2, 3, 4 - -

RPPRIM 31 100 2, 3, 4 - -

SCFO 32 1.0 ALL ALL ALL

SCLMIN 33 0.001 ALL ALL ALL

STOL 34 0.001 - 4, 5 -

THETAZ 35 0.1 - 4, 5 -

XMULT 36 2.618034 - - 1,2,3
5,6,7

ZRO 37 0.00001 ALL ALL ALL

PMLT 38 10.0 6, 7, 8, 9 4, 5 -

Modules Where Used

Parameter Location Default ISTRAT IOPT IONED

Table 6. Real Parameters Stored in Array WK (Page 2 of 2)

 20 - ADS (Version 2.01)

Parameter Definition

ALAMDZ Initial estimate of the Lagrange Multipliers in the Augmented
Lagrange Multiplier Method.

BETAMC Additional steepest descent fraction in the method of centers.
After moving to the center of the hypersphere, a steepest
descent move is made equal to BETAMC times the radius of
the hypersphere.

CT Constraint tolerance in the Method of Feasible Directions or
the Modified Method of Feasible Directions. A constraint is
active if its numerical value is more positive than CT.

CTL Same as CT, but for linear constraints.

CTLMIN Same as CTMIN, but for linear constraints.

CTMIN Minimum constraint tolerance for nonlinear constraints. If a
constraint is more positive than CTIIIN, it is considered to be
violated.

DABALP Absolute convergence criteria for the one-dimensional search
when using the Golden Section method.

DABOBJ Maximum absolute change in the objective between two
consecutive iterations to indicate convergence in optimization.

DABOBM Absolute convergence criterion for the optimization sub-
problem when using sequential minimization techniques.

DABSTR Same as DABOBJ, but used at the strategy level.

DELALP Relative convergence criteria for the one-dimensional search
when using the Golden Section method.

DELOBJ Maximum relative change in the objective between two
consecutive iterations to indicate convergence in optimization.

DELOBM Relative convergence criterion for the optimization sub-
problem when using sequential minimization techniques.

DELSTR Same as DELOBJ, but used at the strategy level.

DLOBJ1 Relative change in the objective function attempted on the
first optimization iteration. Used to estimate initial move in
the one-dimensional search. Updated as the optimization
progresses.

DLOBJ2 Absolute change in the objective function attempted on the
first optimization iteration. Used to estimate initial move in
the one-dimensional search. Updated as the optimization
progresses.

Table 7. Definitions of Real Parameters Stored in Array WK (Page 1 of 3)

ADS (Version 2.01) - 21

DX1 Maximum relative change in a design variable attempted on
the first optimization iteration. Used to estimate the initial
move in the one-dimensional search. Updated as the
optimization progresses.

DX2 Maximum absolute change in a design variable attempted on
the first optimization iteration. Used to estimate the initial
move in the one-dimensional search. Updated as the
optimization progresses.

EPSPEN Initial transition point for extended penalty function methods.
Updated as the optimization progresses.

EXTRAP Maximum multiplier on the one-dimensional search
parameter, ALPHA in the one-dimensional search using
polynomial interpolation and extrapolation.

FDCH Relative finite difference step when calculating gradients.

FDCHM Minimum absolute value of the finite difference step when
calculating gradients. This prevents too small a step when X(I)
is near zero.

GMULTZ Initial penalty parameter in Sequential Quadratic
programming

PSAIZ Move fraction to avoid constraint violations in Sequential
Quadratic Programming.

RMULT Penalty function multiplier for the exterior penalty function
method. Must be greater than 1.0.

RMVLMZ Initial relative move limit. Used to set the move limits in
sequential linear programming, method of inscribed
hyperspheres and sequential quadratic programming as a
fraction of the value of X(I), I=1, NDV.

RP Initial penalty parameter for the exterior penalty function
method or the Augmented Lagrange Multiplier method.

RPMAX Maximum value of RP for the exterior penalty function
method or the Augmented Lagrange Multiplier method.

RPMULT Multiplier on RP for consecutive iterations.

RPMIN Minimum value of RPPRIM to indicate convergence.

RPPRIM Initial penalty parameter for extended interior penalty function
methods.

SCFO The user-supplied value of the scale factor for the objective
function if the default or calculated value is to be over-ridden.

Parameter Definition

Table 7. Definitions of Real Parameters Stored in Array WK (Page 2 of 3)

 22 - ADS (Version 2.01)

SCLMIN Minimum numerical value of any scale factor allowed.

STOL Tolerance on the components of the calculated search
direction to indicate that the Kuhn-Tucker conditions are
satisfied.

THETAZ Nominal value of the push-off factor in the Method of
Feasible Directions.

XMULT Multiplier on the move parameter, ALPHA, in the one-
dimensional search to find bounds on the solution.

ZRO Numerical estimate of zero on the computer. Usually the
default value is adequate. If a computer with a short word
length is used, ZRO = l.0E-4 may be preferred.

PMLT Penalty multiplier for equality constraints when IOPT = 4 or 5.

Modules Where Used

Parameter Location Default ISTRAT IOPT IONED

ICNDIR 1 NDV + 1 - ALL -

ISCAL 2 1 ALL ALL ALL

ITMAX 3 40 - ALL -

ITRMOP 4 3 - 1, 2, 3 -

ITRMST 5 2 ALL - -

JONED 6 IONED 8 - -

JTMAX 7 20 20 ALL -

Table 8. Integer Parameters Stored in Array IWK

Parameter Definition

Table 7. Definitions of Real Parameters Stored in Array WK (Page 3 of 3)

ADS (Version 2.01) - 23

Table 9. Definitions of Integer Parameters Contained in Array IWK

4.4 User Supplied Gradients

If it is convenient to supply analytic gradients to ADS, rather than using
internal finite difference calculations, considerable optimization efficiency is
attainable. If the user wishes to supply gradients, the flow logic given in
Figure 3 is used. In this case, the information parameter, INFO, will be
returned to the user with a value of INF0=2 when gradients are needed. The
user calculates the NGT gradients of the constraints identified by array IC and
stores these in the first NGT columns of array A. That is column I of A
contains the gradient of constraint J, where J=IC(I).

Parameter Definition

ICNDIR Restart parameter for conjugate direction and variable metric
methods. Unconstrained minimization is restarted with a
steepest descent direction every ICNDIR iterations.

ISCAL Scaling parameter. If ISCAL = 0, no scaling is done. If
ISCAL=1, the design variables, objective and constraints are
scaled automatically.

ITMAX Maximum number of iterations allowed at the optimizer level.

ITRMOP The number of consecutive iterations for which the absolute
or relative convergence criteria must be met to indicate
convergence at the optimizer level.

ITRMST The number of consecutive iterations for which the absolute
or relative convergence criteria must be met to indicate
convergence at the strategy level.

JONED The one-dimensional search parameter (IONED) to be used in
the Sequential Quadratic Programming method at the strategy
level

JTMAX Maximum number of iterations allowed at the strategy level.

 24 - ADS (Version 2.01)

4.5 Restarting ADS

When solving large and complex design problems, or when multi-level
optimization is being performed, it is often desirable to terminate the
optimization process and restart from that point at a later time. This is easily
accomplished using the ADS program. Figure 4 provides the basic flowchart
for this process. Whenever control is returned from ADS to the calling
program, the entire contents of the parameter list are written to disk (or a file
in a database management system). The program is then stopped at this point.
Later, the program is restarted by reading the information back from disk and
continuing from this point. If optimization is performed as a sub-problem
within analysis, the information from the system level optimization is written
to disk and the analysis is called. The analysis module can then call ADS to
perform the sub-optimization task. Then, upon return from analysis, the
system level information is read back from storage and the optimization
proceeds as usual. From this, it is seen that considerable flexibility exists for
multi-level and multi-discipline optimization with ADS, where the ADS
program is used for multiple tasks within the overall design process.

The user may wish to stop the optimization at specific times during the
process. The parameter IMAT is array IWK gives general information
regarding the progress of the optimization. Appendix B provides details of this
parameter as well as other parameters stored in WK and IWK which may be
useful to the experienced user of ADS.

Figure 4. Restarting ADS

Begin

Call ADS (INFO. . .)

YES

NO

Is this a Restart

Stop for
Later Restart

NO

Continue

Read Contents of
ADS Parameter List
Onto Disk File

YES Write Contents of
ADS Parameter List
Onto Disk File

Exit

ADS (Version 2.01) - 25

4.6 Choosing an Algorithm

One difficulty with a program such as ADS, which provides numerous
options, is that of picking the best combination of algorithms to solve a given
problem. While it is not possible to provide a concise set of rules, some
general guidelines are offered here based on the author's experience. The user
is strongly encouraged to try many different options in order to gain
familiarity with ADS and to improve the probability that the best combination
of algorithms is found for the particular class of problems being solved.

��

ISTRAT = 0

Is computer storage very limited?

• Yes - IOPT = 1. Are function evaluations expensive?
1. Yes - Is the objective known to be approximately quadratic?

A. Yes - IONED=4
B. No - IONED=3

2. No - IONED=1 or 2
• No - Is the analysis iterative?

1. Yes - IOPT=3. Are function evaluations expensive?
A. Yes - Is the objective known to be approximately quadratic?

a. Yes - IONED=4 No - IONED=3
b. No- IONED=3

B. No - IONED=1 or 2
2. No - IOPT=2 or 3. Are function evaluations expensive?

A. Yes - Is the objective known to be approximately quadratic?
a. Yes - IONED=4
b. No - IONED=3

B. No - IONED=1 or 2

 26 - ADS (Version 2.01)

���������������������������� !���

Are relative minima known to exist?

• Yes - ISTRAT = 1, IOPT = 3. Are functions expensive?
1. Yes - IONED = 3
2. No - IONED = 1 or 2

• No - Are the objective and/or constraints highly nonlinear?
1. Yes - Are function evaluations expensive?

A. Yes - ISTRAT = 0, IOPT = 4, IONED = 7
B. No - ISTRAT = 2, 3 or 5, IOPT = 2 or 3?, IONED = l or 2

2. No - Is the design expected to be fully-constrained?
(i.e., NDV active constraints at the optimum)

A. Yes - ISTRAT = 6, IOPT = 5, IONED = 6
B. No - Is the analysis iterative?

a. Yes - ISTRAT=0, IOPT=4, IONED=7 or
ISTRAT=8, IOPT=5, IONED=7 or
ISTRAT=9, IOPT=5, IONED=7

b. No - ISTRAT=0, IOPT=5, IONED=7 or
ISTRAT=8, IOPT=5, IONED=7 or
ISTRAT=9, IOPT=5, IONED=7

 �����"�#$$"��������

Often little is known about the nature of the problem being solved. Based on
experience with a wide variety of problems, a very direct approach is given
here for using ADS. The following table of parameters is offered as a sequence
of algorithms. When using ADS the first few times, the user may prefer to run
the cases given here, rather than using the decision approach given above. It is
assumed here that a constrained optimization problem is being solved. If the
problem is unconstrained, ISTRAT=0, IOPT=3 and IONED=2 or 3 is
recriminated.

ISTRAT IOPT IONED IPRINT

8 5 7 2200

0 5 7 2020

0 4 7 2020

9 5 7 2200

6 5 6 2200

5 3 3 2200

2 3 3 2200

1 3 3 2200

Table 10. Sequence of Algorithms

ADS (Version 2.01) - 27

Section 5

Examples
Consider the following two-variable optimization problem with two nonlinear
constraints:

Minimize

Subject to:

0.01 .LE. Xi .LE. 1.0E + 20 i = 1, 2

This is actually the optimization of the classical 3-bar truss shown in Figure 5
where, for simplicity, only the tensile stress constraints in members 1 and 2
under load P1 are included. The loads, P1 and P2, are applied separately and
the material specific weight is 0.1 lb per cubic inch. The structure is required
to be symmetric so X(1) corresponds to the cross-sectional area of members 1
and 3 and X(2) corresponds to the cross-sectional area of member 2.

Figure 5. Three Bar Truss

OBJ 2*SQRT 2()*X1 + X2=

G 1() 2*X1 + SQRT(2)*X2

2*X1* X1 SQRT 2()*X2+
--- 1 .LE. 0–=

G 2() 1

2* X1 SQRT 2()*X2+
--- 1 .LE. 0–=

P2 = 20,000 lb.P1 = 20,000 lb.

10 in.

10 in.10 in.

 28 - ADS (Version 2.01)

In the source listings for the examples, the arrays are dimensioned sufficiently
large to solve 10 design variable problems with 20 constraints. This allows the
user to create larger problems using these programs as a basis. Note that the
required array dimensions given in this manual are minimums. The arrays can
be dimensioned larger than needed, just as is done here.

%&�'$"��	�(�#""�)�*��"��+���'�����

Sample Code 1 gives the FORTRAN program to be used with ADS to solve
this problem. Only one line of data is read by this program to define the values
of ISTRAT, IOPT, IONED and IPRINT and the FORMAT is 4I5. When the
optimization is complete, another case may be run by reading a new set of
data. The program terminates when ISTRAT=-1 is read as data.

Sample Code 2 gives the results obtained with ISTRAT=O, IOPT=5,
IONED=7 and IPRINT=l000. The reader is encouraged to experiment with
this program using various combinations of the options from Table 4.

%&�'$"��,�(�-�����"�+���'������#���.���*���

The 3-bar truss designed in Example 1 is now designed with the following
changes in the internal parameters:

The FORTRAN program used here is shown in Sample Code 3 and the results
are given in Sample Code 4.

Parameter
New
Value

Location in
WK

Location
in IWK

CT -0.05 3 -

CTMIN 0.001 6 -

FDCH 0.001 21 -

ITRMOP 2 - -

Table 11. Changes in Parameters

ADS (Version 2.01) - 29

%&�'$"��/�(� �����������$$"����0���1�����

The 3-bar truss designed in Examples 1 and 2 is designed here with user
supplied gradients. The parameters CT, CTMIN, THETAZ and ITRMOP are
overridden as in Example 2. Also, now IPRINT=2020 to provide a more
typical 1evel of optimization output.

The FORTRAN program associated with this example is given in Sample
Code 5. Sample Code 6 gives the results.

C SIMPLIFIED USAGE OF ADS. THE THREE-BAR TRUSS.
C REQUIRED ARRAYS.

DIMENSION X(11), VLB(11), VUB(11), G(20), IDG(20), IC(20), DF(11),
1 A(11, 20), WK(l000), IWK(500)

C ARRAY DIMENSIONS.
NRA=2
NCOLA=2
NRWK=l000
NRIWK=500

C PARAMETERS.
IGRAD=0
NDV=2
NCON=2

C INITIAL DESIGN.
X(1)=1.
X(2)=1.

C BOUNDS.
VLB(1)=.01
VLB(2)=.01
VUB(1)=1.0E+20
VUB(2)-l.0E+20

C IDENTIFY CONSTRAINTS IDG(1)=0
IDG(2)=0

C INPUT. READ(5,30) ISTRAT, IOPT, IONED, IPRINT
C OPTIMIZE. INFO=0
10 CALL ADS (INFO,ISTRAT,IOPT IONED,IPRINT,IGRAD, NDV,NCON,X,VLB

1 VUB, OBJ, G, IDG, NGT, IC, DF, A, NRA, NCOLA, WK,
NRWK, IWK, NRIWK)
IF (INFO.EQ.0) GO TO 20

C EVALUATE OBJECTIVE AND CONSTRAINTS.
OBJ=2.*SQRT(2.)*X(1)+X(2)
G(1)=(2.*X(1)+SQRT(2.)*X(2))/(2.*X(1)*(X(1)+SQRT(2.)*X(2)))-1.
G(2)=.5/(X(1)+SQRT(2.)*X(2))-l.

C GO CONTINUE WITH OPTIMIZATION.
GO TO 10

20 CONTINUE
C PRINT RESULTS.

WRITE(6, 40) OBJ, X(1), X(2), G(1), G(2).... STOP
30 FORMAT (415)
40 FORMAT (//5X, 7H0PTIMUM, 5X, 5HOBJ =, E12.5//5X, 6HX(1) =, E12.5, 5X,

1 6HX(2) =, E12.5/5X, 6HG(1) =, E12.5, 5X, 6HG(2) =, E12.5)
END

Sample Code 1. Example 1 - All Default Parameters

 30 - ADS (Version 2.01)

FORTRAN Program for Automated Design Synthesis

(C) COPYRIGHT, EDO, INC., 1987
ALL RIGHTS RESERVED, WORLDWIDE

VERSION 3.00

Control Parameters

ISTRAT = 0 IOPT = 5 IONED = 7 IPRINT = 1000
IGRAD = 0 NDV = 2 NCON = 2

Optimization Results

Objective Function Value 2.62899E+00

Design Variables

Lower Upper
Variable Bound Value Bound

1 1.00000E-02 7.82696E-01 1.00000E+20
2 1.00000E-02 4.15190E-01 1.00000E+20

Design Constraints

 1.3.8170E-03 -6.3500E-O1

Function Evaluations = 26

Optimum OBJ = .26290E+01

X(1) = .78270E+00X(2) =.41519E+00
G(1) = .38170E-02G(2) = -.63500E+00

Sample Code 2. Example 1 - Output

ADS (Version 2.01) - 31

C USAGE OF ADS. OVERRIDING DEFAULT PARAMETERS. THE THREE
BAR TRUSS.
DIMENSION X(11), VLB(11), VUB(11), G(20), IDG(20), IC(20), DF(11),
1 A(11, 20), WK(1000), IWK(500)

C ARRAY DIMENSIONS.
NRA=2
NCOLA=2
NRWK= 1000
NRIWK=500

C PARAMETERS. IGRAD=0
NDV=2
NCON=2

C INITIAL DESIGN.
X(1)=1.
X(2)=1.

C BOUNDS.
VLB(1)=.Ol
VLB(2)=.01
VUB(1)=1.OE+20
VUB(2)=l.OE+20

C IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY.
IDG(1)=0
IDG(2)=0

C INPUT.
READ(5, 30) ISTRAT, IOPT, IONED, IPRINT

C INITIALIZE INTERNAL PARAMETERS.
INFO=-2
CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD, NDV,NCON,X, VLB
1 VUB, OBJ, G, IDG, NGT, IC, DF, A, NRA, NCOLA, WK, NRWK,IWK,NRIWK)

C OVERRIDE DEFAULT VALUES OF CT, CTMIN, THETAZ AND ITRMOP.
WK(3)=-0.05
WK(6)=0.001
WK(21)=0.00l
IWK(4)=2

C OPTIMIZE.
10 CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON, X, VLB,

1 VUB, OBJ, G, IDG, NGT, IC, DF, A, NRA, NCOLA, WK, NRWK,IWK,NRIWK)
IF (INFO.EQ.0) GO TO 20

C EVALUATE OBJECTIVE AND CONSTRAINTS.
OBJ=2.*SQRT(2.)*X(1)+X(2)
G(1)=(2.*X(1)+SQRT(2.)*X(2))/(2.*X(1)*(X(1)+SQRT(2.)*X(2)))-1.
G(2)=.5/(X(1)+SQRT(2.)*X(2))-1.

C GO CONTINUE WITH OPTIMIZATION.
GO TO 10

20 CONTINUE
C PRINT RESULTS.

WRITE(6, 40) 0BJ, X(1), X(2), G(1), G(2)
STOP

30 FORMAT (4I5)
40 FORMAT (//5X, 7HOPTIMUM, 5X, 5HOBJ =, E12.5//5X, 6HX(1)=, E12.5, 5X,

1 6HX(2) =, E12.5/5X, 6HG(1) =, E12.5, 5X, 6HG(2) =, E12.5)
END

Sample Code 3. Example 2 - Modify Default Parameters

 32 - ADS (Version 2.01)

FORTRAN Program for Automated Design Synthesis

(C) COPYRIGHT, EDO, INC., 1987
ALL RIGHTS RESERVED, WORLDWIDE

VERSION 3.00

Control Parameters

ISTRAT = 0 IOPT = 5 IONED = 7 IPRINT = 1000
IGRAD = 0 NDV = 2 NCON = 2

Optimization Results

Objective Function Value 2.63726E+00

Design Variables

Lower Upper
Variable Bound Value Bound

1 1.00000E-02 7.86349E-01 1.00000E+20
2 1.00000E-02 4.13130E-01 1.00000E+20

Design Constraints

 1.6.5273E-04 -6.3520E-01

Function Evaluations = 29

Optimum OBJ = .26373E+01

X(1) = .78635E+00X(2) =.41313E+00
G(1) = .65273E-02G(2) = -.63520E+00

Sample Code 4. Example 2 - Output

ADS (Version 2.01) - 33

C USAGE OF ADS. OVERRIDING DEFAULT PARAMETERS, AND
 PROVIDING GRADIENTS. THE THREE BAR TRUSS.
C REQUIRED ARRAYS.

DIMENSION X(11),VLB(11),VUB(11),G(20),IDG(20),IC(20), DF(11)
1 A(11, 20), WK(1000), IWK(500)
DIMENSION B(2, 2)

C ARRAY DIMENSIONS.
NRA=2
NCOLA=2
NRWK= 1000
NRIWK=500

C PARAMETERS.
IGRAD=1
NDV=2
NCON=2

C INITIAL DESIGN.
X(1)=1.
X(2)=1.

C BOUNDS.
VLB(l)=.01
VLB(2)=.01
VUB(l)=1.0E+20
VUB(2)=l.0E+20

C IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY
IDG(1)=0
IDG(2)=0

C INPUT.
READ(5, 70) ISTRAT, IOPT, IONED, IPRINT

C INITIALIZE INTERNAL PARAMETERS.
INFO=-2
CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X, VLB,
1 VUB, OBJ, G,IDG,NGT,IC,DF,A,NRA,NCOLA,WK,NRWK,IWK, NRIWK)

C OVERRIDE DEFAULT VALUES OF CT, CTMIN, THETAZ AND ITRMOP.
WK(3)=-0.05
WK(6)=0.00l
WK(21)=0.001
IWK(4)=2

C OPTIMIZE.
10 CALL ADS (INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV,

NCON, X, VLB
1 VUB, OBJ, G, IDG, NGT, IC, DF, A, NRA, NCOLA, WK, NRWK,
IVK, NRIWK)
IF (INFO.EQ.0) GO TO 60
IF (INFO.GT.1) GO TO 20

C EVALUATE OBJECTIVE AND CONSTRAINTS.
OBJ=2.*SQRT(2.)*X(1)+X(2)
G(1)=(2.*X(1)+SQRT(2.)*X(2))/(2.*X(1)*(X(1)+SQRT(2.)*X(2)))-1.
G(2)=.5/(X(1)+SQRT(2.)*X(2))-1.

C GO CONTINUE WITH OPTIMIZATION.
GO TO 10

20 CONTINUE
C GRADIENT OF OBJ.

DF(1)=2.*SQRT(2.)
DF(2)=1.0
IF (NGT.EQ.0) GO TO 10

 34 - ADS (Version 2.01)

C CONSTRAINT GRADIENTS. USE ARRAY B FOR TEMPORARY STORAGE.
D1=(X(1).SQRT(2.)*X(2))**2

C G(1).
 B(1,1)=-(2.*X(l)*X(l)+2.*SQRT(2.)*X(l)*X(2)+2.*X(2)*X(2))/
1 (2.*X(1)*X(1)*Dl)
B(2,1)=-1./(SQRT(2.)*Dl)

C G(2)
B(1,2)=-0.5/D1
B(2, 2)=SQRT(2.)*B(1,2)

C STORE APPROPRIATE GRADIENTS IN ARRAY A.
DO 30 J=1, NGT
K=IC(J)
A(1, J)=B(1,K)

30 A(2, J)=B(2, K)
GO TO 10

60 CONTINUE
C PRINT RESULTS.

WRITE (6, 80) OBJ, X(1), X(2), G(1), G(2)
STOP

70 FORMAT (4I5)
80 FORMAT (//5X, 7HOPTIMUM, 5X, 5HOBJ =, E12.5//5X, 6HX(l)=, E12.5, 5X,

1 6HX(2) =, E12.5/5X, 6HG(1) =, E12.5,5X, 6HG(2) =, E12.5)
END

Sample Code 5. Example 3 - Gradients Supplied by the User

ADS (Version 2.01) - 35

FORTRAN Program for Automated Design Synthesis

(C) COPYRIGHT, EDO, INC., 1987
ALL RIGHTS RESERVED, WORLDWIDE

VERSION 3.00

Control Parameters

ISTRAT = 0 IOPT = 5 IONED = 7 IPRINT = 2020
IGRAD = 1 NDV = 2 NCON = 2

Scalar Program Parameters
Real Parameters

1. ALAMDZ = .00000E+00 20. EXTRAP = 5.00000E+00
2. BETMAC = .00000E=00 21. FDCH = 1.00000E-03
3. CT = -5.00000E-02 22. FDCHM = 1.00000E-03
4. CTL = -5.00000E-03 23. GMULTZ = 1.00000E+01
5. CTLMIN = 1.00000E-03 24. PSAIZ = 9.50000E-01
6. CTMIN = 1.00000E-03 25. RMULT = 5.00000E+00
7. DABALP = 1.00000E-04 26. RMVLMZ = 2.00000E-01
8. DABOBJ = 3.82843E-03 27. RP = 1.00000E+01
9. DABOBM = 7.65685E-03 28. RPMAX = 1.00000E+10
10. DABSTR = 3.82843E-03 29. RPMULT = 2.00000E-01
11. DELALP = 5.00000E-03 30. RPMIN = 1.00000E-10
12. DELOBJ = 1.00000E-03 31. RPPRIM = 1.00000E+02
13. DELOBM = 1.00000E-02 32. SCFO = 1.00000E+00
14. DELSTR = 1.00000E-03 33. SCLMIN = 1.00000E-03
15. DLOBJ1 = 1.00000E-01 34. STOL = 1.00000E-03
16. DLOBJ2 = 1.00000E+03 35. THETAZ = 1.00000E-01
17. DX1 = 1.00000E-02 36. XMULT = 2.61803E+00
18. DX = 2 2.00000E-01 37. ZR0 = 1.00000E-05
19. EPSPEN = -5.00000E-02 38. PMLT = 1.00000E+01

Integer Parameters

1. ICNDIR= 3 4. ITRMOP = 2 6. JONED= 7
2. ISCAL = 1 5. ITRMST = 2 7. JTMAX= 20
3. ITMAX = 40

Array Storage Requirements

 Dimensioned Required
Array Size Size
WK 1000 199
IWK 500 184

 36 - ADS (Version 2.01)

 ��

 ���

 IOPT =5; Modified Method of Feasible Directions

--Initial Design

OBJ = 3.82843E+00

Decision Variables (X-Vector)

1. 1.00000E+00 l.00000E+00

Lower Bounds on the Decision Variables (VLB-Vector)

1. 1.00000E-02 1.00000E-02

Upper Bounds on the Decision Variables (VUB-Vector)

1. 1.00000E+20 1.00000E+20

Constraint Values (G-Vector)

1. 2.92893E-01-7.92893E-0l

--Iteration 1 OBJ = 2.79647EE+00

Decision Variables (X-Vector)

1. 6.75687E-01 8.85338E-0l

-- Iteration 2 OBJ = 2.63882EE+00

Decision Variables (X-Vector)

1. 7.98080EE-01 3.81510E-0l

-- Iteration 3 OBJ = 2.63724E+00

Decision Variables (X-Vector)

1. 7.86367E-01 4.13059E-011)

Final Optimization Results

Number of Iterations = 4

Objective = 2.63724E+00

ADS (Version 2.01) - 37

Decision Variables (X-Vector)

1. 7.86367E-01 4.13059E-01

Constraint Values (G-Vector)

1. 6.60856E -6.35175E)

Constraint Tolerance

CT = -2.500000E-02 CTL = -2.50000E-03

There are 1 Active Constraints and 0 Violated
Constraints

Constraint Numbers
1

There are 0 Active Side Constraints

Termination Criteria

KUHN-TUCKER PARAMETER, BETA = 9.65595E-06 is less
than 1.00000E-03

Optimization Results

Objective Function Value 2.63724E+00

Design Variables

Lower Upper
Variable Bound Value Bound

1 1.00000E-02 7.863679E-011.00000E+20
2 1.00000E-02 4.13059E-01 1.00000E+20

Design Constraints

 1.6.6086E-04 -6.3517E-01

Function Evaluations = 21

Gradient Evaluations = 4

Optimum OBJ = .26372E+01

X(1) = .78637E+00X(2) =.41306E+00
G(1) = .66086E-03G(2) = -.63517E+00

Sample Code 6. Example 3 - Output

 38 - ADS (Version 2.01)

Section 6

Main Program for
Simplified Usage of ADS

Sample Code 7 is a general-purpose calling program for use with ADS. The
arrays are dimensioned sufficient to solve problems of up to 20 design
variables and 100 constraints. Arrays IC and A are dimensioned to allow for
evaluation of 20 constraint gradients. Wherever a question mark (?) is given, it
is understood that the user will supply the appropriate information. Note that
the statement: X(I)=?, I=l, NDV is not an implied FORTRAN DO LOOP, but
simply denotes that the value of the NDV design variables must be defined
here.

 Subroutine EVAL is the user-supplied subroutine for evaluating functions and
gradients (if user-supplied). The calling statement is:

CALL EVAL (INFO, NDV, NCON, OBJ,X, G, DF, NGT, IC, A, NRA)

The parameters INFO, NDV, NCON, X, NGT, IC and NRA are input to
Subroutine EVAL, while OBJ, C, DF and A are output. Depending on the user
needs, this may be simplified. For example, if IGRAD=0 and NDV and
NCON are not required by the analysis. the calling statement may be:

CALL EVAL (OBJ, X, G)

Also, a print control may be added so, after the optimization is complete,
EVAL can be cal1ed again to print analysis information.

ADS (Version 2.01) - 39

C SIMPLIFIED USAGE OF THE ADS OPTIMIZATION PROGPAM.
DIMENSION X(21),VLB(21),VUB(21),G(l00),IDG(100),IC(30),DF(21),
* A(21, 30),WK(10000), IWK(2000)
NRA=21
NCOLA=30
NRWK=10000
NRIWK=2000

C INITIALIZATION.
IGRAD=?
NDV=?
NCON=?
X(I)=?, I=1, NDV
VLB(I)=?, I=1, NDV
VUB(I)=?, I=1, NDV
IDG(I)=?, I=1, NCON
ISTRAT=?
IOPT=?
IONED=?
IPRINT=?
INFO=0

10 CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON, X,
*VLB,VUB,OBJ,G,IDG,NGT,IC,DF,A,NRA,NCOLA,WK,NRWK,IWK, NRIWK)
CALL EVAL (INFO, NDV, NCON, OBJ, X, G, DF, NGT, IC, A, NRA)
 IF (INFO.GT.0) GO TO 10

C OPTIMIZATION IS COMPLETE. PRINT RESULTS.
STOP
END

Sample Code 7. Program for Simplified Usage of ADS

 40 - ADS (Version 2.01)

Section 7

References
 1. Vanderplaats, G. N., “ADS - A FORTRAN Program for Automated

Design Synthesis,” NASA CR 172460, Oct. 1984.

 2. Fleury, C. and Braibant, V., “Structural Optimization; A New Dual
Method Using Mixed Variables,” LTAS Report SA-115, University of
Liege, Leige, Belgium, March 1984.

 3. Fox, R. L., “Optimization Methods for Engineering Design,” Addison-
Wesley, 1971.

 4. Fiacco, A.V. and McCormick, G. P., Nonlinear Programming: Sequential
Unconstrained Minimization Techniques, John Wiley and Sons, 1968.

 5. Kavlie, D. and Moe, J., “Automated Design of Frame Structures,” ASCE
Journal of Structural Div., Vol. ST1, Jan. 1971, pp. 33-62.

 6. Cassis, J. H., “Optimum Design of Structures Subjected to Dynamic
Loads,” Ph.D. Thesis, University of California, Los Angeles, 1974.

 7. Cassis, J. H. and Schmit, L. A., “On Implementation of the Extended
Interior Penalty Function,” International Journal of Numerical Methods
in Engineering, Vol. 10, No. 1, 1976, pp. 3-23.

 8. Haftka, R. T. and Starnes, J. H., Jr., “Applications of a Quadratic Extended
Interior Penalty Function for Structural Optimization,” AIAA Journal,
Vol.14, June 1976, pp. 718-724.

 9. Prasad, B. and Haftka, R. T., “Optimum Structural Design with Plate
Finite Elements,” ASCE Journal of Structural Div., Vol.5Th, Nov. 1979,
pp. 2367-2382.

10. Prasad, B., “A Class of Generalized Variable Penalty Methods for
Nonlinear Programming,” Journal of Optimization Theory and
Applications, Vol.35, No.2, Oct. 1981, pp. 159-182.

11. Rockafellar, R. T., “The Multiplier Method of Hestenes and Powell
Applied to Convex Programming,” Journal of Optimization Theory and
Application, Vol. 12, No. 6, 1973, pp. 555-562.

12. Pierre, D. A. and Lowe, M. J., “Mathematical Programming Via
Augmented Lagrangians,” Applied Mathematics and Computation Series,
Addison-Wesley, 1975.

ADS (Version 2.01) - 41

13. Powell, M.J.D., “Algorithms for Nonlinear Constraints that use
Lagrangian Functions,” Mathematical Programming, Vol. 14, No. 2,
1978, pp. 224-248.

14. Imai, K., “Configuration Optimization of Trusses by the Multiplier
Method,” Ph.D. Thesis, University of California, Los Angeles, 1978.

15. Imai, K. and Schrnit, L. A., “Configuration Optimization of Trusses,”
Journal of the Structural Division, ASCE, Vol. 107, No. ST5, May 1981,
pp. 745-756.

16. Kelley, J. E., “The Cutting Plane Method for Solving Convex Programs,”
J. SIAM, 1960, pp. 703-712.

17. Moses, F., “Optimum Structural Design Using Linear Programming,”
Proc. A.S.C.E., Vol. 90, ST6, 1964, pp. 89-104.

18. Baldur, R., “Structural Optimization by Inscribed Hyperspheres,” Journal
of Engineering Mechanics, ASCE, Vol. 98, No. EM3, June 1972, pp. 503-
508.

19. Powell, M.J.D., “The Convergence of Variable Metric Methods for
Nonlinearly Constrained Optimization Calculations,” Proc. Nonlinear
Programming Symposium 3, Madison, Wisconsin.

20. Powell, M.J.D, “A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations.” Report DAMTP77/NA2, University of
Cambridge, England.

21. Fletcher R. and Reeves, C. M., “Function Minimization by Conjugate
gradients,” Computer Journal, Vol. 7, No. 2, 1964, pp. 149-154.

22. Davidon, W.C., “Variable Metric Method for Minimization,” Argone
National Laboratory, ANL-5990 Rev., University of Chicago, 1959.

23. Fletcher, R. and Powell, M.J.D., “A Rapidly Convergent Method for
Minimization,” Computer Journal, Vol. 6, No. 2, 1963, pp. 163-168.

24. Broydon, C. G., “The Convergence of a Class of Double Rank
Minimization Algorithms,” Parts I and II, J. Inst. Maths. Applns. Mzl. 6,
1970, pp. 76-90 and 222-231.

25. Fletcher, R., “A New Approach to Variable Metric Algorithms,”
Computer Journal, Vol. 13, 1970, pp. 317-322.

26. Goldfarb, D., “A Family of Variable Metric Methods Derived by
Variational Means,” Maths. Comput., Vol. 24, 1970, pp. 23-36.

27. Shanno, D. F., “Conditioning of Quasi-Newton Methods for Function
Minimization,” Maths. Comput., Vol. 24, 1970, pp. 647-656.

28. Zoutendijk, M. , Methods of Feasible Directions, Elsevier Publishing Co.,
Amsterdam, 1960.

 42 - ADS (Version 2.01)

29. Vanderplaats, C. N. and Moses, F., “Structural Optimization by Methods
of Feasible Directions,” Journal of Computers and Structures, Vol. 3,
Pergamon Press, July 1973, pp. 739-755.

30. Vanderplaats, G. N., “An efficient Feasible Directions Algorithm for
Design Synthesis,” AIAA J., Vol. 22, No. 11, Oct. 1984, pp. 1633-l64O.
31. Himmelblau, D. M., Applied Nonlinear Programming, McCraw-Hill,
1972.

32. Vanderplaats, G. N., Numerical Optimization Techniques for Engineering
Design: With Applications, McGraw-Hill, 1984.

ADS (Version 2.01) - 43

Appendix A

Quick Reference to ADS
Options

IOPT OPTIMIZER

1 Fletcher-Reeves
2 Davidon-Fletcher-Powell (DEP)
3 Broydon-Fletcher-Goldfarb-Shanno (BFGS)
4 Method of Feasible Directions
5 Modified Method of Feasible Directions

STRATEGY ISTRAT 1 2 3 4 5
None 0 X X X X X
SUMT, Exterior 1 X X X 0 0
SUMT, Linear Extended Interior 2 X X X 0 0
SUMT, Quadratic Extended Interior 3 X X X 0 0
SUMT, Cubic Extended Interior 4 X X X 0 0
Augmented Lagrange Multiplier Meth. 5 X X X 0 0
Sequential Linear Programming 6 0 0 0 X X
Method of Centers 7 0 0 0 X X
Sequential Quadratic Programming 8 0 0 0 X X
Sequential Convex Programming 9 0 0 0 X X

ONE-DIMENSIONAL SEARCH IONED
Golden Section Method 1 X X X 0 0
Golden Section + Polynomial 2 X X X 0 0
Polynomial Interpolation (bounded) 3 X X X 0 0
Polynomial Extrapolation 4 X X X 0 0
Golden Section Method 5 0 0 0 X X
Golden Section + Polynomial 6 0 0 0 X X
Polynomial Interpolation (bounded) 7 0 0 0 X X
Polynomial Extrapolation 8 0 0 0 X X

 ���

 ���

An X denotes an allowed combination of algorithms.

 44 - ADS (Version 2.01)

Appendix B

Useful Information Stored
in Arrays WK and IWK

Arrays VK and IWK contain information calculated by ADS which is
sometimes monitoring the progress of the optimization. Tables B-1 and B-2
identify parameters which may be of interest to the user. Note that these
parameters must not be changed by the user during the optimization process

Parameter Location DEFINITION

ALPHA 52 Move parameter in the one-dimensional
search.

ALPHA3 53 ALPHA at the strategy level for ISTRAT=8.

PENALT 82 The value of the penalty in SUMT methods.

SLOPF 85 The slope of the OBJ versus ALPHA function
in the one-dimensional search.

Table 12. Real Parameters Stored in Arrays WK

ADS (Version 2.01) - 45

.

Parameter Location Definition

IDAB 23 Number of consecutive times the absolute
convergence criterion has been satisfied at the
optimization level.

IDAB3 24 Same as IDAB, but at the strategy level.

IDEL 25 Number of consecutive times the relative
convergence criterion has been satisfied at the
optimization level.

IDEL3 26 Same as IDEL, but at the strategy level.

IFCALL 28 The number of times the objective and constraint
functions have been evaluated.

IGCALL 29 The number of times analytic gradients have been
evaluated.

IMAT 34 Pointer telling the status of the optimization
process.
0 - Optimization is complete.
1 - Initialization Is complete and control is being
returned to the user to override default
parameters.
2 - Initial function evaluation.
3 - Calculating analytic gradients.
4 - Calculating finite difference gradients. NXFD
identifies the design variable being changed.
5 - One-dimensional search is being performed.
See LGOTO.

ITER 45 Iteration number at the optimization level.

JTER 46 Iteration number at the strategy level.

LGOTO 54 Location in one-dimensional search.
1 - Finding bounds on the solution.
2 - Golden Section method.
3 - Polynomial interpolation after Golden Section
4 - Polynomial interpolation after getting bounds
5 - Polynomial interpolation/extrapolation.

NAC 58 Number of active constraints.

NACS 59 Number of active side constraints.

NVC 68 Number of violated constraints.

NXFD 69 Design variable being perturbed during finite
difference gradients

Table 13. Integer Parameters Stored in Array IWK

 46 - ADS (Version 2.01)

Appendix C

Subroutines Needed for
ISTRAT, IOPT and IONED

Depending on the combination of ISTRAT, IOPT and IONED, only a subset of
subroutines contained in the ADS system are used. Therefore, if computer
memory is limited, it may be desired only to load those routines which are
actually used. This will result in “unsatisfied externals” at run time, but on
most systems the program can be executed anyway since the unsatisfied
external routines are not actually called. Below is a list of the routines needed
for a given combination of algorithms. In some cases, slightly more routines
are included than are absolutely necessary, but they are short and a more
precise list would be unduly complicated.

Always Load the Following Subroutines:

ADS, ADS001, ADS002, ADS004, ADS005, ADS006, ADS007, ADS009, ADS0l0,
ADS102, ADSl03, ADSl05, ADS1l2, ADSl22, ADS201, AD5206, ADS211, AD5216,
ADS236, AD5237, ADS40l, AD5402, AD5403, AD5420, ADSS03, ADS504, AD5506,

ADS5l0

Strategy Level

Depending on the value of ISTRAT, the following subroutines are also
required:

ISTRAT = 0, No strategy routines are added. Go to the optimizer level.

ISTRAT = 1, Add: ADS008, ADS301, ADS302, ADS508I

ISTRAT = 2, Add: ADS008, AD5302, ADS303, AD5308, ADS5O8

ISTRAT = 3, Add: ADS008, AD5302, ADS304, ADS308, ADS508

ISTRAT = 4, Add: ADS008, ADS302, AD5305, ADS308, ADS508

ISTRAT = 5 Add: ADS008, ADS302, ADS306, ADS307, ADS508

ISTRAT = 6, Add: ADS320, ADS321, AD5323, ADS333

ISTRAT = 7, Add: ADS323, ADS330, AD5331, ADS333

ADS (Version 2.01) - 47

ISTRAT = 8, Add: ADS207, AD5217, ADS218, AD5221, ADS223, ADS310, AD5333,
AD5371, ADS375, AD5376, AD5377, AD5378, ADS404, ADS507,
ADSS08, ADS509

ISTRAT = 9, Add: ADS207, ADS17, ADS218, AD5221, AD5223, AD5325, ADS326,
ADS509

Optimizer Level

Depending on the value of IOPT, the following subroutines are also required:

IOPT = 0, No strategy routines are added. Go to the optimizer level.

IOPT = 1, Add: ADS204, ADS213, ADS214, ADS5509

IOPT = 2, Add: ADS213, ADS214, ADS235, ADS404, ADS503, ADS509

IOPT = 3, Add: ADS213, ADS214, ADS235, ADS404, ADS503, ADS509

IOPT = 4, Add: ADS201, ADS205, ADS207, ADS217, ADS218, ADS223,
 ADS507

IOPT = 5, Add: ADS201, ADS202, ADS203, ADS207, ADS209, ADS217, ADS218,
ADS221, ADS235, ADS507

One-Dimensional Search Level

Depending on the value of IONED, the following subroutines are also
required:

IONED = 1-4, Add: ADS116, ADS117, ADS118, ADS121, ADS126, ADS127

IONED = 5-8, Add: ADS101, ADS104, ADS106, ADS108, ADS109, ADS110, ADS111,

ADS115, ADS119, ADS123, ADS124, ADS125,
ADS502

 48 - ADS (Version 2.01)

Appendix D

ADS Subroutines
The subroutines in the ADS system are listed here with a very brief description
of each. Most subroutines are internally documented, and the user is referred
to the program listing for more details

Generally, ADS001-ADS099 are control level routines, ADS2O1-ADS299 are
optimum level routines and ADS301-ADS399 are strategy level routines.
ADS4O1-ADS499 are print routines and ADS501-ADS599 are utility
routines.

Routine Purpose

ADS - Main control routine for optimization.

ADS00l - Control one-dimensional search level.

ADS002 - Control optimizer level.

ADS003 - Control strategy level

ADS004 - Define work array storage allocations.

ADS005 - Initialize scalar parameters to their default values.

ADS006 - Initialize scale factors.

ADS007 - Calculate scale factors, scale, unscale.

ADS008 - Calculates gradients of pseudo-objective for ISTRAT=1-5.

ADS009 - Re-order IC and A arrays.

ADS010 - Calculates convergence criteria parameters.

ADS101 - Coefficients of linear polynomial.

ADS102 - Coefficients of quadratic polynomial.

ADS103 - Coefficients of cubic polynomial.

ADS104 - Zeros of polynomial to third-order.

ADS105 - Minimums of polynomial to third order.

ADS106 - Evaluate n-th order polynomial

ADS108 - Find minimum of a function by polynomial interpolation.

ADS109 - Find zeroes of a function by polynomial interpolation.

ADS110 - Evaluate slope of n-th order polynomial.

ADS111 - Polynomial interpolation for constraint boundaries

ADS112 - Find ALPMAX so NDV side constraints are encountered

ADS (Version 2.01) - 49

ADS115 - Control one-dimensional search for constrained functions.

ADS116 - Control one-dimensional search for unconstrained functions.

ADS117 - Polynomial interpolation of unconstrained function, within
bounds.

ADS118 - Polynomial interpolation of unconstrained function, no bounds
given.

ADS119 - polynomial interpolation of constrained function, no bounds
given

ADS121 - Find bounds on minimum of unconstrained function.

ADS122 - Initial interior points for Golden Section method.

ADS123 - Constrained one-dimensional search by Golden Section method.

ADS124 - Update bounds and get new interior point in Golden Section
method, constrained.

ADS125 - Find bounds on minimum of constrained function.

ADS126 - Unconstrained one-dimensional search by Golden Section
method.

ADS127 - Update bounds and get new interior point by Golden Section
method, unconstrained.

ADS201 - Identify NGT most critical constraints.

ADS202 - Invert matrix B and store back in B.

ADS203 - Delta-X back to boundary in Modified Method of Feasible
Directions.

ADS204 - Fletcher-Reeves unconstrained minimization.

ADS205 - Method of Feasible Directions.

ADS206 - X = Xold + ALPHA*S, subject to side constraints.

ADS207 - Maximum component (magnitude) of each column of A.

ADS209 - Calculate B = A-Transpose times A.

ADS211 - Update convergence parameters IDEL and IDAB.

ADS213 - Calculate initial ALPHA for one-dimensional search based on
objective value.

ADS214 - Calculate initial ALPHA for one-dimensional search based on X-
values.

ADS216 - Finite difference gradients of objective and constraints.
ADS217 - Solve direction-finding task for Methods of Feasible Directions.
ADS218 - Solve special LP sub-problem from ADS217.
ADS221 - Push-off factors for Methods of Feasible Directions.
ADS223 - Identify active side constraints.
ADS231 - Modified Methods of Feasible Directions.
ADS235 - Variable Metric Methods,IOPT=2, 3
ADS236 - Search direction for Variable Metric Methods

 50 - ADS (Version 2.01)

ADS237 - Penalty for equality constraints, IOPT=4, 5
ADS301 - Exterior Penalty Function Method, ISTRAT=1.
ADS302 - Calculates penalty for penalty function methods, ISTRAT=1-5.
ADS303 - Linear Extended Penalty Function Method, ISTRAT=2.
ADS304 - Quadratic Extended Penalty Function Method, ISTRAT=3.
ADS305 - Cubic Extended Penalty Function Method, ISTRAT=4.
ADS306 - Augmented Lagrange Multiplier Method, ISTRAT=5.
ADS307 - Update Lagrange Multipliers, ISTRAT=5.
ADS308 - Calculate penalty parameters, ISTRAT=5.
ADS310 - Sequential Quadratic Programming, ISTRAT=8.
ADS320 - Sequential Linear Programming, ISTRAT=6.
ADS321 - Control solution of LP sub-problem, ISTRAT=6.
ADS323 - Update move limits, ISTRAT=6, 7.
AD5325 - Sequential Convex Programming, ISTRAT=9.
AD5326 - Solve convex sub-problem, ISTRAT=9.
ADS330 - Method of Centers, ISTRAT=7.
ADS33l - Control solution of LP sub-problem, ISTRAT=7.
ADS333 - Calculate maximum constraint value.
ADS371 - Control solution of QP sub-problem, ISTRAT=8.
ADS375 - Temporary objective, ISTRAT=8.
ADS376 - Gradient of pseudo-objective for one-dimensional search,

ISTRAT=8.
ADS377 - Change in objective gradients, ISTRAT--8.
ADS378 - Update Hessian matrix, ISTRAT=8.
ADS401 - Print arrays.
AD5402 - Print array title and array. Calls ADS401.
ADS403 - Print scalar control parameters.
AD5404 - Print Hessian matrix.
AD5420 - Print final optimization results.
ADS501 - Evaluate scalar product of two vectors.
ADS502 - Find maximum component of vector.
AD5503 - Equate two vectors.
ADS 504 - Matrix-vector product.
ADS506 - Initialize symmetric matrix to the identity matrix.
AD5507 - Normalize vector by dividing by maximum component.
ADS508 - Calculate gradient of pseudo-objective for ISTRAT=l-5.

 Called by ADS008.
ADS509 - Identify active side constraints.
ADS510 - Scale, unscale the X-vector.

ADS (Version 2.01) - 51

Appendix F

In Case of Difficulty
The ADS program is relatively robust, and there should seldom be a case
where no progress is made during the optimization. Also, numerous internal
checks are made to avoid exponent overflows, divide by zero, and similar run
time errors.

Usually, when something seems wrong, it can be traced to the basic setup of
the optimization problem or (more often) simple programming errors. Thus,
while it is difficult to project all possible errors, some are common enough to
be able to offer the following short list of items to check.

1. Check all array dimension statements. Be sure the values of NRA,
NCOLA, NRWK and NRIWK are correct. ADS is written in single
precision and double precision should really not be needed at the
optimization level. If the analysis program is written in double precision,
be sure to transfer all variables and arrays to equivalent single dimension
values before calling ADS and transfer them back on return. This effects
very few parameters and arrays, but is sometimes overlooked, and is
very difficult to debug.

2. Check the parameter list for calling ADS. Be sure all parameters are
present and in the proper order. A common error is to create a program
with an editor that allows 80 column lines, while using a compiler that
ignores all characters after column 72.

3. Turn off the automatic scaling and try again. Use the override capability
and set IWK(2)=0. Sometimes the scaling actually makes the
conditioning of the problem worse, although in Version 2.00 it is greatly
improved from before. If the difficulties still exist, leave the scaling
turned off during further testing.

4. Set the print control, IPRINT to 3500 if ISTRAT is greater than zero or
3050 if ISRAT is equal zero. This will cause gradient information to be
printed d'~~i'.~g the optimization. If the gradient of the objective or
any constraint function has all zeroes, this parameter is not a function of
the design variables. While it is theoretically possible to have a zero
gradient, it is extremely rare on a digital computer. Check problem
formulation.

 52 - ADS (Version 2.01)

5. Check the order of magnitude of the components of the gradients. A well
conditioned problem will have roughly the same order of magnitude
values (within a factor of 100). If one term is several orders of
magnitude greater than the others it may help to scale this design
variable by dividing by a number of that order of magnitude. A common
error in problem formulation is to have a function, say Q that must be
less than QQ, where QQ is on the order of 10.000. In creating the
constraint (which is required to be less than or equal to zero) we may
write G(I) = Q - QQ. This will make the constraint very difficult to deal
with by ADS, because Q must equal about 9,999.95 before the cor.sttiant
is considered active. Therefore, it is important to scale the constraint as
G(I) Q/QQ - 1. Now a constraint value of -0.01 will identify the
constraint as being within one percent of being critical.

6. As a last resort, turn on the one-dimensional search print control (set the
last digit of IPRINT to 5). Plot the objective and constraint functions
versus the move parameter, ALPHA. If one or more are extremely
nonlinear, reformulation of the problem by dividing that function by a
large number is indicated. Another possibility here is that the finite
difference gradient parameters, FDCH and FDCHM are either too large
or too small. If the analysis is iterative, it often helps to try FDCH - 0.02
or larger and FDCHM = 0.01 or larger. This will mask the inaccuracies
in the analysis. On the other hand, if the analysis is calculated very
precisely as functions of the design variables, an order of magnitude
smaller than the default value is indicated.

7. If the last resort fails, call EDO. We will do our best to help.

ADS (Version 2.01) - 53

Appendix G

ADS Internal Parameter
Description

In this appendix a description of the ADS internal parameters is given.

The parameters are listed in alphabetical order. If it is unlikely that the
parameter should be changed from its default value, this is stated. Reference
32 describes most of the algorithms contained in ADS, and may be referred to
for a more detailed description of how a parameter is used in a given
algorithm.

Real Parameters Contained in WK

ALAMDZ - Used for ISTRAT = 5. Initial values for the Lagrange Multipliers
for the Augmented Lagrange Multiplier method. Applies to all
constraints. Usually the default values are adequate.

BETAMC - Used only with ISTRAT - 7. This provides an additional steepest
descent move in the method of centers beyond the move to the
center of the hypersphere. The basic method moves to the center
of the hypersphere bounded by the linear approximation to the
current objective function and constraints. In problems that are
not too highly nonlinear, this may be quite conservative. Using
BETAMC, it is possible to move an additional amount in a
steepest descent direction in order to speed convergence. If the
move is too far (it violates constraints) it will be automatically
educed, but at the expense of a function evaluation. The general
concept shown in Figure F.1, where the initial move is to the
center of the circle (a hypersphere in two-dimensional space is a
circle). The additional move is in the direction negative to the
gradient of the objective function. BETAMC = 1.0 will move to
the edge of the circle. A larger value is usually too optimistic,
while a value of 0.5 will often be about right.

 54 - ADS (Version 2.01)

Figure 6. BETAMC Concept

CT - Used with IOPT=4 or 5. Also used with ISTRAT = 1-9 to a
slightly lessor degree. Constraint tolerance for nonlinear
inequality constraints. This parameter defines when a constraint
is considered active, and is perhaps the most important
parameter for nonlinear constrained optimization.

One of the key issues in constrained optimization is determining
when a constraint is numerically “critical.” If a constraint, G(I) is
numerically greater than CT, it is considered critical for purposes
of finding a new search direction or deciding if the optimum has
been found. This is also why constraint should be normalized to
order of magnitude of unity. Thus if G(I) is numerically greater
than CT (say -0.03) then it is assumed to be within 3 percent of
being critical. Numerically, this is considered to be an “active”
constraint.

For highly nonlinear constraints, it is often helpful to make CT
more negative, say -0.10. By this method, the constraint is
“trapped” sooner and the optimization process will direct the
design away from this constraint. On the other hand, if the
constraint is nearly linear, it may help to make CT closer to zero,
say -0.01. Then, when interpolating for G(I)=0 a more precise
value of G(I) is obtained. In either case, the value of CT is
progressively reduced during optimization to a value of -
CTMIN, which is the value at which a constraint becomes
strongly critical. In fact. if G(I) exceeds CTMIN (a positive)
number the constraint is considered to be violated. See the
definition of CTMIN.

Extra Move
R

∇

δX

F

Xq

ADS (Version 2.01) - 55

For I0PT = 4 and 5, if a constraint repeatedly becomes active on
one iteration and inactive on the next, CT should be increased in
magnitude (try CT = -0.1 or -0.15), or the offending constraint
should be divided by a factor of ten to reduce its sensitivity.

Note that in ADS, equality constraints are converted to
equivalent inequality constraints. Therefore, the definitions of
CT, CTMIN, CTL and CTLMIN apply equality constraints as
well.

CTMIN - Used with IOPT=4 or 5. Also used with ISTRAT = 1-9 to a
slightly lesser degree. Constraint tolerance defining when
nonlinear inequality constraints are violated. CTMIN is a
positive number. A constraint is considered inactive if its value is
more negative than CT and active if its value is between CT and
CTMIN. If the constraint value is more positive than CTMIN, it
is considered violated. This is perhaps the second most important
parameter for non1inear constrained optimization.

Since, mathematically, an inequality is violated any time it’s
value is greater than zero, there may be a temptation to set
CTMIN = 0. However, this should not be done because the
optimization algorithms interpolate on zero and some numerical
bandwidth should be provided to allow for numerical accuracies.
The default value allows for about a half of a percent constraint
violation for normalized constraints.

The geometric relationship between a constraint, G. and the
parameters CT and CTMIN is shown in Figure F.2.

Figure 7. Relationship Between Constraint G and the Parameters CT and CTMIN

C T

C T M IN

G j (X) = 0

 56 - ADS (Version 2.01)

CTL,CTLMIN - These parameters have the same definition as CT and
CTMIN, but for strictly linear constraints. Because numerical
interpolation is more precise for linear constraints, these
values are smaller in magnitude than CT and CTMIN. CTL is
reduced during the optimization process to a magnitude
approaching CTLMIN, but opposite in sign.

Caution: Do not define a constraint as linear unless you are
absolutely sure it is. If a linear constraint is treated as
nonlinear, efficiency is only slightly reduced, but if a nonlinear
constraint is treated as linear, the result may be non-
convergence.

DABALP - Used in IONED = 1 and 5. Convergence criteria in the Golden
Section Method for the one-dimensional search. If IONED = 2
or 6, a larger value is used (by a factor of 100), since the Golden
Section search will be followed by a cubic polynomial
interpolation using the final four points.

If it is desired to find a very precise solution to the one-
dimensional search, DABALP can be reduced. Alternatively, a
larger value will give a less precise answer. It is normally not
desired to change DABALP. The default value gives high
precision on the assumption that function values are cheap, or
else the Golden.Section method would not be used.

DABOBJ - Used in all IOPT options. Absolute convergence criteria for
optimization. If the objective function is changed by less than
this value for ITRMOP iterations, the optimization will
terminate. If the objective function changes by more than one
order of magnitude during optimization, the default value for
DABOBJ will probably cause premature convergence. In this
case, it is usually desirable to set DABOBJ to a small number,
say 0.001, and let the optimization process converge based on
the relative change criteria defined by DELOBJ.

DABOBM - Used with all strategies. This is the value of DABOBJ used
during the optimization sub-problem and is larger than
DABOBJ. The reason for this relaxed convergence criteria is
that the optimizer will be called repeatedly by the strategy.
Therefore, the solution of the sub-problem during the early
stages is not as critical as if a strategy is not used. The rules for
changing DABOBJ apply here also.

DABSTR - Used with all strategies. This is the overall absolute convergence
criteria. If the objective function is changed by less than this
value for ITRMST iterations by the strategy, the optimization
will terminate. This has the same general meaning as DABOBJ
and the same rules apply.

ADS (Version 2.01) - 57

DELALF, DELOBJ, DELOBM, DELSTR - These parameters are used where
their counterparts DABxxx are used above. However, here the
convergence is tested on the relative change in the objective
function. The combination DABxxx and DELxxx work together
to form the diminishing returns convergence criteria in ADS.
Here by relative change we mean the fractional change in the
value of the objective function between successive iterations.

If the objective function is quite small in magnitude, a relative
change, of say one percent, may not be meaningful and so the
absolute criteria are relied on to detect convergence. On the
other hand, for large values of the objective function, the
absolute change is considered of lesser importance and the
relative criteria tend to control the optimization convergence.

DLOBJl - Used in all one-dimensional searches. On the first search, it is
difficult to estimate a desirable move parameter, ALPHA,
because the optimization process has no history. DLOBJ1 is
used to estimate the ALPHA which will reduce the objective
function by this fraction, based on a linear approximation to the
problem. Thus, for DLOBJ1= 0.1, the first step in the one-
dimensional search will attempt to reduce the objective by ten
percent.

If the problem is highly nonlinear, so that the calculated ALPHA
is consistently less than the proposed ALPHA, efficiency will be
improved by reducing DLOBJ1. Alternatively, if the calculated
ALPHA is consistently greater than the proposed ALPHA, it is
desirable to increase DLOBJ1.

DLOBJ2 - Used in all one-dimensional searches. If the objective function is
quite large in magnitude, a move to reduce the objective by the
fraction DLOBJ1 may be too large. In this case, DLOBJ2 is used
to limit the change in the objective function to the magnitude of
DLOBJ2. In other words, DLOBJ1 is a fractional change and
DLOBJ2 is an absolute change. As with DLOBJ1, if the
proposed moves are too large, DLOBJ2 may be reduced and if
they are too small, DLOBJ2 may be increased.

Both DLOBJl and DLOBJ2 are updated during the optimization
process by keeping track of progress. Therefore, their initial
values are usually not too critical except for highly nonlinear
problems where no progress can be made due to very large
estimates for ALPHA.

 58 - ADS (Version 2.01)

DX1, DX2 - Used in all one-dimensional searches. These parameters have an
equivalent meaning to DLOBJl and DLOBJ2, but here are
applied to each component of the X vector. The same general
rules apply. The purpose of DX1 and DX2 is to prevent very
large initial changes in the components of the X vector. DX1 and
DX2 are also updated during the optimization process.

EPSEN- Used in ISTRAT=2, 3 and 4. Initial transition point from interior
to exterior penalty function. EPSPEN is a small negative
number, and is updated during optimization. If significant
constraint violations are observed in the initial stages, this
should be made more negative. The basic concept is that, if the
design is feasible, a penalty is imposed for each constraint
proportional to one over the constraint value as the design
approaches the feasible boundary (G approaches zero from the
negative side). When a G = EPSPEN, the form of the constraint
penalty changes to a linear (ISTRAT = 2), quadratic (ISTRAT =
3) or cubic (ISTRAT=4) function of the constraint.

EXTRAP - Used in IONED=4 and 8. The maximum polynomial
extrapolation allowed. These one-dimensional search routines
do not require that bounds first be found on the minimum of the
function, but instead extrapolate for the solution. Because
extrapolation is relatively unreliable, EXTRAP is used to limit
the amount of extrapolation. If the objective and constraints are
nearly linear or quadratic, extrapolation is usually reliable, and
may even be increased. If the objective and/or constraints are
highly nonlinear, this is ill-conditioned and EXTRAP should be
reduced. If this occurs, it is recommended to use IONED=3 or 7
instead.

FDCH - Used if IGRAD=0 for internal gradient calculations by ADS.
Gradients are calculated by first forward finite difference unless
a variable is at its upper bound. In this case, a first backwards
finite difference step is taken and no check is made to insure that
the resulting design variable is above its lower bound. FDCH is
the finite difference step size as a fraction of the design variable
being perturbed. If high precision is available and required in
evaluating the objective and constraint functions, this should be
reduced. If the analysis is iterative, with its own internal
convergence parameters, FDCH may have to be increased. For
iterative analysis, a value of FDCH up to 0.05 may be
appropriate for constrained problems, but FDCH=0.02 is a more
reasonable limit for unconstrained problems.

The reason for this is that ADS seeks the point where the
gradient is zero for unconstrained problems, and if FDCH is
large, this is numerically difficult and will lead to false gradient
information.

ADS (Version 2.01) - 59

On the other hand, for constrained problems, the gradients of the
objective and critical constraints are usually non-zero at the
upturning and so precision in their calculation is not as
important.

FDCHM- Used if IGRAD=0 for internal gradient calculations by ADS.
This is the minimum absolute steplength for gradient
calculations. This is used if the component of X is near zero
since a fractional change may not be meaningful. The same
general rules apply as with FDCH.

GMULTZ - Used with ISTRAT=8. Initial penalty parameter. If the design
stays well inside the feasible region, this can be reduced. If the
design moves well outside the feasible region, this should be
increased.

PMLT - Penalty multiplier for equality constraints. ADS treats equality
constraints by adding a linear multiplier times the constraint
values to the objective and then treating the constraint as an
inequality. If the equality constraints are not sufficiently close to
zero at the optimum, increase PMLT. If convergence is very slow
because the optimization is trying to follow this constraint too
closely, decrease PMLT.

PSIAZ - Used with ISTRAT=8. Used to avoid constraint violations. This
has little effect because of algorithmic modifications made to
ADS and the fact that the ADS optimizers can deal well with
constraint violations.

RMULT - Used with ISTRAT=1 and ISTRAT=2 - 5 for equality
constraints. Penalty factor multiplier for the exterior penalty
function method. If the strategy iterations progress slowly from
far outside the feasible region, RMULT should be increased. If
the design seems to become near feasible quickly, but then
converge poorly, RMULT should be decreased. RMULT should
never be less than about 1.1.

RMVLMZ - Used with strategies 6 through 9. Initial relative move limits. If
the design variables alternately go from + to - the move limits,
this should be reduced. If the design variables repeatedly hit one
side (upper or lower limit), this should be increased. Also
increase RMVLMZ if the problem is known to be nearly linear
or if the optimum is always fully constrained (has as many active
constraints as there are design variables).

 60 - ADS (Version 2.01)

RP - Used with ISTRAT=1 and 5 and for ISTRAT=2, 3 and 4 for
equality constraints. Initial penalty parameter for the exterior
penalty function method and the Augmented Lagrange
Multiplier Method and for equality constraints for exterior and
extended interior penalty function methods. If the optimum of
the first unconstrained sub-problem is well outside the feasible
region, increase RP. If the optimum of the first unconstrained
sub-problem is feasible or very near feasible for ISTRAT=1,
reduce RF.

RPMAX - Used with ISTRAT=1 and 5 and for ISTRAT=2, 3 and 4 for
equality constraints. Maximum value of RP to be used. If
optimum is significantly outside the feasible region, increase
RPMAX. If constraints are satisfied much more precisely at the
optimum than required, reduce RPMAX.

RPMULT- Used with ISTRAT=2, 3 and 4. Multiplier on RPPRIM for
consecutive iterations. Increase if convergence is very slow but
reliable. Decrease if convergence is far from (expected)
optimum.

RPPMIN- Used with ISTRAT=2, 3 and 4. Minimum value of RPPRIM to
be used. If optimum is well inside the feasible region, reduce. If
constraints are more precisely satisfied than required, increase.

RPPRIM - Used with ISTRAT=2, 3 and 4. Initial penalty parameter for
extended penalty function methods. If the result of the first
unconstrained sub-problem is well inside the feasible region,
reduce. If the result is right at the constraint boundaries,
increase. RPPRIM is reduced on each iteration by a factor
RPMULT.

STOL - Used by all optimizers. Tolerance on the components of the
search direction to indicate convergence by the Kuhn-Tucker
conditions. The Kuhn-Tucker conditions are the mathematical
conditions that are satisfied at a precise optimum. These cannot
generally be used as the only convergence criteria since this is
numerically difficult to achieve. However, when the Kuhn-
Tucker conditions are met, it is used as a convergence criterion
which supersedes all others. Reducing STOL imposes a more
stringent convergence criterion.

THETAZ - Used with IOPT=4 and 5. Normally should not be changed if
IOPT=5. THETAZ is the nominal “push-off” factor for the
method of feasible directions. If the constraints are highly
nonlinear, increase THETAZ. If castrates are nearly linear,
reduce THETAZ. There is an interaction between the constraint
tolerance CT and THETAZ. If constraints are highly nonlinear, it
is usually preferable to increase the magnitude of CT (make CT
more negative).

ADS (Version 2.01) - 61

ZRO - Numerical “zero” to indicate reasonable machine accuracy.
Primarily used internally by ADS to prevent floating point
divide or to indicate that the numerical zero of a function has
been found. Normally should not be changed.

Integer Parameters Contained on IWK

ICNDIR - Used by all optimizers. Conjugate direction or variable metric
restart parameter to restart with a steepest descent direction if the
objective is currently unconstrained (no constrains are active or
violated). The default is usually adequate. If no progress is being
made, ADS will automatically override ICNDIR and restart with
a steepest descent direction.

It is a worthwhile exercise to solve an unconstrained problem
with ICNDIR=1. This will use a steepest descent direction on
every iteration. This is the classical steepest descent method and
a comparison of this with the other unconstrained minimization
methods in ADS will indicate the power of modern methods.

ISCAL - Turns automatic scaling on/off. If the problem has been carefully
scaled, set ISCAL=0. Also, In general, if the optimization
progress is slow, it is worthwhile to try ISCAL=0 to see if the
automatic scaling in ADS is actually causing some ill-
conditioning. The present scaling routine in ADS is much
improved from the original one and so should not cause
difficulty.

ITMAX - Maximum number of iterations in the optimizer. If function
evaluations are extremely expensive, reduce ITMAX. In the
extreme case ITMAX=1 or 2 is justified because the first few
iterations are where most progress is made. If function
evaluations are not expensive and the optimization terminates by
reaching ITMAX, it should be increased. When using a strategy,
ITMAX should be at least 10 to insure reasonable solution of the
sub-problem. When using ISTRAT=6, 7 or 9, ITMAX should
not be reduced because the optimizer is only solving a simple
and inexpensive approximate sub-problem. In these cases, the
optimizer does not call for detailed function evaluations.

 62 - ADS (Version 2.01)

ITRMOP - Used by all optimizers. The number of consecutive iterations
that must satisfy the absolute or relative convergence criteria
before optimization is terminated. Usually ITRMOP should be at
least 2 because it is common to make little progress on one
iteration, only to make major progress on the next. Therefore,
ITRMOP=.2 will allow a second try before terminating.ITR~ST
- Used by all strategies. The number of consecutive sub-
optimizations that must satisfy the absolute or relative strategy
convergence criteria before optimization is terminated. The
same rules apply as to ITRMOP, except ITRMST = 1 may be
used. This is because, the sub-problem cannot make progress,
and therefore solving an additional sub-optimization problem
will probably not help.

ITRMST - Used by all strategies. The number of consecutive sub-
optimizations that must satisfy the absolute or relative strategy
convergence criteria before optimization is terminated. The
same rules apply as to ITRMOP, except ITRMST=1 may be
used. This is because, the sub-problem cannot make progress,
and therefore solving an additional sub-optimization problem
will probably not help.

JONED - Used with ISTRAT= 8. This strategy performs an additional one-
dimensional search. Normally the one-dimensional search
defined by IONED is used. If a different one is desired, it is
defined by JONED. Sometimes efficiency or reliability can be
improved by using IONED=5 or 6 and JONED=7. This is
because the optimization sub-problem does not call for detailed
function evaluations and so can use a less efficient, but more
precise one-dimensional search.

JTMAX - Maximum number of strategy iterations to be allowed. Reduce if
optimization is very expensive. Increase if optimization is
stopped by reaching the maximum number of strategy iterations
and function evaluations are cheap.

