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Section 1   

Introduction
ADS is a general purpose numerical optimization program containing a wide 
variety of algorithms. The problem solved is:

Minimize F(X)

Subject to:

Gj (X) .LE. 0 j=1, m

Hk (X) .EQ. 0 k=1, L

XLi .LE. Xi .LE. XUi i=1, n

The solution of this general problem is separated into three basic levels:

1. Strategy - For example, Sequential Unconstrained Minimization or 
Sequential Linear Programming. The purpose of a strategy is to convert 
the original constrained problem into a sequence of approximate problems 
using various techniques. A strategy is not used for unconstrained 
problems. In that case, the parameter, ISTRAT, is set to zero.

2. Optimizer - For example, Variable Metric methods for unconstrained 
minimization or the Method of Feasible Directions for constrained 
minimization. The optimizer performs the actual function minimization of 
either the original problem (if ISTRAT=O) or the approximate problem (if 
ISTRAT is greater than zero).

3. One-Dimensional Search - For example, Golden Section or Polynomial 
Interpolation. The one-dimensional search is called by the optimizer and, 
in some cases, the strategy. By choosing the Strategy, Optimizer and One 
Dimensional Search, the user is given considerable flexibility in creating 
an optimization program which works well for a given class of design 
problems.

Additionally, we may consider another component to be problem formulation. 
It is assumed that the engineer makes every effort to formulate the problem in 
a format amenable to efficient solution by numerical optimization. This aspect 
is perhaps the most important ingredient to the efficient use of the ADS 
program for solution of problems of practical significance.
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This manual describes the use of the ADS program and the available program 
options. Section 1.1 describes the enhancements and modifications to the ADS 
program subsequent to Version 1.00 (ref. 1). Section 2 identifies the available 
optimization strategies, optimizers and one-dimensional search algorithms. 
Section 3 defines the program organization, and Section 4 gives user 
instructions. Section 5 presents several simple examples to aid the user in 
becoming familiar with the ADS program. Section 6 gives a simple main 
program that is useful for general design applications.

1.1  Program Enhancements and Modifications Since 
Version 1.00

Since the release of Version 1.00 in May of 1984, numerous modifications and 
enhancements have been made to the program. Many of these are minor and 
are transparent to the casual user. These include various formatting changes, 
internal logic enhancements to improve program flow, and a few actual bugs 
in the FORTRAN. Because of the robustness of the basic program, where bugs 
exist, their correction often is detected only in special test cases. Examples of 
this are correction of an error in using the absolute convergence criteria and 
correction of polynomial one-dimensional search when a constraint is being 
followed. Other enhancements include checking to insure the initial design 
does not violate any side constraints, and checking to be sure the combinations 
of strategy, optimizer and one-dimensional search are valid.

Enhancements to the program, beyond the original capability, include addition 
of equality constraint capability throughout the program and addition of a new 
strategy.

Equality constraints are now available in all options of the program, whereas 
in Version 1.00 they were only available when using penalty function 
strategies. Specifically, equality constraints have been added to optimizers 4 
and 5. Here, two approaches were investigated. The first was to formally treat 
them in a mathematical sense. This requires considerable program logic and 
usually insures rather precise following of the constraints, but at some 
efficiency cost. The second approach, and that used here, was to treat equality 
constraints via a linear penalty function and an equivalent inequality 
constraint. The basic concept is to first change the sign on the constraint, if 
necessary, so that the scalar product of the gradient of the constraint with the 
gradient of the objective function is negative. The constraint is then converted 
to a non-positive inequality constraint and a linear penalty is added to the 
objective. The penalty, together with the conversion to an Inequality constraint 
have the effect of driving the original equality constraint to zero at the 
optimum, but without demanding precise accuracy, with its corresponding 
inefficiency. This is in keeping with the general philosophy of ADS of finding 
a near optimum design quickly.
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A new strategy (ISTRAT=9), called Sequential Convex Programming, 
developed by Fleury and Briabant (ref. 2), has been added to ADS. The basic 
concept of this strategy is that a linear approximation to the objective and 
constraint functions is first created, just as in sequential linear programming. 
However, during the approximate optimization sub-problem, either direct or 
reciprocal variables are used, depending on the sign of the corresponding 
components of the gradients. This creates a conservative convex 
approximation to the optimization problem in comparison to a simple 
linearization. In reference 2, the method was applied to structural optimization 
problems in which all design variables were positive.

It was shown that move limits were not required during the sub-problem and 
that the method converged quickly to the optimum. When incorporating the 
algorithm into ADS, move limits were included, but they are less stringent 
than for sequential linear programming. This is based on the experience that 
the design space can become ill-conditioned in some general applications. 
Also, reciprocal variables are only used if the design variable is positive.

In earlier versions of ADS, when scaling was performed, the scaled constraints 
were printed. In this version, the constraints are unscaled prior to printing. In 
the one-dimensional search, the variables and function values are now 
unschooled prior to printing. Also, in all printing, a number, followed by a 
decimal are now used instead of the earlier Exx.xx format, to improve 
readability.

Perhaps the most significant program modification is in the scaling algorithm 
itself. The original scaling algorithm appeared quite sophisticated and, when it 
worked, it seemed very good. However, in those cases where it produced poor 
scaling, the results were often disastrous. Unfortunately, it was not possible to 
predict when it would or would not work. A particularly disturbing feature 
was that, sometimes the scaled constraints were satisfied within a small 
tolerance during optimization, but at the end when the unscaled values were 
printed, they were greatly violated. This provided the important information 
that the user had probably not carefully scaled the constraints to begin with. 
However, this is not obvious to most users and so it often led to practical 
difficulties when using ADS.

A completely new scaling algorithm has been used in Version 2.00 which is in 
many ways similar to the time honored normalization method used in the old 
CONMIN program. However, in addition to normalizing the design variables, 
the objective and constraints are also scaled. If the problem is naturally well 
scaled, the scale factor will be unity, but if the function and gradient 
information suggests a better scaling, this will be attempted. On test problems, 
this has been found to be a significant improvement over the previous scaling 
routine.
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Section 2   

Program Options
In this section, the options available in the ADS program are identified. At 
each of the three solution levels, several options are available to the user.

2.1  Strategy

Table 1 lists the strategies available. The parameter ISTRAT will be sent to the 
ADS program to identify the strategy the user wants. The ISTRAT=0 option 
would indicate that control should transfer directly to the optimizer. This 
would be the case, for example, when using the Method of Feasible Directions 
to solve constrained optimization problems because the optimizer works 
directly with the constrained problem. On the other hand, if the constrained 
optimization problem is to be solved by creating a sequence of unconstrained 
minimizations, with penalty functions to deal with constraints, one of the 
appropriate strategies would be used. 

ISTRAT Strategy to be Used

0 None - Go directly to the optimizer.

1 Sequential unconstrained minimization using the exterior 
penalty function method (refs. 3, 4).

2 Sequential unconstrained minimization using the linear extended 
interior penalty function method (refs. 5-7).

3 Sequential unconstrained minimization using the quadratic 
extended interior penalty function method (refs 8, 9).

4 Sequential unconstrained minimization using the cubic interior 
penalty function method (ref 10).

5 Augmented Language Multiplier method (refs. 11-15).

6 Sequential Linear Programming (refs. 16, 17).

7 Method of Centers (method of inscribed hyperspheres), 
(ref. 18). 

8 Sequential Quadratic Programming (refs. 13, 19, 20).

9 Sequential Convex Programming (ref. 2).

Table 1.  Strategy to be Used
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2.2  Optimizer

Table 2 lists the optimizers available. IOPT is the parameter used to indicate 
the optimizer desired.

In choosing the optimizer (as well as strategy and one-dimensional search) it is 
assumed that the user is knowledgeable enough to choose an algorithm 
consistent with the problem at hand. For example, a variable metric optimizer 
would not be used to solve constrained problems unless a strategy is used to 
create the equivalent unconstrained minimization task via some form of 
penalty function.

IOPT Optimizer Options

0 None - Go directly to the one-dimensional search. This option 
should be used only for program development.

1 Fletcher-Reeves algorithm for unconstrained minimization (ref. 
21).

2 Davidon-Fletcher-Powell (DFP) variable metric method for 
unconstructed minimization (refs. 22, 23).

3 Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric 
method for unconstructed minimization (refs. 24-27).

4 Method of Feasible Directions (MFD) for constrained 
minimization (refs. 28, 29).

5 Modified Method of Feasible Directions for constrained 
minimization (ref. 30).

Table 2. Optimizer Options
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2.3  One Dimensional Search

Table 3 lists the one-dimensional search options available for unconstrained 
and constrained problems. Here IONED identifies the algorithm to be used.

2.4  Allowable Combinations of Algorithms

Not all combinations of strategy, optimizer and one-dimensional search are 
meaningful. For example, constrained one-dimensional search is not 
meaningful when minimizing unconstrained functions.

Table 4 identifies the combinations of algorithms which are available in the 
ADS program. In this table, an X is used to denote an acceptable combination 
of strategy, optimizer and one-dimensional search. An example is shown by 
the heavy line on the table which indicates that constrained optimization is to 
be performed by the Augmented Lagrange Multiplier Method (ISTRAT=5), 
using the BFGS optimizer (IOPT=3) and polynomial interpolation with 
bounds for the one-dimensional search (IONED=3). From the table, it is clear 
that a large number of possible combinations of algorithms are available.

IONED One-Dimensional Search Options (refs. 3, 31, 32)

1 Find the minimum of an unconstrained function using the 
Golden Section Method.

2 Find the minimum of an unconstrained function using the 
Golden Section Method followed by polynomial interpolation.

3 Find the minimum of an unconstrained function by first finding 
bounds and then using polynomial interpolation.

4 Find the minimum of an unconstrained function by polynomial 
interpolation/extrapolation without first finding bounds on the 
solution.

5 Find the minimum of an constrained function using the Golden 
Section method.

6 Find the minimum of an constrained function using the Golden 
Section Method followed by polynomial interpolation.

7 Find the minimum of an constrained function by first finding 
bounds and then using polynomial interpolation.

8 Find the minimum of an constrained function by polynomial 
interpolation/extrapolation without first finding bounds on the 
solution.

Table 3. One-Dimensional Search Options
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.

Appendix A contains an annotated version of Table 4 for convenient reference 
once the user is familiar with ADS.

To conserve computer storage, it may be desirable to use only those 
subroutines in the ADS system needed for a given combination of ISTRAT, 
IOPT and IONED. Appendix C provides the information necessary for this. 
Appendix D lists the ADS subroutines with a very brief description of each.

Optimizer

Strategy 1 2 3 4 5

0 X X X X X

1 X X X 0 0

2 X X X 0 0

3 X X X 0 0

4 X X X 0 0

5 X X X X X

6 0 0 0 X X

7 0 0 0 X X

8 0 0 0 X X

9 0 0 0 X X

One-Dimensional Search

1 X X X 0 0

2 X X X 0 0

3 X X X 0 0

4 X X X 0 0

5 0 0 0 X X

6 0 0 0 X X

7 0 0 0 X X

8 0 0 0 X X

Table 4.  Combinations of Algorithms Allowed
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In writing a program to call ADS, the user should be aware that subroutine 
names should not be duplicated. This is seldom a problem with ADS because 
each routine begins with the letters ADS, followed by a three digit number. 
The exception is the ADS routine itself, which has no trailing numbers. Thus, 
the user need only be sure not to use subroutines with this numbering 
sequence.
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Section 3   

Program Flow Logic
ADS is called by a user-supplied calling program. ADS does not call any user-
supplied subroutines. Instead, ADS returns control to the calling program 
when function or gradient information is needed. The required information is 
evaluated and ADS is called again. This provides considerable flexibility in 
program organization and restart capabilities.

The algorithms in ADS are called gradient based methods. That is they require 
the calculation of the gradients of the objective and constraint functions. In 
most applications, the user does not choose to calculate gradient information 
(often it is not possible because of the implicit nature of the problem). 
Therefore, the default case is that ADS will calculate all needed gradient 
information using a first forward finite difference scheme. The exception to 
this is that, if a variable is at its upper bound, a first backwards finite 
difference step is taken. This is because the bounds on the design variables are 
considered to be absolute and ADS will not consider a design outside the 
specified bounds, even during gradient computations. The exception to this is 
that, if the bounds are nearly equal, the resulting finite difference step may 
violate the lower bound.

Also, ADS has numerous internal parameters that control the optimization 
process. These all have default values that are used unless the user specifically 
changes them.

Thus, ADS can be used in four principal modes:

1. Default control parameters and finite difference gradients.

2. Override default parameters, use finite difference gradients.

3. Default control parameters and user-supplied gradients.

4. Override default parameters and user-supplied gradients.

The first mode is the simplest “black box” approach. In the second mode, the 
user overrides the default parameters to “fine tune” the program for efficiency. 
In modes 3 and 4, the user supplies all needed gradient information to the 
program.
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Figure 1 is the program flow diagram for the simplest use of ADS. The user 
begins by defining the basic control parameters and arrays (to be described in 
Section 4). The gradient computation parameter, IGRAD, is set to zero to 
indicate that finite difference gradients will be used. The information 
parameter, INFO, is initialized to zero and ADS is called for optimization. 
Whenever the values of the objective, OBJ, and constraints, G(I), I=l, NCON, 
are required, control is returned to the user with INFO=l. The functions are 
then evaluated and ADS is called again. When INFO=0 is returned to the user, 
the optimization is complete.

Figure 1. Program Usage; All Default Parameters and Finite Difference Gradients

YESNO

Begin

Dimension Arrays

Define Basic Variables

IGRAD=0

INFO=0

Call ADS (INFO . . . )

INFO=0

Evaluate Objective
and Constraints

Exit
Optimization is

Complete or an Error
Was Detected
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Figure 2 is the program flow diagram for cases where the user wishes to 
override one or more internal parameters, such as convergence criteria or 
maximum number of iterations. After, initialization of basic parameters and 
arrays, the information parameter, INFO, is set to -2. ADS is called to initialize 
all internal parameters to their default values and allocate storage space for 
internal arrays. Control is returned to the user, at which point these parameters, 
for example convergence criteria, can be overridden. At this point, the 
information parameter, INFO, will have a value of -1 and must not be 
changed. ADS is called again and the optimization proceeds. Section 4.3 
provides a list of internal parameters which may be modified, along with their 
locations in the work arrays WK and IWK. A more detailed explanation of 
these parameters is given in Appendix F. 

Figure 2.  Program Flow Logic; Override Default Parameters, Finite Difference Gradients

Begin

Dimension Arrays

Define Basic Arrays

IGRAD=0

INFO=-2

Call ADS (INFO. . . )

If INFO=0, Exit. Error was Detected

Else Override Default Parameters in
Arrays WK and IWK if Desired

Call ADS (INFO. . . )

Evaluate Objective
and Constraints

Exit Optimization
is Complete

NO YESINFO=0
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Figure 3 is the flow diagram for the case where the user wishes to provide 
gradient information to ADS, rather than having ADS calculate this 
information using finite difference methods. In Figure 3, it is also assumed 
that the user will override some internal parameters, so the difference between 
Figures 2 and 3 is that IGRAD is now set to 1 and the user will now provide 
gradients during optimization. If the user does not wish to override any default 
parameters, INFO is initialized to zero and the first call to ADS is omitted (as 
in Figure 1). Now, when control is returned to the user, the information 
parameter will have a value of 1 or 2 (if INFO = 1, the optimization is 
complete, as before). If INFO = 1, the objective and constraint functions are 
evaluated and ADS is called again, just as in Figure 2. If INFO = 2, the 
gradient, DF, of the objective function is evaluated as well as the gradients of 
NGT constraints defined by vector IC.
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Figure 3.  Program Flow Logic; Override Default Parameters and Provide Gradients 
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Section 4   

Program Options
In this section the use of the ADS program is outlined. The FORTRAN Call 
statement given to ADS is given first, and then the parameters in the calling 
statement are defined. Section 4.3 identifies parameters that the user may wish 
to override to more effective use of ADS. Arrays are designated by bolding 
print.

4.1  Calling Statement

ADS is invoked by the following FORTRAN calling statement in the user's 
program:

CALL ADS (INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV, NCDN, 
X, VLB, VUB, OBJ, G, IDG, NGT, IC, DF, A, NRA, NCOLA, WK, NRWK, 
IWK, NRIWK)

4.2  Definitions of Parameters in the ADS Calling 
Statement

Table 5 lists the parameters in the calling statement to ADS. Where arrays are 
defined, the required dimension size is given as the array argument.

Parameter Definition

INFO Information parameter. On the first call to ADS, INFO=0 or -
2. INFO=0 is used if the user does not wish to over-ride 
internal parameters and INFO = -2 is used if internal 
parameters are to be changed. When control returns from ADS 
to the calling program, INFO will have a value of 0, 1, or 2. If 
INFO=0, the optimization is complete. If INFO = 1, the user 
must evaluate the objective, OBJ, and constraint functions, 
G(I), I = 1, NCON, and call ADS again. If INFO = 2, the user 
must evaluate the gradient of the objective and the NGT 
constraints identified by the vector IC, and call ADS again. If 
the gradient calculation control, IGRAD = 0, INFO = 2 will 
never be returned from ADS, and all gradient information is 
calculated by finite difference within ADS.

Table 5. Parameters in the ADS Argument List  (Page 1 of 4)
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ISTRAT Optimization strategy to be used. Available options are 
identified in Tables 1 and 4.

IOPT Optimizer to be used. Available options are identified in 
Tables 2 and 4.

IONED One-dimensional search algorithm to be used. Available 
options are identified in Tables 3 and 4.

IPRINT A four-digit print control. IPRINT = IJKL where I, J, K and L 
have the following definitions:
I ADS system print control.
0 - No print.
1 - Print initial and final information.
2 - Same as 1 plus parameter values and storage needs.
3 - Same as 2 plus scaling information calculated by ADS.
J Strategy print control.
0 - No print.
1 - Print initial and final optimization information.
2 - Same as 1 plus OBJ and X at each iteration.
3 - Same as 2 plus G at each iteration.
4 - Same as 3 plus intermediate information.
5 - Same as 4 plus gradients of constraints. 
K Optimizer print control.
0 - No print.
1 - Print initial and final optimization information.
2 - Same as 1 plus OBJ and X at each iteration.
3 - Same as 2 plus constraints at each iteration.
4 - Same as 3 plus intermediate optimization and one 
dimensional search information.
5 - Same as 4 plus gradients of constraints.
L One-Dimensional search print control (debug only).
0 - No print.
1 - One-dimensional search debug information.
2 - More of the same.

Example: IPRINT=3120 corresponds to 1=3, J=1, K=2 and 
L=0.
NOTE: IPRINT can be changed at any time control is returned 
to the user.

IGRAD Gradient calculation control. If IGRAD = 0 is input to ADS, 
all gradient computations are done within ADS by first 
forward finite difference. If IGRAD = 1, the user will supply 
gradient information as indicated by the value of INFO.

Parameter Definition

Table 5. Parameters in the ADS Argument List  (Page 2 of 4)
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NDV Number of design variables contained in vector X. NDV is the 
same as in the mathematical problem statement.

NCON Number of constraint values contained in array G. NCON is 
the same m + L in the mathematical problem statement given 
in Section 1.0. NCON = 0 is allowed.

X(NDV+l) Vector containing the design variables. On the first call to 
ADS, this is the user's initial estimate to the design. On return 
from ADS, this is the design for which function or gradient 
values are required. On the final return from ADS (INFO=0 is 
returned), the vector X contains the optimum design.

VLB(NBV+1) Array containing lower bounds on the design variables, X. If 
no lower bounds are imposed on one or more of the design 
variables, the corresponding component(s) of VLB must be 
set to a large negative number say -1.0E+15.

VUB(NDV+1) Array containing upper bounds on the design variables, X. If 
no upper bounds are imposed on one or more of the design 
variables, the corresponding component(s) of VUB must be 
set to a large positive number, say 1.0E+15.

OBJ Value of the objective function corresponding to the current 
values of the design variables contained in X. On the first call 
to ADS, OBJ need not be defined. ADS will return a value of 
INFO=1 to indicate that the user must evaluate OBJ and call 
ADS again. Subsequently, any time a value of INFO=l is 
returned from ADS, the objective, OBJ, must be evaluated for 
the current design and ADS must be called again. OBJ has the 
same meaning as F(X) in the mathematical problem statement 
given in Section 1.0.

G(NCON) Array containing NCON constraint values corresponding to 
the current design contained in X. On the first call to ADS, the 
constraint values need not be defined. On return from ADS, if 
INFO=1, the constraints must be evaluated for the current X 
and ADS called again. If NCON=0, array G should be 
dimensioned to unity, but no constraint values need to be 
provided.

IDG(NC0N) Array containing identifiers indicating the type of the 
constraints contained in array G.
IDG(I) = -2 for linear equality constraint.
IDG(I) = -l for nonlinear equality constraint.
IDG(I) = 0 or 1 for nonlinear inequality constraint.
IDG(I) = 2 for linear inequality constraint.

Parameter Definition

Table 5. Parameters in the ADS Argument List  (Page 3 of 4)
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NGT Number of constraints for which gradients must be supplied. 
NGT is defined by ADS as the minimum of NCOLA and 
NCON and is returned to the user.

IC(NGT)  Array identifying constraints for which gradients are 
required. IC is defined by ADS and returned to the user. If 
INFO=2 is returned to the user, the gradient of the objective 
and the NGT constraints must be evaluated and stored in 
arrays DF and A, respectively, and ADS must be called again.

DF(NDV + 1) Array containing the gradient of the objective corresponding 
to the current X. Array DF must be defined by the user when 
INFO= 2 is returned from ADS. This will not occur if 
IGRAD=0, in which case array DF is evaluated by ADS.

A(NRA,
NCOLA)

Array containing the gradients of the NGT constraints 
identified by array IC. That is, column J of array A contains 
the gradient of constraint number K, where K = IC(J). Array 
A must be defined by the user when INFO=2 is returned from 
ADS and when NGT.GT.0. This will not occur if occur if 
IGRAD = 0, in which case, array A is evaluated by ADS. 
NRA is the dimensioned rows of array A. NCOLA is the 
dimensioned columns of array A.

NRA Dimensioned rows of array A. NRA must be at least NDV + 1

NCOLA NCOLA is the dimensioned columns of array A. NCOLA 
should be at least the minimum of NCON and 2*NDV. If 
enough storage is available, and the gradients are easily 
provided or are calculated by the finite difference, then 
NCOLA = NCON + NDV is ideal.

WK(NRWK) User provided work array for real variables. Array WK is 
used to store internal scaler variables and arrays used by ADS. 
WK must be dimensioned at least 100, but usually much 
larger. If the user has not provided enough storage, ADS will 
print the appropriate message and terminate the optimization.

NRWK Dimensioned size of work array WK. A good estimate is 
NRWK = 500 + 10 * (NDV + NCON) + (NCOLA + 3) + 
N*(N/2+1), where = MAX(NDV, NCOLA)

IWK (NRIWK) User provided work array for integer variables. Array IWK is 
used to store internal scalar variables and arrays used by ADS. 
IWK must be dimensioned at least 200, but usually much 
larger. If the user has not provided enough storage, ADS will 
print the appropriate message and terminate the optimization.

Parameter Definition

Table 5. Parameters in the ADS Argument List  (Page 4 of 4)
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4.3  Overriding ADS Default Parameters

Various internal parameters are defined on the first call to ADS which work 
well for the “average” optimization task. However, it is often desirable to 
change these in order to gain maximum utility of the program. This mode of 
operation is shown in Figures 2 and 3. After the first call to ADS, various real 
and integer scalar parameters are stored in arrays WK and IWK respectively. 
Those which the user may wish to change are listed in Tables 6 through 9, 
together with their default values and definitions. If the user wishes to change 
any of these, the appropriate component of WK or IWK is simply re-defined 
after the first call to ADS. For example, if the relative convergence criterion, is 
to be changed to 0.002, this is done with the FORTRAN statement.

WK(12) = 0.002

because WK(12) contains the value of DELOBJ

Modules Where Used

Parameter Location Default ISTRAT IOPT IONED

ALAMDC 1 0.0 5 - -

BETAMC 2 0.0 7 - -

CT(1) 3 -0.03 - 4, 5 -

CTL 4 -0.005 - 4, 5 -

CTLMN 5 0.001 - 4, 5 -

CTMIN 6 0.004 - 4, 5 -

DABALP(2) 7 0.0001 - ALL -

DABOBJ 8 ABS(FZ)/
1000

ALL - -

DABOBM 9 ABS(FZ)/
500

ALL - -

DABSTR 10 ABS(FZ)/
1000

ALL - -

DELALP(3) 11 0.005 - - 1, 2, 5, 6

DELOBJ 12 0.001 - ALL -

DELOBM 13 0.01 ALL - -

DELSTR 14 0.001 ALL - -

Table 6. Real Parameters Stored in Array WK (Page 1 of 2)
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1 IF IOPT = 4, CT = -0.1
2 If IONED = 3 or 8, DABALP = 0.001
3 If IONED = 3 or 8, DELALP = 0.05
4 If ISTRAT = 9, RMVLMZ = 0.4

FZ the objective function value for the initial design

DLOBJ1 15 0.1 - ALL -

DLOBJ2 16 1000.0 - ALL -

DX1 17 0.01 - ALL -

DX2 18 0.2 - ALL -

EPSPEN 19 -0.05 2, 3, 4 - -

EXTRAP 20 5.0 - - ALL

FDCH 21 0.01 - ALL -

FDCHM 22 0.001 - ALL -

GMULTZ 23 10.0 8 - -

PSAIZ 24 0.95 8 - -

RMULT 25 5.0 1, 5 - -

RMVLMZ 26 0.2 6, 7, 8, 9 - -

RP 27 10.0 1, 5 - -

RPMAX 28 1.0E+10 1, 5 - -

RPMULT 29 0.2 1, 5 - -

RPMIN 30 1.0E-10 2, 3, 4 - -

RPPRIM 31 100 2, 3, 4 - -

SCFO 32 1.0 ALL ALL ALL

SCLMIN 33 0.001 ALL ALL ALL

STOL 34 0.001 - 4, 5 -

THETAZ 35 0.1 - 4, 5 -

XMULT 36 2.618034 - - 1,2,3
5,6,7

ZRO 37 0.00001 ALL ALL ALL

PMLT 38 10.0 6, 7, 8, 9 4, 5 -

Modules Where Used

Parameter Location Default ISTRAT IOPT IONED

Table 6. Real Parameters Stored in Array WK (Page 2 of 2)



 20 -  ADS (Version 2.01)     

Parameter Definition

ALAMDZ Initial estimate of the Lagrange Multipliers in the Augmented 
Lagrange Multiplier Method.

BETAMC Additional steepest descent fraction in the method of centers. 
After moving to the center of the hypersphere, a steepest 
descent move is made equal to BETAMC times the radius of 
the hypersphere.

CT Constraint tolerance in the Method of Feasible Directions or 
the Modified Method of Feasible Directions. A constraint is 
active if its numerical value is more positive than CT.

CTL Same as CT, but for linear constraints.

CTLMIN Same as CTMIN, but for linear constraints.

CTMIN Minimum constraint tolerance for nonlinear constraints. If a 
constraint is more positive than CTIIIN, it is considered to be 
violated.

DABALP Absolute convergence criteria for the one-dimensional search 
when using the Golden Section method.

DABOBJ Maximum absolute change in the objective between two 
consecutive iterations to indicate convergence in optimization.

DABOBM Absolute convergence criterion for the optimization sub-
problem when using sequential minimization techniques.

DABSTR Same as DABOBJ, but used at the strategy level.

DELALP Relative convergence criteria for the one-dimensional search 
when using the Golden Section method. 

DELOBJ Maximum relative change in the objective between two 
consecutive iterations to indicate convergence in optimization.

DELOBM Relative convergence criterion for the optimization sub-
problem when using sequential minimization techniques.

DELSTR Same as DELOBJ, but used at the strategy level.

DLOBJ1 Relative change in the objective function attempted on the 
first optimization iteration. Used to estimate initial move in 
the one-dimensional search. Updated as the optimization 
progresses.

DLOBJ2 Absolute change in the objective function attempted on the 
first optimization iteration. Used to estimate initial move in 
the one-dimensional search. Updated as the optimization 
progresses.

Table 7. Definitions of Real Parameters Stored in Array WK (Page 1 of 3)
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DX1 Maximum relative change in a design variable attempted on 
the first optimization iteration. Used to estimate the initial 
move in the one-dimensional search. Updated as the 
optimization progresses.

DX2 Maximum absolute change in a design variable attempted on 
the first optimization iteration. Used to estimate the initial 
move in the one-dimensional search. Updated as the 
optimization progresses.

EPSPEN Initial transition point for extended penalty function methods. 
Updated as the optimization progresses.

EXTRAP Maximum multiplier on the one-dimensional search 
parameter, ALPHA in the one-dimensional search using 
polynomial interpolation and extrapolation.

FDCH Relative finite difference step when calculating gradients.

FDCHM Minimum absolute value of the finite difference step when 
calculating gradients. This prevents too small a step when X(I) 
is near zero.

GMULTZ Initial penalty parameter in Sequential Quadratic 
programming

PSAIZ Move fraction to avoid constraint violations in Sequential 
Quadratic Programming.

RMULT Penalty function multiplier for the exterior penalty function 
method. Must be greater than 1.0.

RMVLMZ Initial relative move limit. Used to set the move limits in 
sequential linear programming, method of inscribed 
hyperspheres and sequential quadratic programming as a 
fraction of the value of X(I), I=1, NDV.

RP Initial penalty parameter for the exterior penalty function 
method or the Augmented Lagrange Multiplier method.

RPMAX Maximum value of RP for the exterior penalty function 
method or the Augmented Lagrange Multiplier method.

RPMULT Multiplier on RP for consecutive iterations.

RPMIN Minimum value of RPPRIM to indicate convergence.

RPPRIM Initial penalty parameter for extended interior penalty function 
methods.

SCFO The user-supplied value of the scale factor for the objective 
function if the default or calculated value is to be over-ridden.

Parameter Definition

Table 7. Definitions of Real Parameters Stored in Array WK (Page 2 of 3)



 22 -  ADS (Version 2.01)     

SCLMIN Minimum numerical value of any scale factor allowed.

STOL Tolerance on the components of the calculated search 
direction to indicate that the Kuhn-Tucker conditions are 
satisfied.

THETAZ Nominal value of the push-off factor in the Method of 
Feasible Directions.

XMULT Multiplier on the move parameter, ALPHA, in the one-
dimensional search to find bounds on the solution.

ZRO Numerical estimate of zero on the computer. Usually the 
default value is adequate. If a computer with a short word 
length is used, ZRO = l.0E-4 may be preferred.

PMLT Penalty multiplier for equality constraints when IOPT = 4 or 5.

Modules Where Used

Parameter Location Default ISTRAT IOPT IONED

ICNDIR 1 NDV + 1 - ALL -

ISCAL 2 1 ALL ALL ALL

ITMAX 3 40 - ALL -

ITRMOP 4 3 - 1, 2, 3 -

ITRMST 5 2 ALL - -

JONED 6 IONED 8 - -

JTMAX 7 20 20 ALL -

Table 8. Integer Parameters Stored in Array IWK

Parameter Definition

Table 7. Definitions of Real Parameters Stored in Array WK (Page 3 of 3)
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Table 9. Definitions of Integer Parameters Contained in Array IWK

4.4  User Supplied Gradients

If it is convenient to supply analytic gradients to ADS, rather than using 
internal finite difference calculations, considerable optimization efficiency is 
attainable. If the user wishes to supply gradients, the flow logic given in 
Figure 3 is used. In this case, the information parameter, INFO, will be 
returned to the user with a value of INF0=2 when gradients are needed. The 
user calculates the NGT gradients of the constraints identified by array IC and 
stores these in the first NGT columns of array A. That is column I of A 
contains the gradient of constraint J, where J=IC(I).

Parameter Definition

ICNDIR Restart parameter for conjugate direction and variable metric 
methods. Unconstrained minimization is restarted with a 
steepest descent direction every ICNDIR iterations.

ISCAL Scaling parameter. If ISCAL = 0, no scaling is done. If 
ISCAL=1, the design variables, objective and constraints are 
scaled automatically.

ITMAX Maximum number of iterations allowed at the optimizer level.

ITRMOP The number of consecutive iterations for which the absolute 
or relative convergence criteria must be met to indicate 
convergence at the optimizer level.

ITRMST The number of consecutive iterations for which the absolute 
or relative convergence criteria must be met to indicate 
convergence at the strategy level.

JONED The one-dimensional search parameter (IONED) to be used in 
the Sequential Quadratic Programming method at the strategy 
level

JTMAX Maximum number of iterations allowed at the strategy level.
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4.5  Restarting ADS

When solving large and complex design problems, or when multi-level 
optimization is being performed, it is often desirable to terminate the 
optimization process and restart from that point at a later time. This is easily 
accomplished using the ADS program. Figure 4 provides the basic flowchart 
for this process. Whenever control is returned from ADS to the calling 
program, the entire contents of the parameter list are written to disk (or a file 
in a database management system). The program is then stopped at this point. 
Later, the program is restarted by reading the information back from disk and 
continuing from this point. If optimization is performed as a sub-problem 
within analysis, the information from the system level optimization is written 
to disk and the analysis is called. The analysis module can then call ADS to 
perform the sub-optimization task. Then, upon return from analysis, the 
system level information is read back from storage and the optimization 
proceeds as usual. From this, it is seen that considerable flexibility exists for 
multi-level and multi-discipline optimization with ADS, where the ADS 
program is used for multiple tasks within the overall design process. 

The user may wish to stop the optimization at specific times during the 
process. The parameter IMAT is array IWK gives general information 
regarding the progress of the optimization. Appendix B provides details of this 
parameter as well as other parameters stored in WK and IWK which may be 
useful to the experienced user of ADS.

Figure 4.  Restarting ADS 

Begin

Call ADS (INFO. . . )

YES

NO

Is this a Restart

Stop for 
Later Restart

NO

Continue

Read Contents of
ADS Parameter List
Onto Disk File

YES Write Contents of
ADS Parameter List
Onto Disk File

Exit
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4.6  Choosing an Algorithm

One difficulty with a program such as ADS, which provides numerous 
options, is that of picking the best combination of algorithms to solve a given 
problem. While it is not possible to provide a concise set of rules, some 
general guidelines are offered here based on the author's experience. The user 
is strongly encouraged to try many different options in order to gain 
familiarity with ADS and to improve the probability that the best combination 
of algorithms is found for the particular class of problems being solved.

����������������������������������������������������

ISTRAT = 0

Is computer storage very limited?

• Yes - IOPT = 1. Are function evaluations expensive?
1. Yes - Is the objective known to be approximately quadratic? 

A. Yes - IONED=4
B. No - IONED=3 

2. No - IONED=1 or 2
• No - Is the analysis iterative?

1. Yes - IOPT=3. Are function evaluations expensive? 
A. Yes - Is the objective known to be approximately quadratic?

a. Yes - IONED=4 No - IONED=3
b. No- IONED=3

B. No - IONED=1 or 2
2. No - IOPT=2 or 3. Are function evaluations expensive? 

A. Yes - Is the objective known to be approximately quadratic?
a. Yes - IONED=4
b. No - IONED=3 

B. No - IONED=1 or 2
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Are relative minima known to exist?

• Yes - ISTRAT = 1, IOPT = 3. Are functions expensive?
1. Yes - IONED = 3 
2. No - IONED = 1 or 2

• No - Are the objective and/or constraints highly nonlinear?
1. Yes - Are function evaluations expensive?

A. Yes - ISTRAT = 0, IOPT = 4, IONED = 7
B. No - ISTRAT = 2, 3 or 5, IOPT = 2 or 3?, IONED = l or 2 

2. No - Is the design expected to be fully-constrained?
(i.e., NDV active constraints at the optimum)

A. Yes - ISTRAT = 6, IOPT = 5, IONED = 6
B. No - Is the analysis iterative? 

a. Yes - ISTRAT=0, IOPT=4, IONED=7 or
ISTRAT=8, IOPT=5, IONED=7 or 
ISTRAT=9, IOPT=5, IONED=7 

b. No - ISTRAT=0, IOPT=5, IONED=7 or 
ISTRAT=8, IOPT=5, IONED=7 or 
ISTRAT=9, IOPT=5, IONED=7

 �����"�#$$"��������

Often little is known about the nature of the problem being solved. Based on 
experience with a wide variety of problems, a very direct approach is given 
here for using ADS. The following table of parameters is offered as a sequence 
of algorithms. When using ADS the first few times, the user may prefer to run 
the cases given here, rather than using the decision approach given above. It is 
assumed here that a constrained optimization problem is being solved. If the 
problem is unconstrained, ISTRAT=0, IOPT=3 and IONED=2 or 3 is 
recriminated.

ISTRAT IOPT IONED IPRINT

8 5 7 2200

0 5 7 2020

0 4 7 2020

9 5 7 2200

6 5 6 2200

5 3 3 2200

2 3 3 2200

1 3 3 2200

Table 10. Sequence of Algorithms
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Section 5   

Examples
Consider the following two-variable optimization problem with two nonlinear 
constraints:

Minimize 

Subject to: 

0.01  .LE. Xi  .LE.  1.0E + 20   i = 1, 2 

This is actually the optimization of the classical 3-bar truss shown in Figure 5 
where, for simplicity, only the tensile stress constraints in members 1 and 2 
under load P1 are included. The loads, P1 and P2, are applied separately and 
the material specific weight is 0.1 lb per cubic inch. The structure is required 
to be symmetric so X(1) corresponds to the cross-sectional area of members 1 
and 3 and X(2) corresponds to the cross-sectional area of member 2.

Figure 5. Three Bar Truss

OBJ 2*SQRT 2( )*X1 + X2=

G 1( ) 2*X1 + SQRT(2)*X2

2*X1* X1 SQRT 2( )*X2+
------------------------------------------------------------------------- 1 .LE.   0–=

G 2( ) 1

2* X1 SQRT 2( )*X2+
------------------------------------------------------------- 1 .LE.   0–=

P2 = 20,000 lb.P1 = 20,000 lb.

10 in.

10 in.10 in.
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In the source listings for the examples, the arrays are dimensioned sufficiently 
large to solve 10 design variable problems with 20 constraints. This allows the 
user to create larger problems using these programs as a basis. Note that the 
required array dimensions given in this manual are minimums. The arrays can 
be dimensioned larger than needed, just as is done here.

%&�'$"��	�(�#""�)�*��"��+���'�����

Sample Code 1 gives the FORTRAN program to be used with ADS to solve 
this problem. Only one line of data is read by this program to define the values 
of ISTRAT, IOPT, IONED and IPRINT and the FORMAT is 4I5. When the 
optimization is complete, another case may be run by reading a new set of 
data. The program terminates when ISTRAT=-1 is read as data.

Sample Code 2 gives the results obtained with ISTRAT=O, IOPT=5, 
IONED=7 and IPRINT=l000. The reader is encouraged to experiment with 
this program using various combinations of the options from Table 4.

%&�'$"��,�(�-�����"�+���'������#���.���*���

The 3-bar truss designed in Example 1 is now designed with the following 
changes in the internal parameters:

The FORTRAN program used here is shown in Sample Code 3 and the results 
are given in Sample Code 4.

Parameter
New 
Value

Location in 
WK

Location 
in IWK

CT -0.05 3 -

CTMIN 0.001 6 -

FDCH 0.001 21 -

ITRMOP 2 - -

Table 11. Changes in Parameters
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The 3-bar truss designed in Examples 1 and 2 is designed here with user 
supplied gradients. The parameters CT, CTMIN, THETAZ and ITRMOP are 
overridden as in Example 2. Also, now IPRINT=2020 to provide a more 
typical 1evel of optimization output.

The FORTRAN program associated with this example is given in Sample 
Code 5. Sample Code 6 gives the results.

C SIMPLIFIED USAGE OF ADS. THE THREE-BAR TRUSS.
C REQUIRED ARRAYS.

DIMENSION X(11), VLB(11), VUB(11), G(20), IDG(20), IC(20), DF(11),
1 A(11, 20), WK(l000), IWK(500)

C ARRAY DIMENSIONS.
NRA=2
NCOLA=2
NRWK=l000
NRIWK=500

C PARAMETERS.
IGRAD=0
NDV=2
NCON=2

C INITIAL DESIGN.
X(1)=1.
X(2)=1.

C BOUNDS.
VLB(1)=.01
VLB(2)=.01
VUB(1)=1.0E+20
VUB(2)-l.0E+20

C IDENTIFY CONSTRAINTS IDG(1)=0
IDG(2)=0

C INPUT. READ(5,30) ISTRAT, IOPT, IONED, IPRINT
C OPTIMIZE. INFO=0
10 CALL ADS (INFO,ISTRAT,IOPT IONED,IPRINT,IGRAD, NDV,NCON,X,VLB 

1 VUB, OBJ, G, IDG, NGT, IC, DF, A, NRA, NCOLA, WK,
NRWK, IWK, NRIWK) 
IF (INFO.EQ.0) GO TO 20

C EVALUATE OBJECTIVE AND CONSTRAINTS.
OBJ=2.*SQRT(2.)*X(1)+X(2)
G(1)=(2.*X(1)+SQRT(2.)*X(2))/(2.*X(1)*(X(1)+SQRT(2.)*X(2)))-1.
G(2)=.5/(X(1)+SQRT(2.)*X(2))-l. 

C GO CONTINUE WITH OPTIMIZATION.
GO TO 10 

20 CONTINUE 
C PRINT RESULTS.

WRITE(6, 40) OBJ, X(1), X(2), G(1), G(2).... STOP
30 FORMAT (415)
40 FORMAT (//5X, 7H0PTIMUM, 5X, 5HOBJ =, E12.5//5X, 6HX(1) =, E12.5, 5X,

1 6HX(2) =, E12.5/5X, 6HG(1) =, E12.5, 5X, 6HG(2) =, E12.5)
END

Sample Code 1. Example 1 - All Default Parameters
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FORTRAN Program for Automated Design Synthesis

(C) COPYRIGHT, EDO, INC., 1987
ALL RIGHTS RESERVED, WORLDWIDE

VERSION 3.00

Control Parameters

ISTRAT = 0 IOPT = 5 IONED = 7 IPRINT = 1000
IGRAD = 0 NDV = 2 NCON = 2

Optimization Results

Objective Function Value 2.62899E+00

Design Variables

Lower Upper
Variable Bound Value Bound

1 1.00000E-02 7.82696E-01 1.00000E+20
2 1.00000E-02 4.15190E-01 1.00000E+20

Design Constraints

 1.3.8170E-03 -6.3500E-O1 

Function Evaluations = 26

Optimum     OBJ = .26290E+01

X(1) = .78270E+00X(2) =.41519E+00
G(1) =  .38170E-02G(2) = -.63500E+00

Sample Code 2. Example 1 - Output
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C USAGE OF ADS. OVERRIDING DEFAULT PARAMETERS. THE THREE
BAR TRUSS. 
DIMENSION X(11), VLB(11), VUB(11), G(20), IDG(20), IC(20), DF(11),
1 A(11, 20), WK(1000), IWK(500)

C ARRAY DIMENSIONS.
NRA=2
NCOLA=2
NRWK= 1000
NRIWK=500

C PARAMETERS. IGRAD=0 
NDV=2
NCON=2

C INITIAL DESIGN. 
X(1)=1.
X(2)=1.

C BOUNDS. 
VLB(1)=.Ol
VLB(2)=.01
VUB(1)=1.OE+20
VUB(2)=l.OE+20

C IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY.
IDG(1)=0
IDG(2)=0

C INPUT. 
READ(5, 30) ISTRAT, IOPT, IONED, IPRINT

C INITIALIZE INTERNAL PARAMETERS. 
INFO=-2
CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD, NDV,NCON,X, VLB 
1 VUB, OBJ, G, IDG, NGT, IC, DF, A, NRA, NCOLA, WK, NRWK,IWK,NRIWK) 

C OVERRIDE DEFAULT VALUES OF CT, CTMIN, THETAZ AND ITRMOP. 
WK(3)=-0.05
WK(6)=0.001
WK(21)=0.00l
IWK(4)=2

C OPTIMIZE.
10 CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON, X, VLB,

1 VUB, OBJ, G, IDG, NGT, IC, DF, A, NRA, NCOLA, WK, NRWK,IWK,NRIWK) 
IF (INFO.EQ.0) GO TO 20

C EVALUATE OBJECTIVE AND CONSTRAINTS.
OBJ=2.*SQRT(2.)*X(1)+X(2)
G(1)=(2.*X(1)+SQRT(2.)*X(2))/(2.*X(1)*(X(1)+SQRT(2.)*X(2)))-1.
G(2)=.5/(X(1)+SQRT(2.)*X(2))-1.

C GO CONTINUE WITH OPTIMIZATION. 
GO TO 10

20 CONTINUE
C PRINT RESULTS.

WRITE(6, 40) 0BJ, X(1), X(2), G(1), G(2) 
STOP

30 FORMAT (4I5)
40 FORMAT (//5X,  7HOPTIMUM,  5X,  5HOBJ =,  E12.5//5X,  6HX(1)=, E12.5, 5X,

1 6HX(2) =, E12.5/5X, 6HG(1) =, E12.5, 5X, 6HG(2) =, E12.5) 
END

Sample Code 3. Example 2 - Modify Default Parameters
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FORTRAN Program for Automated Design Synthesis

(C) COPYRIGHT, EDO, INC., 1987
ALL RIGHTS RESERVED, WORLDWIDE

VERSION 3.00

Control Parameters

ISTRAT = 0 IOPT = 5 IONED = 7 IPRINT = 1000
IGRAD = 0 NDV = 2 NCON = 2

Optimization Results

Objective Function Value 2.63726E+00

Design Variables

Lower Upper
Variable Bound Value Bound

1 1.00000E-02 7.86349E-01 1.00000E+20
2 1.00000E-02 4.13130E-01 1.00000E+20

Design Constraints

 1.6.5273E-04 -6.3520E-01 

Function Evaluations = 29

Optimum     OBJ = .26373E+01

X(1) = .78635E+00X(2) =.41313E+00
G(1) = .65273E-02G(2) = -.63520E+00

Sample Code 4. Example 2 - Output
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C USAGE OF ADS. OVERRIDING DEFAULT PARAMETERS, AND 
 PROVIDING GRADIENTS. THE THREE BAR TRUSS.
C REQUIRED ARRAYS.

DIMENSION X(11),VLB(11),VUB(11),G(20),IDG(20),IC(20), DF(11)
1 A(11, 20), WK(1000), IWK(500)
DIMENSION B(2, 2)

C ARRAY DIMENSIONS. 
NRA=2
NCOLA=2 
NRWK= 1000 
NRIWK=500

C PARAMETERS. 
IGRAD=1 
NDV=2 
NCON=2

C INITIAL DESIGN. 
X(1)=1.
X(2)=1.

C BOUNDS. 
VLB(l)=.01 
VLB(2)=.01 
VUB(l)=1.0E+20 
VUB(2)=l.0E+20

C IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY
IDG(1)=0
IDG(2)=0

C INPUT. 
READ(5, 70) ISTRAT, IOPT, IONED, IPRINT

C INITIALIZE INTERNAL PARAMETERS. 
INFO=-2
CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X, VLB, 
1 VUB, OBJ, G,IDG,NGT,IC,DF,A,NRA,NCOLA,WK,NRWK,IWK, NRIWK)

C OVERRIDE DEFAULT VALUES OF CT, CTMIN, THETAZ AND ITRMOP. 
WK(3)=-0.05
WK(6)=0.00l
WK(21)=0.001
IWK(4)=2

C OPTIMIZE.
10 CALL ADS (INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV,

NCON, X, VLB 
1 VUB, OBJ, G, IDG, NGT, IC, DF, A, NRA, NCOLA, WK, NRWK,
IVK, NRIWK) 
IF (INFO.EQ.0) GO TO 60
IF (INFO.GT.1) GO TO 20

C EVALUATE OBJECTIVE AND CONSTRAINTS. 
OBJ=2.*SQRT(2.)*X(1)+X(2)
G(1)=(2.*X(1)+SQRT(2.)*X(2))/(2.*X(1)*(X(1)+SQRT(2.)*X(2)))-1.
G(2)=.5/(X(1)+SQRT(2.)*X(2))-1.

C GO CONTINUE WITH OPTIMIZATION. 
GO TO 10

20 CONTINUE
C GRADIENT OF OBJ.

DF(1)=2.*SQRT(2.)
DF(2)=1.0
IF (NGT.EQ.0) GO TO 10
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C CONSTRAINT GRADIENTS. USE ARRAY B FOR TEMPORARY STORAGE. 
D1=(X(1).SQRT(2.)*X(2))**2

C G(1).
 B(1,1)=-(2.*X(l)*X(l)+2.*SQRT(2.)*X(l)*X(2)+2.*X(2)*X(2))/
1  (2.*X(1)*X(1)*Dl)
B(2,1)=-1./(SQRT(2.)*Dl)

C G(2)
B(1,2)=-0.5/D1 
B(2, 2)=SQRT(2.)*B(1,2)

C STORE APPROPRIATE GRADIENTS IN ARRAY A. 
DO 30 J=1, NGT
K=IC(J)
A(1, J)=B(1,K)

30 A(2, J)=B(2, K)
GO TO 10

60 CONTINUE
C PRINT RESULTS.

WRITE (6, 80) OBJ, X(1), X(2), G(1), G(2) 
STOP

70 FORMAT (4I5)
80 FORMAT (//5X, 7HOPTIMUM, 5X, 5HOBJ =, E12.5//5X, 6HX(l)=, E12.5, 5X,

1 6HX(2) =, E12.5/5X, 6HG(1) =, E12.5,5X, 6HG(2) =, E12.5) 
END

Sample Code 5.  Example 3 - Gradients Supplied by the User
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FORTRAN Program for Automated Design Synthesis

(C) COPYRIGHT, EDO, INC., 1987
ALL RIGHTS RESERVED, WORLDWIDE

VERSION 3.00

Control Parameters

ISTRAT = 0 IOPT = 5 IONED = 7 IPRINT = 2020
IGRAD = 1 NDV = 2 NCON = 2

Scalar Program Parameters 
Real Parameters

1. ALAMDZ = .00000E+00 20. EXTRAP = 5.00000E+00
2. BETMAC = .00000E=00 21. FDCH = 1.00000E-03
3. CT = -5.00000E-02 22. FDCHM = 1.00000E-03
4. CTL = -5.00000E-03 23. GMULTZ = 1.00000E+01
5. CTLMIN = 1.00000E-03 24. PSAIZ = 9.50000E-01
6. CTMIN = 1.00000E-03 25. RMULT = 5.00000E+00
7. DABALP = 1.00000E-04 26. RMVLMZ = 2.00000E-01
8. DABOBJ = 3.82843E-03 27. RP = 1.00000E+01
9. DABOBM = 7.65685E-03 28. RPMAX = 1.00000E+10
10. DABSTR = 3.82843E-03 29. RPMULT = 2.00000E-01
11. DELALP = 5.00000E-03 30. RPMIN = 1.00000E-10
12. DELOBJ = 1.00000E-03 31. RPPRIM = 1.00000E+02
13. DELOBM = 1.00000E-02 32. SCFO = 1.00000E+00
14. DELSTR = 1.00000E-03 33. SCLMIN = 1.00000E-03
15. DLOBJ1 = 1.00000E-01 34. STOL = 1.00000E-03
16. DLOBJ2 = 1.00000E+03 35. THETAZ = 1.00000E-01
17. DX1 = 1.00000E-02 36. XMULT = 2.61803E+00
18. DX = 2 2.00000E-01 37. ZR0 = 1.00000E-05
19. EPSPEN = -5.00000E-02 38. PMLT = 1.00000E+01

Integer Parameters

1. ICNDIR= 3 4. ITRMOP = 2 6. JONED= 7
2. ISCAL = 1 5. ITRMST = 2 7. JTMAX= 20
3. ITMAX = 40

Array Storage Requirements

 Dimensioned Required
Array Size Size
WK 1000 199
IWK 500 184
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 IOPT =5; Modified Method of Feasible Directions

--Initial Design 

OBJ = 3.82843E+00 

Decision Variables (X-Vector)

1. 1.00000E+00 l.00000E+00

Lower Bounds on the Decision Variables (VLB-Vector)

1. 1.00000E-02 1.00000E-02

Upper Bounds on the Decision Variables (VUB-Vector)

1. 1.00000E+20 1.00000E+20

Constraint Values (G-Vector)

1. 2.92893E-01-7.92893E-0l

--Iteration 1 OBJ = 2.79647EE+00

Decision Variables (X-Vector)

1.    6.75687E-01     8.85338E-0l

-- Iteration 2 OBJ = 2.63882EE+00

Decision Variables (X-Vector)

1.    7.98080EE-01     3.81510E-0l

-- Iteration 3  OBJ = 2.63724E+00

Decision Variables (X-Vector)

1.    7.86367E-01    4.13059E-011)

Final Optimization Results

Number of Iterations = 4

Objective = 2.63724E+00
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Decision Variables (X-Vector)

1. 7.86367E-01 4.13059E-01

Constraint Values (G-Vector)

1. 6.60856E  -6.35175E)

Constraint Tolerance

CT = -2.500000E-02   CTL = -2.50000E-03

There are 1 Active Constraints and 0 Violated
Constraints 

Constraint Numbers
1

There are 0 Active Side Constraints

Termination Criteria

KUHN-TUCKER PARAMETER, BETA = 9.65595E-06 is less 
than 1.00000E-03

Optimization Results

Objective Function Value    2.63724E+00 

Design Variables

Lower Upper
Variable Bound Value Bound

1 1.00000E-02 7.863679E-011.00000E+20
2 1.00000E-02 4.13059E-01 1.00000E+20

Design Constraints

 1.6.6086E-04 -6.3517E-01 

Function Evaluations = 21

Gradient Evaluations = 4

Optimum     OBJ = .26372E+01

X(1) = .78637E+00X(2) =.41306E+00
G(1) = .66086E-03G(2) = -.63517E+00

Sample Code 6. Example 3 - Output 
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Section 6   

Main Program for 
Simplified Usage of ADS

Sample Code 7 is a general-purpose calling program for use with ADS. The 
arrays are dimensioned sufficient to solve problems of up to 20 design 
variables and 100 constraints. Arrays IC and A are dimensioned to allow for 
evaluation of 20 constraint gradients. Wherever a question mark (?) is given, it 
is understood that the user will supply the appropriate information. Note that 
the statement: X(I)=?, I=l, NDV is not an implied FORTRAN DO LOOP, but 
simply denotes that the value of the NDV design variables must be defined 
here.

 Subroutine EVAL is the user-supplied subroutine for evaluating functions and 
gradients (if user-supplied). The calling statement is:

CALL EVAL (INFO, NDV, NCON, OBJ,X, G, DF, NGT, IC, A, NRA)

The parameters INFO, NDV, NCON, X, NGT, IC and NRA are input to 
Subroutine EVAL, while OBJ, C, DF and A are output. Depending on the user 
needs, this may be simplified. For example, if IGRAD=0 and NDV and 
NCON are not required by the analysis. the calling statement may be:

CALL EVAL (OBJ, X, G)

Also, a print control may be added so, after the optimization is complete, 
EVAL can be cal1ed again to print analysis information.
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C SIMPLIFIED USAGE OF THE ADS OPTIMIZATION PROGPAM.
DIMENSION X(21),VLB(21),VUB(21),G(l00),IDG(100),IC(30),DF(21),
* A(21, 30),WK(10000), IWK(2000)
NRA=21
NCOLA=30
NRWK=10000
NRIWK=2000

C INITIALIZATION.
IGRAD=?
NDV=?
NCON=?
X(I)=?, I=1, NDV
VLB(I)=?, I=1, NDV
VUB(I)=?, I=1, NDV
IDG(I)=?, I=1, NCON 
ISTRAT=?
IOPT=?
IONED=?
IPRINT=?
INFO=0

10 CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON, X,
*VLB,VUB,OBJ,G,IDG,NGT,IC,DF,A,NRA,NCOLA,WK,NRWK,IWK, NRIWK)
CALL EVAL (INFO, NDV, NCON, OBJ, X, G, DF, NGT, IC, A, NRA)
 IF (INFO.GT.0) GO TO 10

C OPTIMIZATION IS COMPLETE. PRINT RESULTS.
STOP
END

Sample Code 7. Program for Simplified Usage of ADS
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Section 7   
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Appendix A   

Quick Reference to ADS 
Options

IOPT OPTIMIZER

1 Fletcher-Reeves
2 Davidon-Fletcher-Powell (DEP)
3 Broydon-Fletcher-Goldfarb-Shanno (BFGS)
4 Method of Feasible Directions
5 Modified Method of Feasible Directions

STRATEGY ISTRAT 1 2 3 4 5
None 0 X X X X X
SUMT, Exterior 1 X X X 0 0
SUMT, Linear Extended Interior 2 X X X 0 0
SUMT, Quadratic Extended Interior 3 X X X 0 0
SUMT, Cubic Extended Interior 4 X X X 0 0
Augmented Lagrange Multiplier Meth. 5 X X X 0 0
Sequential Linear Programming 6 0 0 0 X X
Method of Centers 7 0 0 0 X X
Sequential Quadratic Programming 8 0 0 0 X X
Sequential Convex Programming 9 0 0 0 X X

ONE-DIMENSIONAL SEARCH IONED
Golden Section Method 1 X X X 0 0
Golden Section + Polynomial 2 X X X 0 0
Polynomial Interpolation (bounded)  3 X X X 0 0
Polynomial Extrapolation 4 X X X 0 0
Golden Section  Method 5 0 0 0 X X
Golden Section + Polynomial 6 0 0 0 X X
Polynomial Interpolation (bounded)  7 0 0 0 X X
Polynomial Extrapolation 8 0 0 0 X X

 ���������������������������������������������������������

 ���������������������������������������������������������

An X denotes an allowed combination of algorithms.
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Appendix B   

Useful Information Stored 
in Arrays WK and IWK

Arrays VK and IWK contain information calculated by ADS which is 
sometimes monitoring the progress of the optimization. Tables B-1 and B-2 
identify parameters which may be of interest to the user. Note that these 
parameters must not be changed by the user during the optimization process

Parameter Location DEFINITION

ALPHA 52 Move parameter in the one-dimensional 
search.

ALPHA3 53 ALPHA at the strategy level for ISTRAT=8.

PENALT 82 The value of the penalty in SUMT methods.

SLOPF 85 The slope of the OBJ versus ALPHA function 
in the one-dimensional search.

Table 12. Real Parameters Stored in Arrays WK
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.

Parameter Location Definition

IDAB 23 Number of consecutive times the absolute 
convergence criterion has been satisfied at the 
optimization level.

IDAB3 24 Same as IDAB, but at the strategy level.

IDEL 25 Number of consecutive times the relative 
convergence criterion has been satisfied at the 
optimization level.

IDEL3 26 Same as IDEL, but at the strategy level.

IFCALL 28 The number of times the objective and constraint 
functions have been evaluated.

IGCALL 29 The number of times analytic gradients have been 
evaluated.

IMAT 34 Pointer telling the status of the optimization
process.
0 - Optimization is complete.
1 - Initialization Is complete and control is being 
returned to the user to override default 
parameters.
2 - Initial function evaluation.
3 - Calculating analytic gradients.
4 - Calculating finite difference gradients. NXFD 
identifies the design variable being changed.
5 - One-dimensional search is being performed. 
See LGOTO.

ITER 45 Iteration number at the optimization level.

JTER 46 Iteration number at the strategy level.

LGOTO 54 Location in one-dimensional search.
1 - Finding bounds on the solution.
2 - Golden Section method.
3 - Polynomial interpolation after Golden Section 
4 - Polynomial interpolation after getting bounds 
5 - Polynomial interpolation/extrapolation.

NAC 58 Number of active constraints.

NACS 59 Number of active side constraints.

NVC 68 Number of violated constraints.

NXFD 69 Design variable being perturbed during finite 
difference gradients

Table 13. Integer Parameters Stored in Array IWK
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Appendix C   

Subroutines Needed for 
ISTRAT, IOPT and IONED

Depending on the combination of ISTRAT, IOPT and IONED, only a subset of 
subroutines contained in the ADS system are used. Therefore, if computer 
memory is limited, it may be desired only to load those routines which are 
actually used. This will result in “unsatisfied externals” at run time, but on 
most systems the program can be executed anyway since the unsatisfied 
external routines are not actually called. Below is a list of the routines needed 
for a given combination of algorithms. In some cases, slightly more routines 
are included than are absolutely necessary, but they are short and a more 
precise list would be unduly complicated.

Always Load the Following Subroutines:

ADS, ADS001, ADS002, ADS004, ADS005, ADS006, ADS007, ADS009, ADS0l0, 
ADS102, ADSl03, ADSl05, ADS1l2, ADSl22, ADS201, AD5206, ADS211, AD5216, 
ADS236, AD5237, ADS40l, AD5402, AD5403, AD5420, ADSS03, ADS504, AD5506, 

ADS5l0

Strategy Level

Depending on the value of ISTRAT, the following subroutines are also 
required:

ISTRAT = 0, No strategy routines are added. Go to the optimizer level.

ISTRAT = 1, Add: ADS008, ADS301, ADS302, ADS508I

ISTRAT = 2, Add: ADS008, AD5302, ADS303, AD5308, ADS5O8

ISTRAT = 3, Add: ADS008, AD5302, ADS304, ADS308, ADS508

ISTRAT = 4, Add: ADS008, ADS302, AD5305, ADS308, ADS508

ISTRAT = 5 Add: ADS008, ADS302, ADS306, ADS307, ADS508

ISTRAT = 6, Add: ADS320, ADS321, AD5323, ADS333

ISTRAT = 7, Add: ADS323, ADS330, AD5331, ADS333
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ISTRAT = 8, Add: ADS207, AD5217, ADS218, AD5221, ADS223, ADS310, AD5333, 
AD5371, ADS375, AD5376, AD5377, AD5378, ADS404, ADS507, 
ADSS08, ADS509

ISTRAT = 9, Add: ADS207, ADS17, ADS218, AD5221, AD5223, AD5325, ADS326, 
ADS509

Optimizer Level

Depending on the value of IOPT, the following subroutines are also required:

IOPT = 0, No strategy routines are added. Go to the optimizer level.

IOPT = 1, Add: ADS204, ADS213, ADS214, ADS5509

IOPT = 2, Add: ADS213, ADS214, ADS235, ADS404, ADS503, ADS509

IOPT = 3, Add: ADS213, ADS214, ADS235, ADS404, ADS503, ADS509

IOPT = 4, Add: ADS201, ADS205, ADS207, ADS217, ADS218, ADS223,
                              ADS507

IOPT = 5, Add: ADS201, ADS202, ADS203, ADS207, ADS209, ADS217, ADS218, 
ADS221, ADS235, ADS507

One-Dimensional Search Level

Depending on the value of IONED, the following subroutines are also 
required:

IONED = 1-4, Add: ADS116, ADS117, ADS118, ADS121, ADS126, ADS127

IONED = 5-8, Add: ADS101, ADS104, ADS106, ADS108, ADS109, ADS110, ADS111, 

ADS115, ADS119, ADS123, ADS124, ADS125, 
ADS502
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Appendix D   

ADS Subroutines
The subroutines in the ADS system are listed here with a very brief description 
of each. Most subroutines are internally documented, and the user is referred 
to the program listing for more details

Generally, ADS001-ADS099 are control level routines, ADS2O1-ADS299 are 
optimum level routines and ADS301-ADS399 are strategy level routines. 
ADS4O1-ADS499 are print routines and ADS501-ADS599 are utility 
routines.

Routine Purpose

ADS - Main control routine for optimization.

ADS00l - Control one-dimensional search level.

ADS002 - Control optimizer level.

ADS003 - Control strategy level

ADS004 - Define work array storage allocations.

ADS005 - Initialize scalar parameters to their default values.

ADS006 - Initialize scale factors.

ADS007 - Calculate scale factors, scale, unscale.

ADS008 - Calculates gradients of pseudo-objective for ISTRAT=1-5.

ADS009 - Re-order IC and A arrays.

ADS010 - Calculates convergence criteria parameters.

ADS101 - Coefficients of linear polynomial.

ADS102 - Coefficients of quadratic polynomial.

ADS103 - Coefficients of cubic polynomial.

ADS104 - Zeros of polynomial to third-order.

ADS105 - Minimums of polynomial to third order.

ADS106 - Evaluate n-th order polynomial

ADS108 - Find minimum of a function by polynomial interpolation.

ADS109 - Find zeroes of a function by polynomial interpolation.

ADS110 - Evaluate slope of n-th order polynomial.

ADS111 - Polynomial interpolation for constraint boundaries

ADS112 - Find ALPMAX so NDV side constraints are encountered
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ADS115 - Control one-dimensional search for constrained functions.

ADS116 - Control one-dimensional search for unconstrained functions.

ADS117 - Polynomial interpolation of unconstrained function, within 
bounds.

ADS118 - Polynomial interpolation of unconstrained function, no bounds 
given.

ADS119 - polynomial interpolation of constrained function, no bounds 
given

ADS121 - Find bounds on minimum of unconstrained function.

ADS122 - Initial interior points for Golden Section method.

ADS123 - Constrained one-dimensional search by Golden Section method.

ADS124 - Update bounds and get new interior point in Golden Section 
method, constrained.

ADS125 - Find bounds on minimum of constrained function.

ADS126 - Unconstrained one-dimensional search by Golden Section 
method.

ADS127 - Update bounds and get new interior point by Golden Section 
method, unconstrained.

ADS201 - Identify NGT most critical constraints.

ADS202 - Invert matrix B and store back in B.

ADS203 - Delta-X back to boundary in Modified Method of Feasible 
Directions.

ADS204 - Fletcher-Reeves unconstrained minimization.

ADS205 - Method of Feasible Directions.

ADS206 - X = Xold + ALPHA*S, subject to side constraints.

ADS207 - Maximum component (magnitude) of each column of A.

ADS209 - Calculate B = A-Transpose times A.

ADS211 - Update convergence parameters IDEL and IDAB.

ADS213 - Calculate initial ALPHA for one-dimensional search based on 
objective value.

ADS214 - Calculate initial ALPHA for one-dimensional search based on X-
values.

ADS216 - Finite difference gradients of objective and constraints.
ADS217 - Solve direction-finding task for Methods of Feasible Directions.
ADS218 - Solve special LP sub-problem from ADS217.
ADS221 - Push-off factors for Methods of Feasible Directions.
ADS223 - Identify active side constraints.
ADS231 - Modified Methods of Feasible Directions.
ADS235 - Variable Metric Methods,IOPT=2, 3
ADS236 - Search direction for Variable Metric Methods
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ADS237 - Penalty for equality constraints, IOPT=4, 5
ADS301 - Exterior Penalty Function Method, ISTRAT=1.
ADS302 - Calculates penalty for penalty function methods, ISTRAT=1-5.
ADS303 - Linear Extended Penalty Function Method, ISTRAT=2.
ADS304 - Quadratic Extended Penalty Function Method, ISTRAT=3.
ADS305 - Cubic Extended Penalty Function Method, ISTRAT=4.
ADS306 - Augmented Lagrange Multiplier Method, ISTRAT=5.
ADS307 - Update Lagrange Multipliers, ISTRAT=5.
ADS308 - Calculate penalty parameters, ISTRAT=5.
ADS310 - Sequential Quadratic Programming, ISTRAT=8.
ADS320 - Sequential Linear Programming, ISTRAT=6.
ADS321 - Control solution of LP sub-problem, ISTRAT=6.
ADS323 - Update move limits, ISTRAT=6, 7.
AD5325 - Sequential Convex Programming, ISTRAT=9.
AD5326 - Solve convex sub-problem, ISTRAT=9.
ADS330 - Method of Centers, ISTRAT=7.
ADS33l - Control solution of LP sub-problem, ISTRAT=7.
ADS333 - Calculate maximum constraint value.
ADS371 - Control solution of QP sub-problem, ISTRAT=8.
ADS375 - Temporary objective, ISTRAT=8.
ADS376 - Gradient of pseudo-objective for one-dimensional search, 

ISTRAT=8.
ADS377 - Change in objective gradients, ISTRAT--8.
ADS378 - Update Hessian matrix, ISTRAT=8.
ADS401 - Print arrays.
AD5402 - Print array title and array. Calls ADS401.
ADS403 - Print scalar control parameters.
AD5404 - Print Hessian matrix.
AD5420 - Print final optimization results.
ADS501 - Evaluate scalar product of two vectors.
ADS502 - Find maximum component of vector.
AD5503 - Equate two vectors.
ADS 504 - Matrix-vector product.
ADS506 - Initialize symmetric matrix to the identity matrix.
AD5507 - Normalize vector by dividing by maximum component.
ADS508 - Calculate gradient of pseudo-objective for ISTRAT=l-5. 

 Called by ADS008.
ADS509 - Identify active side constraints.
ADS510 - Scale, unscale the X-vector.
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Appendix F   

In Case of Difficulty
The ADS program is relatively robust, and there should seldom be a case 
where no progress is made during the optimization. Also, numerous internal 
checks are made to avoid exponent overflows, divide by zero, and similar run 
time errors.

Usually, when something seems wrong, it can be traced to the basic setup of 
the optimization problem or (more often) simple programming errors. Thus, 
while it is difficult to project all possible errors, some are common enough to 
be able to offer the following short list of items to   check.

1. Check all array dimension statements. Be sure the values of NRA, 
NCOLA, NRWK and NRIWK are correct. ADS is written in single 
precision and double precision should really not be needed at the 
optimization level. If the analysis program is written in double precision, 
be sure to transfer all variables and arrays to equivalent single dimension 
values before calling ADS and transfer them back on return. This effects 
very few parameters and arrays, but is sometimes overlooked, and is 
very difficult to debug.

2. Check the parameter list for calling ADS. Be sure all parameters are 
present and in the proper order. A common error is to create a program 
with an editor that allows 80 column lines, while using a compiler that 
ignores all characters after column 72.

3. Turn off the automatic scaling and try again. Use the override capability 
and set IWK(2)=0. Sometimes the scaling actually makes the 
conditioning of the problem worse, although in Version 2.00 it is greatly 
improved from before. If the difficulties still exist, leave the scaling 
turned off during further testing.

4. Set the print control, IPRINT to 3500 if ISTRAT is greater than zero or 
3050 if ISRAT is equal zero.   This will cause gradient information to be 
printed d'~~i'.~g the optimization.   If the gradient of the objective or 
any constraint function has all zeroes, this parameter is not a function of 
the design variables. While it is theoretically possible to have a zero 
gradient, it is extremely rare on a digital computer.    Check problem 
formulation.
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5. Check the order of magnitude of the components of the gradients. A well 
conditioned problem will have roughly the same order of magnitude 
values (within a factor of 100). If one term is several orders of 
magnitude greater than the others it may help to scale this design 
variable by dividing by a number of that order of magnitude. A common 
error in problem formulation is to have a function, say Q that must be 
less than QQ, where QQ is on the order of 10.000. In creating the 
constraint (which is required to be less than or equal to zero) we may 
write G(I) = Q - QQ. This will make the constraint very difficult to deal 
with by ADS, because Q must equal about 9,999.95 before the cor.sttiant 
is considered active. Therefore, it is important to scale the constraint as 
G(I) Q/QQ - 1. Now a constraint value of -0.01 will identify the 
constraint as being within one percent of being critical.

6. As a last resort, turn on the one-dimensional search print control (set the 
last digit of IPRINT to 5). Plot the objective and constraint functions 
versus the move parameter, ALPHA. If one or more are extremely 
nonlinear, reformulation of the problem by dividing that function by a 
large number is indicated. Another possibility here is that the finite 
difference gradient parameters, FDCH and FDCHM are either too large 
or too small. If the analysis is iterative, it often helps to try FDCH - 0.02 
or larger and FDCHM = 0.01 or larger. This will mask the inaccuracies 
in the analysis. On the other hand, if the analysis is calculated very 
precisely as functions of the design variables, an order of magnitude 
smaller than the default value is indicated.

7. If the last resort fails, call EDO. We will do our best to help.
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Appendix G   

ADS Internal Parameter 
Description

In this appendix a description of the ADS internal parameters is given.

The parameters are listed in alphabetical order. If it is unlikely that the 
parameter should be changed from its default value, this is stated. Reference 
32 describes most of the algorithms contained in ADS, and may be referred to 
for a more detailed description of how a parameter is used in a given 
algorithm.

Real Parameters Contained in WK

ALAMDZ - Used for ISTRAT = 5. Initial values for the Lagrange Multipliers 
for the Augmented Lagrange Multiplier method. Applies to all 
constraints. Usually the default values are adequate.

BETAMC - Used only with ISTRAT - 7. This provides an additional steepest 
descent move in the method of centers beyond the move to the 
center of the hypersphere. The basic method moves to the center 
of the hypersphere bounded by the linear approximation to the 
current objective function and constraints. In problems that are 
not too highly nonlinear, this may be quite conservative. Using 
BETAMC, it is possible to move an additional amount in a 
steepest descent direction in order to speed convergence. If the 
move is too far (it violates constraints) it will be automatically 
educed, but at the expense of a function evaluation. The general 
concept shown in Figure F.1, where the initial move is to the 
center of the circle (a hypersphere in two-dimensional space is a 
circle). The additional move is in the direction negative to the 
gradient of the objective function. BETAMC = 1.0 will move to 
the edge of the circle. A larger value is usually too optimistic, 
while a value of 0.5 will often be about right.
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Figure 6.  BETAMC Concept

CT - Used with IOPT=4 or 5. Also used with ISTRAT = 1-9 to a 
slightly lessor degree. Constraint tolerance for nonlinear 
inequality constraints. This parameter defines when a constraint 
is considered active, and is perhaps the most important 
parameter for nonlinear constrained optimization.

One of the key issues in constrained optimization is determining 
when a constraint is numerically “critical.” If a constraint, G(I) is 
numerically greater than CT, it is considered critical for purposes 
of finding a new search direction or deciding if the optimum has 
been found. This is also why constraint should be normalized to 
order of magnitude of unity. Thus if G(I) is numerically greater 
than CT (say -0.03) then it is assumed to be within 3 percent of 
being critical. Numerically, this is considered to be an “active” 
constraint.

For highly nonlinear constraints, it is often helpful to make CT 
more negative, say -0.10. By this method, the constraint is 
“trapped” sooner and the optimization process will direct the 
design away from this constraint. On the other hand, if the 
constraint is nearly linear, it may help to make CT closer to zero, 
say -0.01. Then, when interpolating for G(I)=0 a more precise 
value of G(I) is obtained. In either case, the value of CT is 
progressively reduced during optimization to a value of -
CTMIN, which is the value at which a constraint becomes 
strongly critical. In fact. if G(I) exceeds CTMIN (a positive) 
number the constraint is considered to be violated. See the 
definition of CTMIN. 
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For I0PT = 4 and 5, if a constraint repeatedly becomes active on 
one iteration and inactive on the next, CT should be increased in 
magnitude (try CT = -0.1 or -0.15), or the offending constraint 
should be divided by a factor of ten to reduce its sensitivity.

Note that in ADS, equality constraints are converted to 
equivalent inequality constraints. Therefore, the definitions of 
CT, CTMIN, CTL and CTLMIN apply equality constraints as 
well.

CTMIN - Used with IOPT=4 or 5. Also used with ISTRAT = 1-9 to a 
slightly lesser degree. Constraint tolerance defining when 
nonlinear inequality constraints are violated. CTMIN is a 
positive number. A constraint is considered inactive if its value is 
more negative than CT and active if its value is between CT and 
CTMIN. If the constraint value is more positive than CTMIN, it 
is considered violated. This is perhaps the second most important 
parameter for non1inear constrained optimization.

Since, mathematically, an inequality is violated any time it’s 
value is greater than zero, there may be a temptation to set 
CTMIN = 0. However, this should not be done because the 
optimization algorithms interpolate on zero and some numerical 
bandwidth should be provided to allow for numerical accuracies. 
The default value allows for about a half of a percent constraint 
violation for normalized constraints.

The geometric relationship between a constraint, G. and the 
parameters CT and CTMIN is shown in Figure F.2.

Figure 7. Relationship Between Constraint G and the Parameters CT and CTMIN
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CTL,CTLMIN - These parameters have the same definition as CT and 
CTMIN, but for strictly linear constraints. Because numerical 
interpolation is more precise for linear constraints, these 
values are smaller in magnitude than CT and CTMIN. CTL is 
reduced during the optimization process to a magnitude 
approaching CTLMIN, but opposite in sign.

Caution: Do not define a constraint as linear unless you are 
absolutely sure it is. If a linear constraint is treated as 
nonlinear, efficiency is only slightly reduced, but if a nonlinear 
constraint is treated as linear, the result may be non-
convergence.

DABALP - Used in IONED = 1 and 5. Convergence criteria in the Golden 
Section Method for the one-dimensional search. If IONED = 2 
or 6, a larger value is used (by a factor of 100), since the Golden 
Section search will be followed by a cubic polynomial 
interpolation using the final four points.

If it is desired to find a very precise solution to the one-
dimensional search, DABALP can be reduced. Alternatively, a 
larger value will give a less precise answer. It is normally not 
desired to change DABALP. The default value gives high 
precision on the assumption that function values are cheap, or 
else the Golden.Section method would not be used.

DABOBJ - Used in all IOPT options. Absolute convergence criteria for 
optimization. If the objective function is changed by less than 
this value for ITRMOP iterations, the optimization will 
terminate. If the objective function changes by more than one 
order of magnitude during optimization, the default value for 
DABOBJ will probably cause premature convergence. In this 
case, it is usually desirable to set DABOBJ to a small number, 
say 0.001, and let the optimization process converge based on 
the relative change criteria defined by DELOBJ.

DABOBM - Used with all strategies. This is the value of DABOBJ used 
during the optimization sub-problem and is larger than 
DABOBJ. The reason for this relaxed convergence criteria is 
that the optimizer will be called repeatedly by the strategy. 
Therefore, the solution of the sub-problem during the early 
stages is not as critical as if a strategy is not used. The rules for 
changing DABOBJ apply here also.

DABSTR - Used with all strategies. This is the overall absolute convergence 
criteria. If the objective function is changed by less than this 
value for ITRMST iterations by the strategy, the optimization 
will terminate. This has the same general meaning as DABOBJ 
and the same rules apply.
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DELALF, DELOBJ, DELOBM, DELSTR - These parameters are used where 
their counterparts DABxxx are used above. However, here the 
convergence is tested on the relative change in the objective 
function. The combination DABxxx and DELxxx work together 
to form the diminishing returns convergence criteria in ADS. 
Here by relative change we mean the fractional change in the 
value of the objective function between successive iterations.

If the objective function is quite small in magnitude, a relative 
change, of say one percent, may not be meaningful and so the 
absolute criteria are relied on to detect convergence. On the 
other hand, for large values of the objective function, the 
absolute change is considered of lesser importance and the 
relative criteria tend to control the optimization convergence.

DLOBJl - Used in all one-dimensional searches. On the first search, it is 
difficult to estimate a desirable move parameter, ALPHA, 
because the optimization process has no history. DLOBJ1 is 
used to estimate the ALPHA which will reduce the objective 
function by this fraction, based on a linear approximation to the 
problem. Thus, for DLOBJ1= 0.1, the first step in the one-
dimensional search will attempt to reduce the objective by ten 
percent.

If the problem is highly nonlinear, so that the calculated ALPHA 
is consistently less than the proposed ALPHA, efficiency will be 
improved by reducing DLOBJ1. Alternatively, if the calculated 
ALPHA is consistently greater than the proposed ALPHA, it is 
desirable to increase DLOBJ1.

DLOBJ2 - Used in all one-dimensional searches. If the objective function is 
quite large in magnitude, a move to reduce the objective by the 
fraction DLOBJ1 may be too large. In this case, DLOBJ2 is used 
to limit the change in the objective function to the magnitude of 
DLOBJ2. In other words, DLOBJ1 is a fractional change and 
DLOBJ2 is an absolute change. As with DLOBJ1, if the 
proposed moves are too large, DLOBJ2 may be reduced and if 
they are too small, DLOBJ2 may be increased.

Both DLOBJl and DLOBJ2 are updated during the optimization 
process by keeping track of progress. Therefore, their initial 
values are usually not too critical except for highly nonlinear 
problems where no progress can be made due to very large 
estimates for ALPHA.
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DX1, DX2 - Used in all one-dimensional searches. These parameters have an 
equivalent meaning to DLOBJl and DLOBJ2, but here are 
applied to each component of the X vector. The same general 
rules apply. The purpose of DX1 and DX2 is to prevent very 
large initial changes in the components of the X vector. DX1 and 
DX2 are also updated during the optimization process.

EPSEN- Used in ISTRAT=2, 3 and 4. Initial transition point from interior 
to exterior penalty function. EPSPEN is a small negative 
number, and is updated during optimization. If significant 
constraint violations are observed in the initial stages, this 
should be made more negative. The basic concept is that, if the 
design is feasible, a penalty is imposed for each constraint 
proportional to one over the constraint value as the design 
approaches the feasible boundary (G approaches zero from the 
negative side). When a G = EPSPEN, the form of the constraint 
penalty changes to a linear (ISTRAT = 2), quadratic (ISTRAT = 
3) or cubic (ISTRAT=4) function of the constraint.

EXTRAP - Used in IONED=4 and 8. The maximum polynomial 
extrapolation allowed. These one-dimensional search routines 
do not require that bounds first be found on the minimum of the 
function, but instead extrapolate for the solution. Because 
extrapolation is relatively unreliable, EXTRAP is used to limit 
the amount of extrapolation. If the objective and constraints are 
nearly linear or quadratic, extrapolation is usually reliable, and 
may even be increased. If the objective and/or constraints are 
highly nonlinear, this is ill-conditioned and EXTRAP should be 
reduced. If this occurs, it is recommended to use IONED=3 or 7 
instead.

FDCH - Used if IGRAD=0 for internal gradient calculations by ADS. 
Gradients are calculated by first forward finite difference unless 
a variable is at its upper bound. In this case, a first backwards 
finite difference step is taken and no check is made to insure that 
the resulting design variable is above its lower bound. FDCH is 
the finite difference step size as a fraction of the design variable 
being perturbed. If high precision is available and required in 
evaluating the objective and constraint functions, this should be 
reduced. If the analysis is iterative, with its own internal 
convergence parameters, FDCH may have to be increased. For 
iterative analysis, a value of FDCH up to 0.05 may be 
appropriate for constrained problems, but FDCH=0.02 is a more 
reasonable limit for unconstrained problems. 

The reason for this is that ADS seeks the point where the 
gradient is zero for unconstrained problems, and if FDCH is 
large, this is numerically difficult and will lead to false gradient 
information. 
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On the other hand, for constrained problems, the gradients of the 
objective and critical constraints are usually non-zero at the 
upturning and so precision in their calculation is not as 
important.

FDCHM- Used if IGRAD=0 for internal gradient calculations by ADS. 
This is the minimum absolute steplength for gradient 
calculations. This is used if the component of X is near zero 
since a fractional change may not be meaningful. The same 
general rules apply as with FDCH.

GMULTZ - Used with ISTRAT=8. Initial penalty parameter. If the design 
stays well inside the feasible region, this can be reduced. If the 
design moves well outside the feasible region, this should be 
increased.

PMLT - Penalty multiplier for equality constraints. ADS treats equality 
constraints by adding a linear multiplier times the constraint 
values to the objective and then treating the constraint as an 
inequality. If the equality constraints are not sufficiently close to 
zero at the optimum, increase PMLT. If convergence is very slow 
because the optimization is trying to follow this constraint too 
closely, decrease PMLT.

PSIAZ - Used with ISTRAT=8. Used to avoid constraint violations. This 
has little effect because of algorithmic modifications made to 
ADS and the fact that the ADS optimizers can deal well with 
constraint violations.

RMULT - Used with ISTRAT=1 and ISTRAT=2 - 5 for equality 
constraints. Penalty factor multiplier for the exterior penalty 
function method. If the strategy iterations progress slowly from 
far outside the feasible region, RMULT should be increased. If 
the design seems to become near feasible quickly, but then 
converge poorly, RMULT should be decreased. RMULT should 
never be less than about 1.1.

RMVLMZ - Used with strategies 6 through 9. Initial relative move limits. If 
the design variables alternately go from + to - the move limits, 
this should be reduced. If the design variables repeatedly hit one 
side (upper or lower limit), this should be increased. Also 
increase RMVLMZ if the problem is known to be nearly linear 
or if the optimum is always fully constrained (has as many active 
constraints as there are design variables).
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RP - Used with ISTRAT=1 and 5 and for ISTRAT=2, 3 and 4 for 
equality constraints. Initial penalty parameter for the exterior 
penalty function method and the Augmented Lagrange 
Multiplier Method and for equality constraints for exterior and 
extended interior penalty function methods. If the optimum of 
the first unconstrained sub-problem is well outside the feasible 
region, increase RP. If the optimum of the first unconstrained 
sub-problem is feasible or very near feasible for ISTRAT=1, 
reduce RF.

RPMAX - Used with ISTRAT=1 and 5 and for ISTRAT=2, 3 and 4 for 
equality constraints. Maximum value of RP to be used. If 
optimum is significantly outside the feasible region, increase 
RPMAX. If constraints are satisfied much more precisely at the 
optimum than required, reduce RPMAX.

RPMULT- Used with ISTRAT=2, 3 and 4. Multiplier on RPPRIM for 
consecutive iterations. Increase if convergence is very slow but 
reliable. Decrease if convergence is far from (expected) 
optimum.

RPPMIN- Used with ISTRAT=2, 3 and 4. Minimum value of RPPRIM to 
be used. If optimum is well inside the feasible region, reduce. If 
constraints are more precisely satisfied than required, increase.

RPPRIM - Used with ISTRAT=2, 3 and 4. Initial penalty parameter for 
extended penalty function methods. If the result of the first 
unconstrained sub-problem is well inside the feasible region, 
reduce. If the result is right at the constraint boundaries, 
increase. RPPRIM is reduced on each iteration by a factor 
RPMULT.

STOL - Used by all optimizers. Tolerance on the components of the 
search direction to indicate convergence by the Kuhn-Tucker 
conditions. The Kuhn-Tucker conditions are the mathematical 
conditions that are satisfied at a precise optimum. These cannot 
generally be used as the only convergence criteria since this is 
numerically difficult to achieve. However, when the Kuhn-
Tucker conditions are met, it is used as a convergence criterion 
which supersedes all others. Reducing STOL imposes a more 
stringent convergence criterion.

THETAZ - Used with IOPT=4 and 5. Normally should not be changed if 
IOPT=5. THETAZ is the nominal “push-off” factor for the 
method of feasible directions. If the constraints are highly 
nonlinear, increase THETAZ. If castrates are nearly linear, 
reduce THETAZ. There is an interaction between the constraint 
tolerance CT and THETAZ. If constraints are highly nonlinear, it 
is usually preferable to increase the magnitude of CT (make CT 
more negative).
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ZRO - Numerical “zero” to indicate reasonable machine accuracy. 
Primarily used internally by ADS to prevent floating point 
divide or to indicate that the numerical zero of a function has 
been found. Normally should not be changed.

Integer Parameters Contained on IWK

ICNDIR - Used by all optimizers. Conjugate direction or variable metric 
restart parameter to restart with a steepest descent direction if the 
objective is currently unconstrained (no constrains are active or 
violated). The default is usually adequate. If no progress is being 
made, ADS will automatically override ICNDIR and restart with 
a steepest descent direction.

It is a worthwhile exercise to solve an unconstrained problem 
with ICNDIR=1. This will use a steepest descent direction on 
every iteration. This is the classical steepest descent method and 
a comparison of this with the other unconstrained minimization 
methods in ADS will indicate the power of modern methods.

ISCAL - Turns automatic scaling on/off. If the problem has been carefully 
scaled, set ISCAL=0. Also, In general, if the optimization 
progress is slow, it is worthwhile to try ISCAL=0 to see if the 
automatic scaling in ADS is actually causing some ill-
conditioning. The present scaling routine in ADS is much 
improved from the original one and so should not cause 
difficulty.

ITMAX - Maximum number of iterations in the optimizer. If function 
evaluations are extremely expensive, reduce ITMAX. In the 
extreme case ITMAX=1 or 2 is justified because the first few 
iterations are where most progress is made. If function 
evaluations are not expensive and the optimization terminates by 
reaching ITMAX, it should be increased. When using a strategy, 
ITMAX should be at least 10 to insure reasonable solution of the 
sub-problem. When using ISTRAT=6, 7 or 9, ITMAX should 
not be reduced because the optimizer is only solving a simple 
and inexpensive approximate sub-problem. In these cases, the 
optimizer does not call for detailed function evaluations.
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ITRMOP - Used by all optimizers. The number of consecutive iterations 
that must satisfy the absolute or relative convergence criteria 
before optimization is terminated. Usually ITRMOP should be at 
least 2 because it is common to make little progress on one 
iteration, only to make major progress on the next. Therefore, 
ITRMOP=.2 will allow a second try before terminating.ITR~ST 
- Used by all strategies. The number of consecutive sub-
optimizations that must satisfy the absolute or relative strategy 
convergence criteria before optimization is terminated. The 
same rules apply as to ITRMOP, except ITRMST = 1 may be 
used. This is because, the sub-problem cannot make progress, 
and therefore solving an additional sub-optimization problem 
will probably not help.

ITRMST - Used by all strategies. The number of consecutive sub-
optimizations that must satisfy the absolute or relative strategy 
convergence criteria before optimization is terminated. The 
same rules apply as to ITRMOP, except ITRMST=1 may be 
used. This is because, the sub-problem cannot make progress, 
and therefore solving an additional sub-optimization problem 
will probably not help.

JONED - Used with ISTRAT= 8. This strategy performs an additional one-
dimensional search. Normally the one-dimensional search 
defined by IONED is used. If a different one is desired, it is 
defined by JONED. Sometimes efficiency or reliability can be 
improved by using IONED=5 or 6 and JONED=7. This is 
because the optimization sub-problem does not call for detailed 
function evaluations and so can use a less efficient, but more 
precise one-dimensional search.

JTMAX - Maximum number of strategy iterations to be allowed. Reduce if 
optimization is very expensive. Increase if optimization is 
stopped by reaching the maximum number of strategy iterations 
and function evaluations are cheap.


