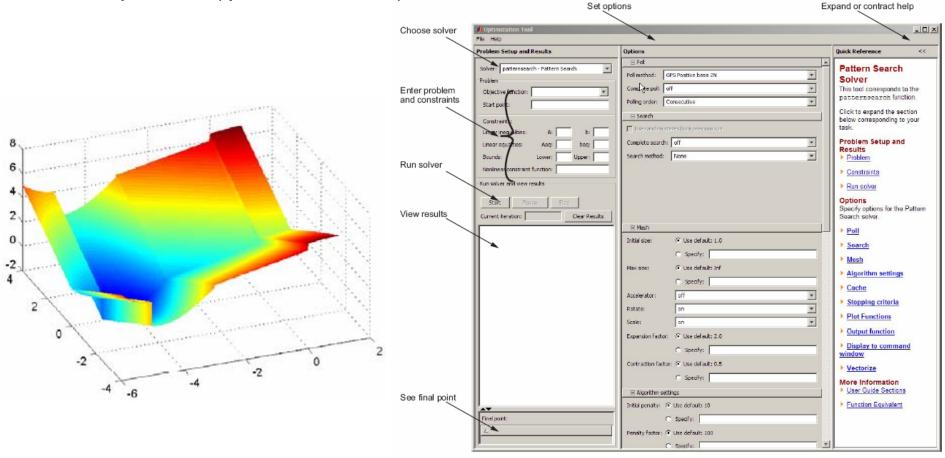




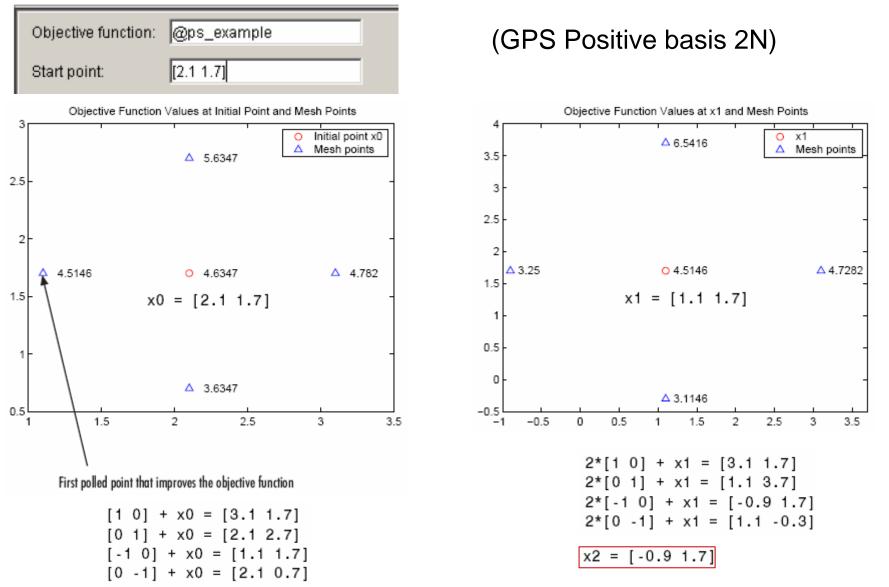

#### Genetic Algorithm and Direct Search Toolbox

V2.3 (R2008a)


Seungjae Min School of Mechanical Engineering Department of Automotive Engineering Hanyang University

## **Direct Search**

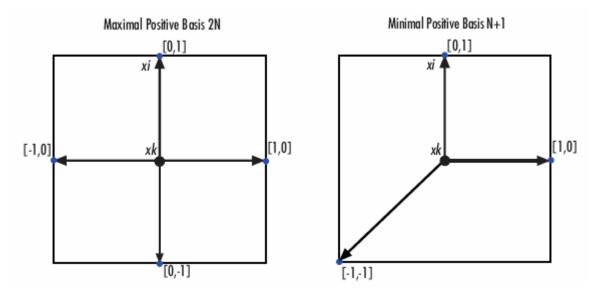
- method for solving optimization problems that does not require any information about the gradient of the objective function
- searches a set of points around the current point, looking for one where the value of the objective function is lower than the value at the current point
- solves problems for which the objective function is not differentiable, stochastic, or even continuous
- generalized pattern search (GPS) algorithm
- mesh adaptive search (MADS) algorithm


### **DS: Function Call**

- [x fval exitflag output] =patternsearch(@objfun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options)
- optimtool('patternsearch')



MATLAB: Genetic Algorithm and Direct Search Toolbox - 3


#### How Pattern Search Works



MATLAB: Genetic Algorithm and Direct Search Toolbox - 4

# DS: Terminology

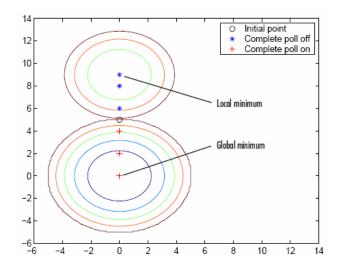
• Pattern: direction



- Mesh: step size (expansion/contraction factor)
- Polling: finds a point whose objective function value is less than that of the current point

### DS: Options (1)

– options = psoptimset(@patternsearch)


options =

TolMesh: 1.0000e-006 TolCon: 1.0000e-006 TolX: 1.0000e-006 TolFun: 1.0000e-006 TolBind: 1.0000e-003 MaxIter: '100\*numberofvariables' MaxFunEvals: '2000\*numberofvariables' TimeLimit: Inf MeshContraction: 0.5000 MeshExpansion: 2 MeshAccelerator: 'off' MeshRotate: 'on' InitialMeshSize: 1 ScaleMesh: 'on' MaxMeshSize: Inf InitialPenalty: 10 PenaltyFactor: 100

PollMethod: 'gpspositivebasis2n' CompletePoll: 'off' PollingOrder: 'consecutive' SearchMethod: [] CompleteSearch: 'off' Display: 'final' OutputFcns: [] PlotFcns: [] PlotFcns: [] PlotInterval: 1 Cache: 'off' CacheSize: 10000 CacheTol: 2.2204e-016 Vectorized: 'off' UseParallel: 'never'

# DS: Options (2)

- Poll Method
  - GPS/MADS + Positive basis 2N/Np1
- Complete Poll: Off/On
- Using a Search Method
- Mesh Expansion and Contraction
- Mesh Accelerator
  - When the mesh size is below a certain value
- Using Cache
  - Store a history, eliminate redundant computations
- Setting Tolerances for the Solver
  - Mesh, X, function, nonlinear constraint, bind
- Constrained Minimization Using pattern search

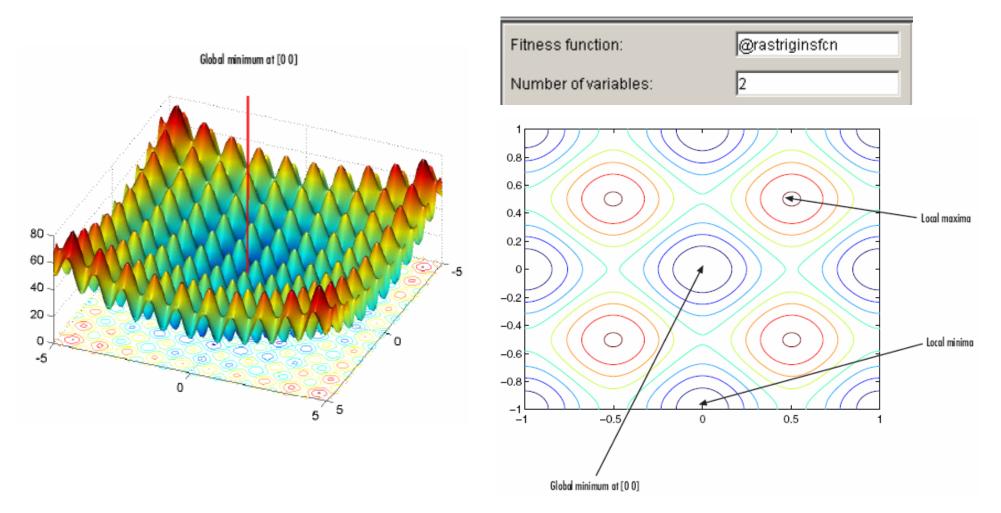


## Genetic Algorithm

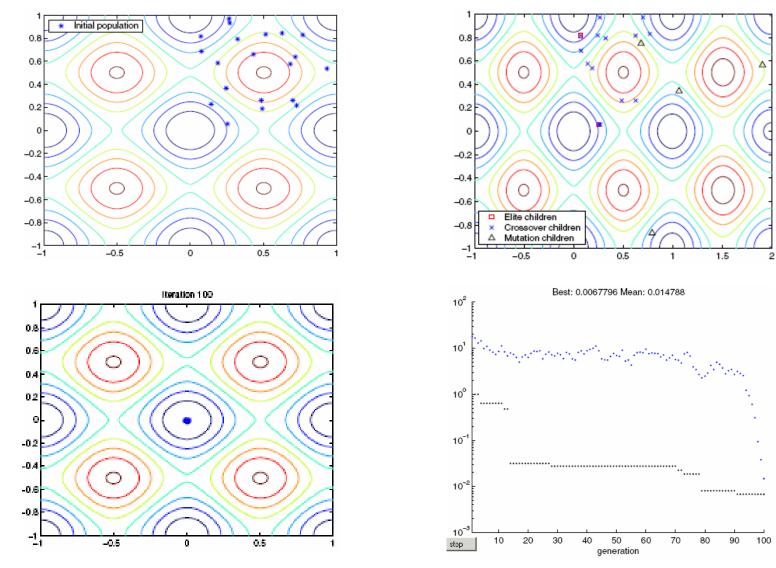
- method for solving both constrained and unconstrained optimization problems that is based on natural selection, the process that drives biological evolution
- solves a variety of optimization problems that are not well suited for standard optimization algorithms, including problems in which the objective function is discontinuous, nondifferentiable, stochastic, or highly nonlinear

| Classical Algorithm                                                                                      | Genetic Algorithm                                                                                                    |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Generates a single point at each iteration.<br>The sequence of points approaches an<br>optimal solution. | Generates a population of points at each iteration. The best point in the population approaches an optimal solution. |
| Selects the next point in the sequence by a deterministic computation.                                   | Selects the next population by computation which uses random number generators.                                      |

#### GA: Function Call


- [x fval exitflag output population scores] = ga(@fitnessfun, nvars, A, b, Aeq, beq, lb, ub, nonlcon, options)
- optimtool('ga')

|                                  | Setoptions                                           |                                                     | Expand or contract help                                             |
|----------------------------------|------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|
| Choose solver                    | ->> Optimization Tool                                |                                                     | ×                                                                   |
| Choose solver                    | File Help                                            |                                                     | <b>X</b>                                                            |
|                                  | Problem Setup and Results                            | Options                                             | Quick Reference <<                                                  |
|                                  | Solver: ga - Genetic Algorithm                       | Population type: Double Vector                      | Genetic Algorithm                                                   |
| Enter problem<br>and constraints | Fitness function:                                    | Population size:  C Use default: 20 C Specifiv:     | This tool corresponds to the ga function.                           |
|                                  | Constraints:<br>Linear inclusities: A: b:            | Creation function: Use constraint dependent default | Click to expand the section<br>below corresponding to your<br>task. |
|                                  | Linear equalities: Aeq: beq: Bounds: Lower: Upper:   | Initial population:  Use dafault:  Specfy:          | Problem Setup and<br>Results<br>Problem                             |
|                                  | Noninea constraint function:                         | Initial scores: ( Use default: []                   | <u>Constraints</u>                                                  |
| Run solver                       | -Run solver and view results                         | C Specfy:                                           | Run solver                                                          |
|                                  | Use random states from previous run Start Pause Stop | Initial range: @ Use default: [0;1] C Specify:      | Options<br>Specify options for the<br>Genetic Algorithm solver.     |
|                                  | Current iteration: Clear Results                     | Fitness scaling                                     | Population                                                          |
| View results                     |                                                      | Scaing function: Rank                               | • Fitness scaling                                                   |
|                                  | $\mathbf{k}$                                         |                                                     | <u>Selection</u>                                                    |
|                                  |                                                      |                                                     | Reproduction                                                        |
|                                  |                                                      | Selection                                           | • Mutation                                                          |
|                                  |                                                      | Selection Function: Stochastic uniform              | <u>Crossover</u>                                                    |
|                                  |                                                      |                                                     | <u>Migration</u>                                                    |
| See final point                  |                                                      |                                                     | Algorithm settings                                                  |
|                                  |                                                      | Elte count: C Use default: 2                        | Hybrid function                                                     |
|                                  |                                                      | C Specify:                                          | Stopping criteria                                                   |
|                                  | Final point:                                         | Crossover fraction: C Use default: 0.8              | Plot Functions                                                      |
|                                  | <u></u>                                              | C Specify:                                          | Output function                                                     |
|                                  |                                                      | Mutation                                            | Display to command<br>window                                        |
|                                  |                                                      | Mutation function: Use constraint dependent default | • <u>Vectorize</u>                                                  |
|                                  | I                                                    | *                                                   | More Information                                                    |


MATLAB: Genetic Algorithm and Direct Search Toolbox - 9

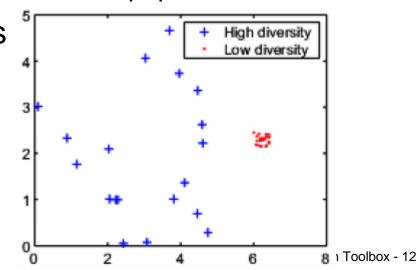
#### Rastrigin's Function

$$Ras(\mathbf{x}) = 20 + x_1^2 + x_2^2 - 10(\cos 2\pi x_1 + \cos 2\pi x_2)$$



#### **Iteration History**




MATLAB: Genetic Algorithm and Direct Search Toolbox - 11

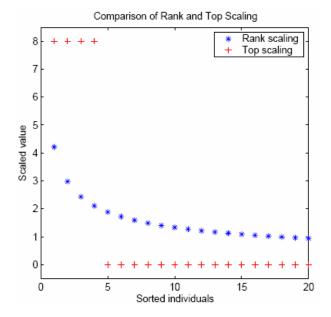
# GA: Terminology

- Fitness function: objective function
- Individual: genome (genes)
  - any point to which you can apply the fitness function
- Population: an array of individuals
- Generation: Each successive population
- Diversity

- average distance between individuals in a population

- Fitness value and best fitness
- Parent and children



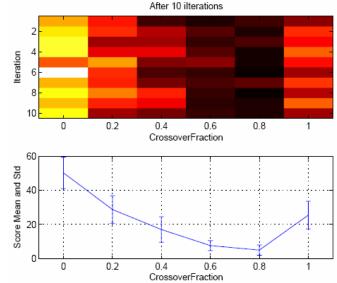

## GA: Options (1)

```
– options = gaoptimset(@ga)
```

```
options =
                                            InitialPopulation: []
       PopulationType: 'doubleVector'
                                                InitialScores: []
          PopInitRange: [2x1 double]
                                               InitialPenalty: 10
       PopulationSize: 20
                                                PenaltyFactor: 100
            EliteCount: 2
                                                 PlotInterval: 1
    CrossoverFraction: 0.8000
                                                  CreationFcn: @gacreationuniform
        ParetoFraction: []
                                            FitnessScalingFcn: @fitscalingrank
    MigrationDirection: 'forward'
                                                 SelectionFcn: @selectionstochunif
    MigrationInterval: 20
                                                 CrossoverFcn: @crossoverscattered
    MigrationFraction: 0.2000
                                                  MutationFcn: {[1x1 function_handle] [1] [1]}
           Generations: 100
                                           DistanceMeasureFcn: []
             TimeLimit: Inf
                                                    HybridFcn: []
          FitnessLimit: - Inf
         StallGenLimit: 50
                                                      Display: 'final'
                                                     PlotFcns: []
        StallTimeLimit: Inf
                                                   OutputFcns: []
                TolFun: 1.0000e-006
                                                   Vectorized: 'off'
                TolCon: 1.0000e-006
                                                  UseParallel: 'never'
```

## GA: Options (2)

- Population Diversity
  - Setting the initial range / population size
- Fitness Scaling
  - Rank, Proportional, Top, Shift linear
- Selection
  - Stochastic uniform, Remainder, Uniform, Roulette, Tournament

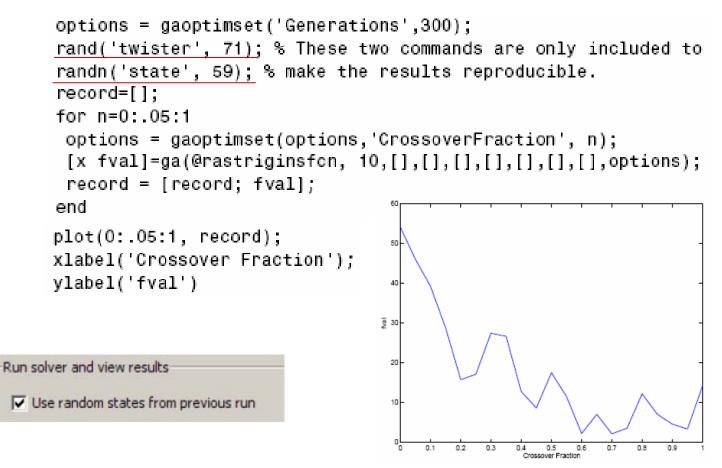



## GA: Options (3)

- Reproduction Options
  - Elite count, Crossover fraction
  - >>deterministicstudy
- Crossover

| Population size    | 20  | Children  |
|--------------------|-----|-----------|
| Elite count        | 2   | 2         |
| Crossover fraction | 0.8 | 0.8*18→14 |
| Mutation           |     | 4         |

 Scattered, Single point, Two point, Intermediate, Heuristic, Arithmetic



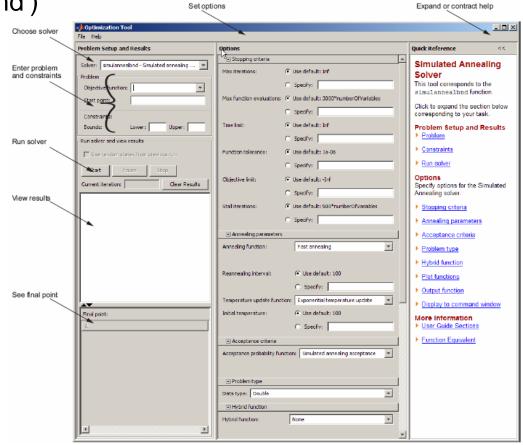

# GA: Options (4)

- Mutation
  - Mutation function: Gaussian, Uniform, Adaptive feasible
  - Scale: controls the standard deviation of the mutation
  - Shrink: controls the rate at which the average amount of mutation decreases
- Global vs. Local minima
  - Increase the initial range
- Using a Hybrid Function
  - optimization function that runs after the genetic algorithm terminates in order to improve the value of the fitness function
  - uses the final point from the genetic algorithm as its initial point
- Setting the Maximum Number of Generations
- Vectorizing the Fitness Function
  - 'Vectorized' On (compute the fitness for all individuals at once)
  - tic; ga(@fitnessfun, nvars); toc

#### **Reproducing Results**

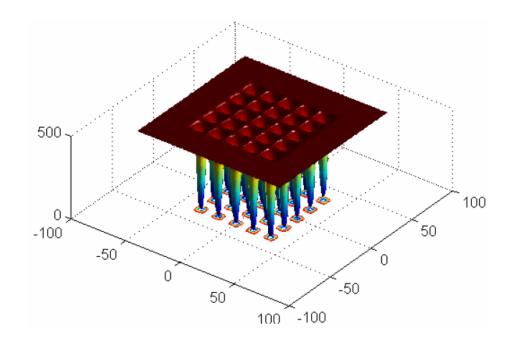
run the genetic algorithm with different settings for
 Crossover fraction to see which one gives the best results

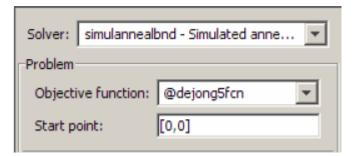



MATLAB: Genetic Algorithm and Direct Search Toolbox - 17

## Simulated Annealing and Threshold Acceptance

- method for solving unconstrained and bound-constrained optimization problems
- The method models the physical process of heating a material and then slowly lowering the temperature to decrease defects, thus minimizing the system energy
- Threshold acceptance
  - Instead of accepting new points that raise the objective with a certain probability, it accepts all new points below a fixed threshold (faster than SA)
  - The threshold is then systematically lowered, just as the temperature is lowered in an annealing schedule


## Function Call


- [x fval exitflag output] = simulannealbnd(@objfun, x0, lb, ub, options)
- [x, fval exitflag output] = threshacceptbnd(@objfun, x0, lb, ub, options)
- optimtool('simulannealbnd')



MATLAB: Genetic Algorithm and Direct Search Toolbox - 19

#### De Jong's Fifth Function





fun = @dejong5fcn;
[x fval] = simulannealbnd(fun, [0 0])

x =
 -31.9779 -31.9595
fval =
 0.9980

# Terminology

- Objective function
- **Temperature:** InitialTemperature, TemperatureFcn
  - It determines the probability of accepting a worse solution at any step and is used to limit the extent of the search in a given dimension
- Annealing schedule: TemperatureFcn
  - The rate by which the temperature is decreased
  - The slower the rate of decrease, the better the chances are of finding an optimal solution, but the longer the run time
- **Reannealing:** ReannealInterval
  - Raises the temperature after a certain number of new points have been accepted, and starts the search again at the higher temperature
- Threshold acceptance
  - accepts a worse point if the objective function is raised by less than a fixed threshold

## SA: Options

- options=saoptimset('simulannealbnd')
- options=saoptimset('threshacceptbnd')

```
options =
          AnnealingFcn: @annealingfast
        TemperatureFcn: @temperatureexp
        AcceptanceFcn: @acceptancesa
                TolFun: 1.0000e-006
        StallIterLimit: '500*numberofvariables'
           MaxFunEvals: '3000*numberofvariables'
             TimeLimit: Inf
               MaxIter: Inf
       ObjectiveLimit: -Inf
               Display: 'final'
      DisplayInterval: 10
             HybridFcn: []
        HybridInterval: 'end'
              PlotFcns: []
          PlotInterval: 1
            OutputFons: []
    InitialTemperature: 100
     ReannealInterval: 100
              DataType: 'double'
```

#### **Nonlinear Constraint Solver**

- Augmented Lagrangian Pattern Search (ALPS) algorithm
- Augmented Lagrangian Genetic Algorithm (ALGA)

$$\begin{array}{l} \text{Minimize} \\ x \\ f(x) \\ \text{such that} \\ C_i(x) \leq 0, i = 1 \dots m \\ C_i(x) = 0, i = m + 1 \dots mt \\ Ax \leq b \\ A_{eq}x = beq \\ LB \leq x \leq UB \end{array}$$

$$\Theta(x,\lambda,s,\rho) = f(x) - \sum_{i=1}^m \lambda_i s_i \log(s_i - c_i(x)) + \sum_{i=m+1}^{mt} \lambda_i c_i(x) + \frac{\rho}{2} \sum_{i=m+1}^{mt} c_i(x)^2 + \frac{\rho}{2} \sum_{i=m+1}^{mt}$$

MATLAB: Genetic Algorithm and Direct Search Toolbox - 23