

목차

1. 배경 및 목적

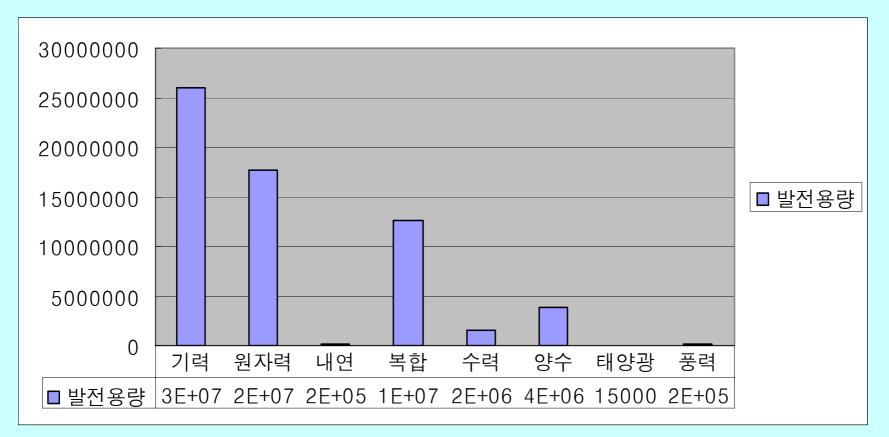
2. Problem formulation

3. 타당성 검증

배경 및 목적

1. 국내전력현황(2007.07. 기준)

정산단가 평균 : 56 원/kWh


기력발전 단가: 45.64 원/kWh

거래금액:1조 7,535억원

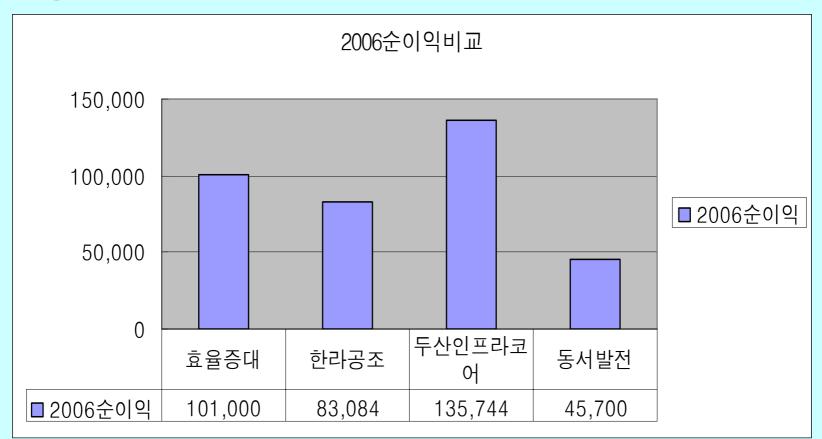
발전 설비 : 6,668.6 만kW

배경 및 목적

2. 발전형식별 용량

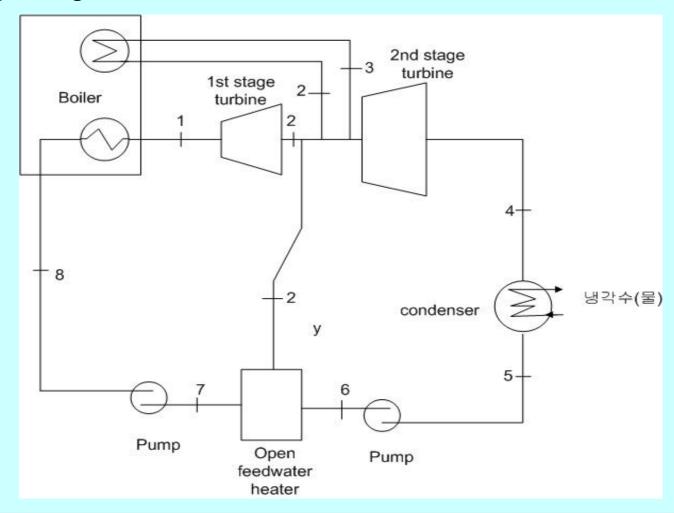
-출처: 한국 전격 거래소

배경및목적


3. 발전형식별 단가

기력	25991100	KW	45.64	원/KWh
원자력	17715683		40.45	
내연	217000		156.32	
복합	12589000		101.23	
수력	1587000		92.6	
양수	3900000		162.14	
태양광	15000		82.69	
풍력	164000		75.66	
연료전지	0		74.62	

-출처: 한국 전격 거래소


배경 및 목적

4. 경제적 효과

-출처: 금융감독원 전자공시 시스템

사이클 계통도

사이클 T-s diagram 8s 6s 4s 4

- 1. Assumption
 - 1)배관에서의 압력 및 에너지 손실은 무시함.
 - 2) Condenser 출구에서의 steam 온도는 이론적 최저 값인 냉각수의 온도보다 조금 높은 30℃ 로 설정.
 - 3) Condenser 를 지나서 나온 steam은 two phase mixture 임.

2. Specified Data

- 보일러 입·출구 및 터빈 입구 압력

$$P_1 = P_8 = 10 \text{ MPa}$$

- 재열 재생 시 압력

$$P_2 = P_3 = P_6 = P_7 = 0.7$$
 MPa

- condenser 출구 압력 : 출구온도 $T_4 = T_5 = 30$ °C

이므로
$$P_5 = P_4 = P_{sat}(30^{\circ}\text{C}) = 0.004246 \text{ MPa}$$

- -Specified Data 계속-
 - Isentropic turbine efficiency

$$\eta_t = 88\% = 0.88$$

- Isentropic pump efficiency

$$\eta_p = 88\% = 0.88$$

3. Design Variables

-보일러 steam 가열시 목표 온도 $T_{\!\scriptscriptstyle 1}$

-1단계 터빈을 지난 후 재열시 목표 온도

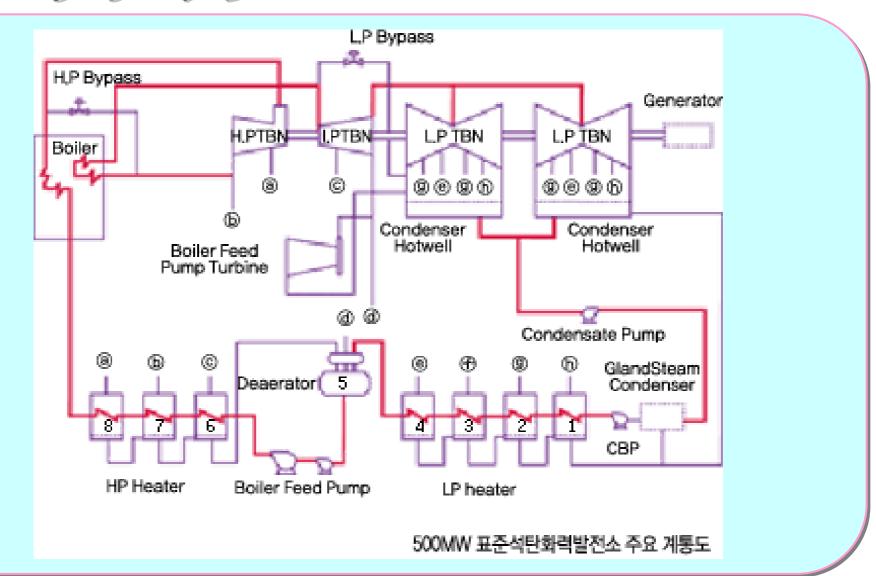
 T_3

-1단계 터빈을 지난 후 재생시 유량 분율 y

4. Intermediate variables

모든 state들의 엔탈피

$$h_1$$
, h_2 , h_{3s} , h_3 , h_{4s} , h_4 , h_5 , h_{6s} , h_6 , h_7 , h_{8s} , h_8


- * 엔탈피 항들을 T_1, T_3, y 의 함수들로 표현 가능
- 5. Objective function

$$\mu_{cycle} = \frac{\dot{W}_{turbine}}{\dot{Q}_{total}} = \frac{h_1 - h_2 + (1 - y)(h_3 - h_4)}{h_1 - h_8 + (1 - y)(h_3 - h_2)}$$

- 6. constraints.
 - 1) 처음 가열시 온도 535℃ ≤ T₁ ≤ 600℃
 - 재료의 한계 및 1단계 터빈 출구 증기의 steam quality ≥ 1 이 되기 위함.
 - 2) 재열시 온도 373.5°C ≤ T_3 ≤ 600°C
 - 재료의 한계와 2단계 터빈 출구 증기의 steam quality ≥ 0.9 가 되기 위함.

- Constraints 계속 -
 - 3) state 7의 엔탈피 $h_7 \leq 697.2 \; \mathrm{kJ/kg}$
 - 재생 후 펌프로 들어갈 때의 상태를 액체상태로 유지.

타당성 검증

타당성 검증

1. 사이클 구성 요소인 터빈과 펌프의 비가역성 고려→ 실제와 근사함.

2. 효율에 막대한 영향을 미치는 T_1, T_3, y 값을 설계 변수로 지정.