

S.Es [Smart Engineers]

이원기

김상우

김보경

설 계 과 정

- Assume Turbulent Flow In Water Gun.
- Comparing to Using Excel & Matlab Program.
- Comparing to Optimum Value for Laminar & Turbulent Flow.

Data & Information Collection 🔂

Assumption

- ❖ 원관 내 유동은 **Turbulent Flow**
- ❖ 손실수두(H₁) =0.03(m)
- ❖ 물총의 길이 L = 0.15(m)
- ❖ 유체는 20℃ 물 $\rho = 998.21 (Kg/m^3)$ $u = 0.001002(Ns/m^2)$ $g = 9.806 (m/s^2)$ $(N_{BF})_{MIN} = 2000$

레이놀즈수:
$$\frac{\rho VD}{\mu} = N_{Re}$$

손실수두:
$$H_L = f \frac{DV^2}{L 2g}$$

Data & Information Collection

❖ Blasius의 식

$$h_L = f \frac{L}{D} \frac{V^2}{2g}, f = \frac{0.3164}{\text{Re}^{\frac{1}{4}}}$$

 $Re \le 10^5$

Definition of Design Variables

- ❖ D = 원관의 지름 [m]
- ❖ V = 유체의 출구 속도 [m/s]

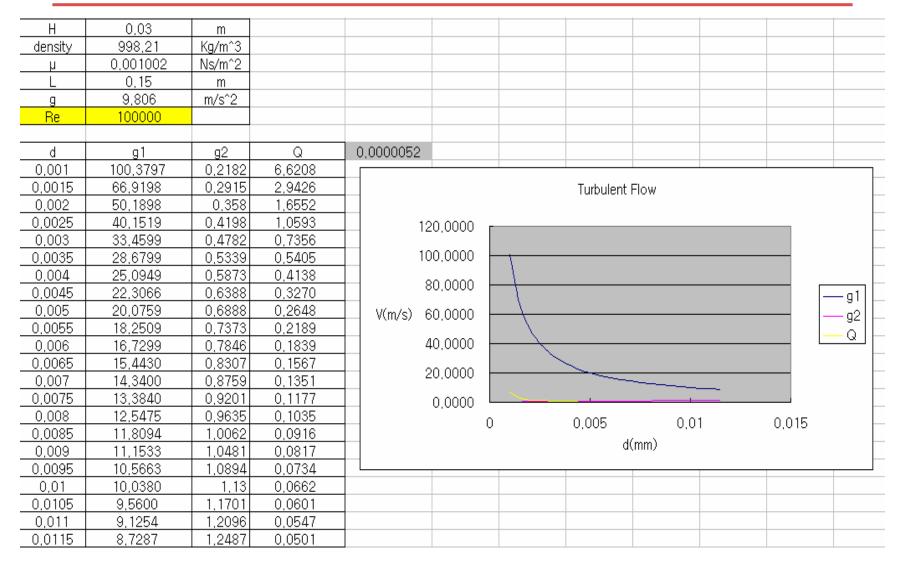
Identification of a Criterion

$$Q = AV = \frac{\pi D^2 V}{4}, f = \pi DL$$

Identification of Constraints

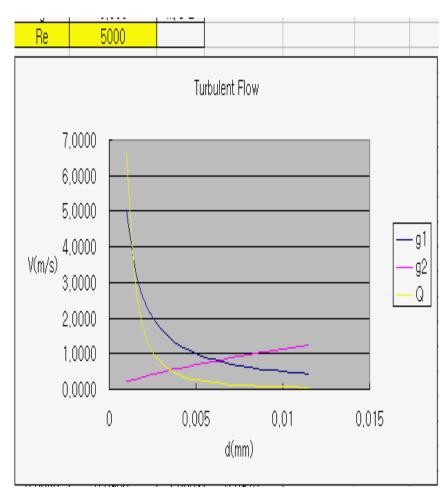
$$g_1 = \frac{\rho VD}{\mu} \le \text{Re}$$

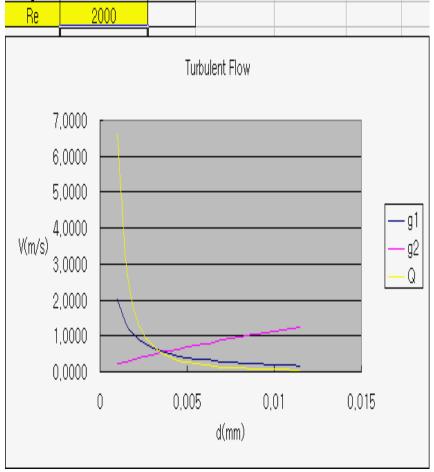
$$g_2 = f \frac{L}{D} \frac{V^2}{2g} \leq H_L$$


$$g_3 = -D \leq 0$$

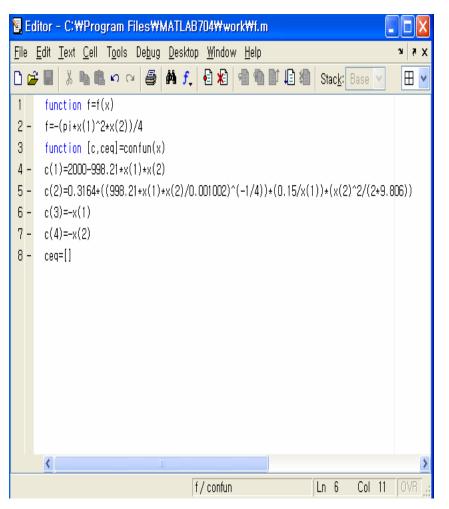
$$g_{4} = -V \leq 0$$

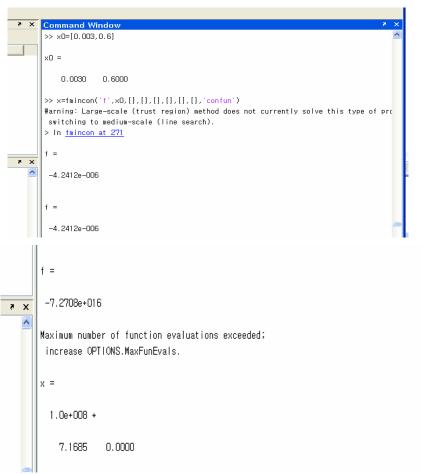
Using Excel





Iteration





Using Matlab (fmincon)

Laminar Flow Result

- 11	0.00					
Н	0,03	m				
density	998,21	Kg/m^3				
μ	0,001002	Ns/m^2				
L	0,15	m				물총설계
g	9,806	m/s^2				
Re	2000					
					2,0000	
d	g1	g2	Q	0,0000052		
0,001	2,0076	0,0611	6,6208		1,5000	
0,0015	1,3384	0,1374	2,9426		> 1,0000	g1
0,002	1,0038	0,2442	1,6552		1,0000	- g ²
0,0025	0,8030	0,3816	1,0593		0,5000	
0,003	0,6692	0,5495	0,7356			
0,0035	0,5736	0,7479	0,5405		0,0000	, , , , , , , , , , , , , , , , , , , ,
0,004	0,5019	0,9769	0,4138		0	0 0,001 0,002 0,003 0,004 0,005
0,0045	0,4461	1,2364	0,3270			d
0,005	0,4015	1,5264	0,2648			

Optimum Solution

$$f = \pi DL = 0.0016 \ (m^2)$$

고 찰

- ❖ 난류유동으로는 최적해를 도출할 수 없었다.
- ❖ 층류유동으로 설계해도 무방하다는 것을 확 인 할 수 있었다.
- ❖ 실제물총과 비교해 보았을 때 치수의 오차는 크지 않았다.

감사합니다 *^^*

