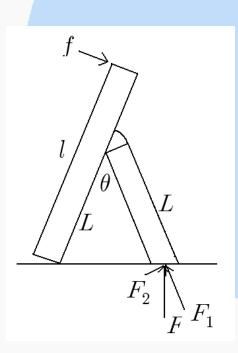
의자 넘어짐 받침대 최저화

(2nd Project)

급 조 김민석(2003005974) 이용한(2004007036)


목 차

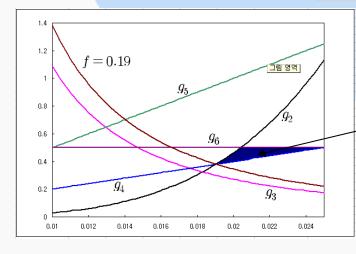
- 1. Project 1 내용 수정
 - 모델 재해석 및 문제정식화
 - 바뀐 문제에서의 초기값 예상
- 2. Optimum Solution 구하기
 - Excel Solver 이용
 - Matlab Optimization Tool 이용 (Fmincon, Genetic Algorithm, Pattern Search)
 - 결과 고찰
- 3. 최적의 물성치 찾기

1. Project 1 내용 수정

모델 재 해석

- 힘의 방향을 축 방향이 아닌 바닥에 수직 방향으로 하여 재 해석 (제약조건 1개 추가)

$$\sum M=0$$
 $fl-2FL\sin{rac{ heta}{2}}=0$ $F=rac{fl}{2L\sin{rac{ heta}{2}}}$ $F_1=F\cos{rac{ heta}{2}}=rac{fl}{2L an{rac{ heta}{2}}}$ $F_2=F\sin{rac{ heta}{2}}=rac{fl}{2L}$


$$White Oak$$

$$E=12 GPa, \ \rho=690 kg/m^3, \ \tau_{all}=13.8 MPa$$

$$f=1600 N$$

$$factor \ of \ safety=5$$

$$length(l)=0.5 m$$

$$Kce=0.418$$

$$d_0=0.05 m$$

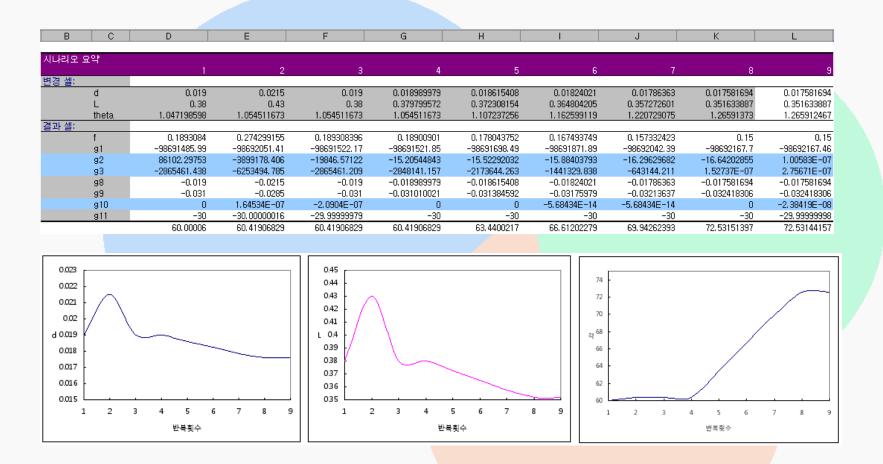
1. Project 1 내용 수정

- 문제 재 설정

 $\begin{array}{l} \textit{variables}: \ d, \ L, \ \theta \\ & \text{min} \textit{imize} \ f = 2 \, \rho d^2 L \\ & \textit{constraint} \ \ g_1: \ \frac{f \, l}{4 \, L \tan \frac{\theta}{2}} \, fs - \frac{\pi^2 E d^2}{3 \, L^2} \leq 0 \\ & g_2: \ \frac{1}{2} \, \frac{f \, l}{2 \, L d^2 \tan \frac{\theta}{2}} \, fs - \frac{K_{ce} E d^2}{L^2} \leq 0 \\ & g_3: \ \frac{3}{8} \, \frac{f \, l}{L d^2} \, fs - \tau_{all} \leq 0 \\ & g_4: \ -L \leq 0 \qquad g_5: \ L - l \leq 0 \\ & g_6: \ -\theta \leq 0 \qquad g_7: \ \theta - \frac{\pi}{2} \leq 0 \\ & g_8: \ -d \leq 0 \qquad g_9: \ d - d_0 \leq 0 \\ & g_{10}: \ 20 - \frac{L}{d} \leq 0 \qquad g_{11}: \ \frac{L}{d} - 50 \leq 0 \end{array}$

В	С	D	E	F	G	Н		J	K
_	4000000000	N. (. A.O.	해 찾기 모델 :	선정					
E	12000000000		에 웃기 포함	20					
Kce	0.418		목표 셀(<u>E</u>):	\$C\$16 🛼					ALER/OX
angle	1.047197551		_						실행(<u>S</u>)
:	0.5		해의 조건:	○ 최대값(<u>M</u>)	⊙ 최소강	(N) 0.7	([정강(V):	0	닫기
-t -	1600					<u></u> ,	10 BX (<u>1</u>)	J.	= 기
rho		kg/m^3	┌값을 바꿀 셀	i(<u>R</u>)———					
au_allowable	13800000		- \$D\$12:\$D\$1	3	₹.	Ī - Ā	:정(<u>G</u>)		옵션(<u>0</u>)
actor of safety	5	none	THE A TUM						BC(0/
			-제한 조건(<u>U</u>						
design variables		final value	\$C\$19 <= \$	E\$19	_	추:	7ド <u>(A</u>)		
1	0.01	0.019043395	\$C\$2U \= \$ c \$C\$21 \- \$	⊏\$20 :F ¢ 21		<u></u>	71(0)		초기화(<u>R</u>)
_	0.4	0.380867891	\$Č\$22 <= \$	Ē\$22		[변:	경(<u>C</u>)		
			\$C\$20 <= \$ \$C\$21 <= \$ \$C\$21 <= \$ \$C\$22 <= \$ \$C\$23 <= \$ \$C\$24 <= \$	E\$23			[<u>D</u>) [[도움말(<u>H</u>)
cost function	******			E\$24					
	0.190608462								
constraint									
31	-98691496.37		0						
32	6.44475E-07		0						
33	-2940041.437		0						
34	-0.380867891		0						
35	-0.119132109		0						
36	-0.019043395		0						
97	-0.030956605	•	0						
38	0	•	0						
39	1 -30	<=	l n	1					

Feasible area


Theta = 60 일 때 결과 d = 0.019 L = 0.38

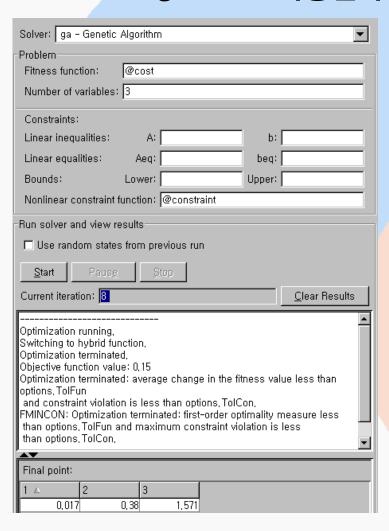
2. Optimum Solution 구하기(Excel Solver)

- Excel Solver 이용하여 최적화 한 결과
 - : 전 과정에서 구한 초기값을 이용한다

2. Optimum Solution 구하기(Excel Solver)

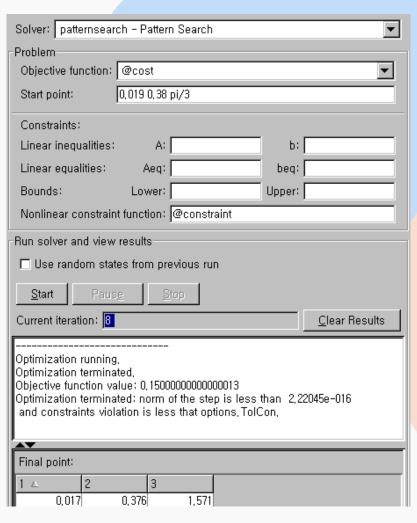
결과: d=1.76cm L=0.3516m theta =72.5 f=0.15kg

- M file 구성


```
cost function
function f=cost(x)
f = 2 * 690 * x(1)^2 * x(2);
constraint
function [c,ceq]=constraint(x)
E = 12 * 10^9; Kce = 0.418; I = 0.5; force = 1600;
tau = 13.8 * 10^6; fs = 5; d0 = 0.05;
c(1)= (force * I * fs)/(4 * x(2) * tan(x(3)/2)) - (pi^2 * E* x(1)^2)/(3*x(2)^2);
c(2) = (force * I * fs)/(4 * x(1)^2 * x(2) * tan(x(3)/2)) - (Kce * E * x(1)^2)/(x(2)^2);
c(3) = (3 * force * I * fs)/(8 * x(1)^2 * x(2)) - tau;
c(4) = -x(2):
c(5) = x(2) - 1;
c(6) = -x(3);
c(7) = x(3) - (pi / 2);
c(8) = -x(1);
c(9) = x(1) - d0;
c(10)=20 - (x(2) / x(1)):
c(11)=(x(2) / x(1)) - 50:
                              ceq=[];
```

- fmincon 사용 결과

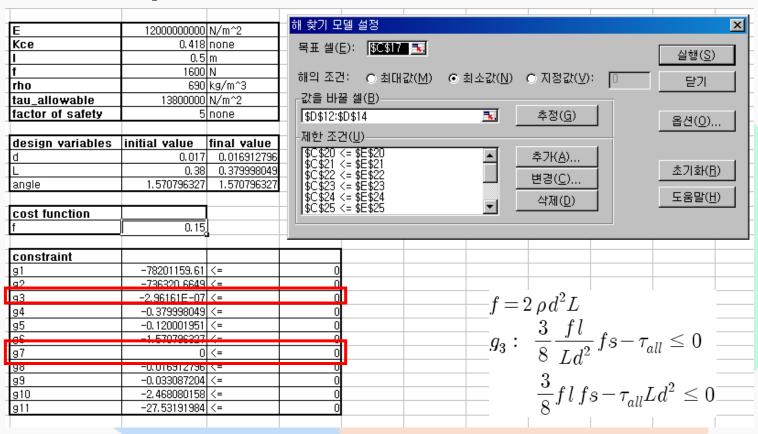
```
Command Window
   >> [x,fval,exitflag,output]=fmincon('cost',x0,[],[],[],[],[],[],'constraint')
  Warning: Trust-region-reflective method does not currently solve this type of problem,
   using active-set (line search) instead.
  > In fmincon at 437
  Optimization terminated: first-order optimality measure less
   than options.TolFun and maximum constraint violation is less
   than options.TolCon.
  No active inequalities.
  x =
      0.0176 0.3518 1.2758
  fval =
      0.1500
  exitflag =
  output =
           iterations: 5
            funcCount: 24
         Issteplength: 1
             stepsize: 1,5928e-007
            algorithm: 'medium-scale: SQP, Quasi-Newton, line-search
        firstorderopt: 7.0059e-007
      constrviolation: -1.5944e-006
              message: [1x144 char]
```


5회 반복결과 d=0.0176 L=0.3518 theta = 1.2758 (약 73.1도) f=0.15 의 결과가 얻어졌으며, exitflag =1 인 점으로 보아 결과값이 수렴값임을 알 수 있다.

- Genetic Algorithm 사용결과

- 처음 default 상태에서 실행한 결과 제대로 된 값이 나오지 않는다.
- 추가적인 옵션 사용
 Initial population : [0.019, 0.38, pi/3]
 Hybrid function : fmincon, fminunc
 Population Size : 40
- 8번의 반복결과, d=0.017, L=0.38, theta=1.57(약 90도) f=0.15 의 값이 얻어졌다.

- Pattern search 사용결과

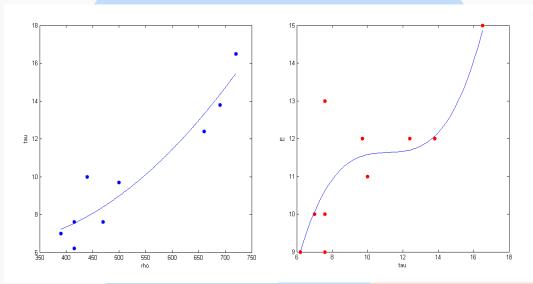


- Starting Point = [0.019, 0.38, pi/3]
- G.A 처럼 default 옵션을 사용한 결과 제대로 된 값을 얻을 수 없었다.
- 추가적인 옵션 사용
 Poll method : MADS Positive basis 2N
 Mesh accelerator : on
 Stopping criteria :
 Mesh, X, Function, Nonlinear,
 constratint Tolerance : 1e-10
- 8번의 반복결과 d=0.017, L=0.377, theta=1.571(약 90도), f=0.15 의 값을 얻었다.

- 고찰

	d	L	Theta	f
Excel Solver	1.76cm	0.3516m	72.5	0.15
Fmincon	1.76cm	0.351 <mark>8m</mark>	73.1	0.15
Genetic Algorithm	1.7cm	0.38m	90	0.15
Pattern Search	1.7cm	0.377m	90	0.15

- 1. 4가지 결과 모두 같은 목적함수 <mark>값을 보였으나</mark>, 변수 d L theta 값이 조금씩 차이를 보인다. -> 직접 구한 최적값 들을 제약조건에 넣어 본 결과 제약조건을 모두 만족한다.
- 2. 변수값이 조금씩 달라도 목적함수 값이 동일하므로 Multiple Solution 일 것으로 예상된다.



- 초기값을 d=0.017 L=0.38 theta=90 으로 ExcelSolver로 최적해 구하기
- 결과값 : d=0.0169, L=0.38, theta=90 Active constraint : g3, g7
- Multiple Solution 예상 : 목적함수 f 와 constraint g3의 형태는 다음과 같다. g3을 정리하면 d^2*L의 형태로 목적함수 f 와 동일한 형태
- ~ 다른 제약조건들이 만족되는 범위 내에서 multiple solution 임을 알 수 있다.

- 이용가능한 재료의 물성치를 Linked Discrete Variables로 설정하여 어떤 재료가 가장 최적의 값을 주는지를 알아본다.

Material	Density (kg/m^3)	Shear Strength (Mpa)	Elasticity (Gpa)	
Western white pine	390	7	10	
Redwood	415	6.2	9	
Ponderosa pine	415	7.6	9	
Spruce, Sitka	415	7.6	10	
Whestern hemlock	440	10	11	
Douglas fir	470	7.6	13	
Shortleaf pine	500	9.7	12	
Red oak	660	12.4	12	
White oak	690	13.8	12	
Shagbark hickory	720	16.5	15	

- 물성치간의 관계 근사식 유도.(최소자승법)

$$\begin{split} \tau \times 10^{-6} &= 4.0952 \times 10^{-5} \times \rho^2 - 0.0201 \times \rho + 8.8866 \\ E \times 10^{-3} &= 0.0206 \times \tau^3 - 0.6902 \times \tau^2 + 7.73 \times \tau - 17.3042 \\ 390 &\leq \rho \leq 720 \\ 6.2 \times 10^6 &\leq \tau \leq 16.5 \times 10^6 \\ 9 \times 10^9 &\leq E \leq 15 \times 10^9 \end{split}$$

d 와 L 값을 결정하는 g2, g3 에 관여하는 물성치인 shear strength, Elasticity 가 값이 클수록 변수 d, L값이 줄어들 것이고, 목적함수 f 에 관여하는 Density 값이 작을수록 목적함수 값이 줄어들 것이다. 세 물성치가 모두 같이 감소하거나 증가하는 경향을 보이므로 범위 내에 적당한 물성치 값이 존재할 것으로 예상한다.

- 문제 재 설정 및 풀이

- 입력하는 초기값마다 다른 결과가 나온다. ~ 수많은 Local minimum 있을 것으로 예상된다.
- Genetic Algorithm, Pattern Search 등의 Matlab의 다양한 Optimization Tool 을 사용하여도 Global minimum 값을 얻을 수 없었다.

 직접 물성치 대입하여 Excel Solver 을 통한 Global Minimum 값 구하기.

Material	Density (kg/m^3)	Shear Strength (Mpa)	Elasticity (Gpa)	d	L	angle	f
Western white pine	390	7	10	0.022	0.4438	60.45	0.16714
Redwood	415	6.2	9	0.023	0.4622	60.45	0.20081
Ponderosa pine	415	7.6	9	0.02145	0.429	60.23	0.16382
Spruce, Sitka	415	7.6	10	0.02145	0.429	60.23	0.16382
Whestern hemlock	440	10	11	0.01957	0.3915	60.22	0.132
Douglas fir	470	7.6	13	0.02145	0.429	60	0.1855
Shortleaf pine	500	9.7	12	0.01974	0.3968	60.22	0.1546
Red oak	660	12.4	12	0.01819	0.3656	67.31	0,1597
White oak	690	13.8	12	0.01758	0.3516	72,53	0.15
Shagbark hickory	720	16.5	15	0.01657	0.3313	72,73	0.13091