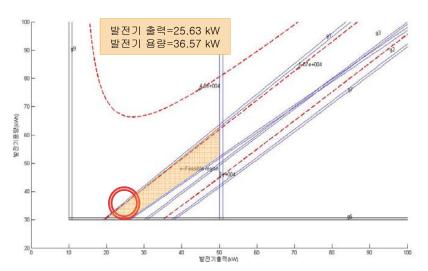


열병합 발전의 운영 최적화

Hot & Cool

노정훈 2005057670 김장현 2005057658


대상 부하에 맞는 적절한 소형 열병합 발전기의 선정

Updated Scenarios

- ♣ 총 열부하 500 kWh/day, 총 전력부하 400 kWh/day → HIT club H
- 하루 평균 가동시간은 8시간 (항상 Full load로 가동 → 발전효율=상수) (X)
- ♠ 열병합 도입으로 인한 이산화탄소 저감은 탄소 마일리지로 보상 (강남구청)
- ♪ 하루 발전전력이 총 전력부하보다 많아지면 운전 정지 (매전 금지)
- ♣ 부족한 열부하는 보조 보일러를 통해 공급 (X)
- ♪ 비교기존설비 → 전력부하-상용전력, 열부하-가스 보일러

수정

	Project 1	Project 2
용량	Variable	Variable
출력	Variable	Variable
가동시간	8 시간	Variable

★설계변수 → 출력, 용량, 가동시간

기존 2변수 방식에 하루 동안 발전기의 가동시간을 추가하여 좀더 실제적 문제로 접근

14열추종 방식 → 회수열량 ≥ 총 열부하

필요 열량이 있을 때 마다 발전기가 작동하는 방식으로, 부족 열부하량이 없다고 가정

Modified Objective Function

(총 전력부하 - 발전전력) x 전력단가

+

(총 열부하 - 회수열량) x 난방단가

Total maintenance cost =

+

CHP 가스 사용량 x 가스단가

-

CO2 저감량 x 적립마일리지

열추종 방식

필요 열량이 있을 때마다 발전기가 작동하는 방식으로 부족 열부하량이 없다고 가정

Constraints

Inequality constraints

$$\rightarrow$$
 g1, g2

$$\rightarrow g3$$

$$\rightarrow$$
 g5,6

열병합 운영비 \leq 기존 설비 운영비 $\rightarrow g7$

$$\rightarrow g8$$

▲ 초기투자비용

설비의 도입 시 들어가는 비용, CHP 경우 기존 설비에 비해 250~300만원/kW의 추가비용

4 회수비용

설비의 운영 시작 후 기존 설비 운영에 비해 생기는 이득

Inequality constraints

$$\rightarrow$$
 g1, g2

$$\rightarrow g3$$

$$\rightarrow g4$$

$$\rightarrow g5$$

$$\rightarrow g6$$

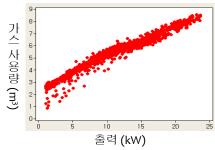
열병합운영비
$$\leq$$
 기존설비운영비 $\rightarrow g7$

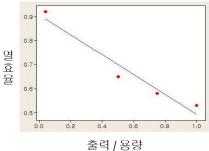
초기투자비용 ≤ 회수비용

$$\rightarrow g8$$

Boundary constraints

Equations




발전 전력 = 출력 × 가동시간

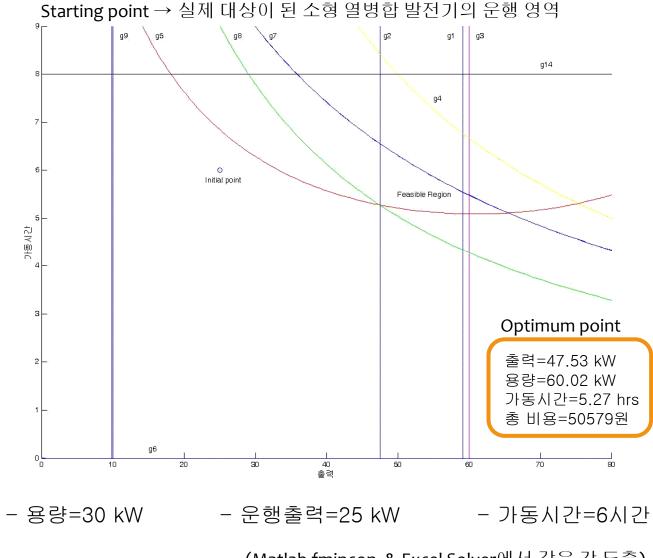
열효율 = 09061 - 0.4125 × <mark>줄력</mark> 요라

회수열량 = 열효율 x 가스사용량 x 발열량

총효율 = $\frac{\text{발전전력 x 회수열량}}{\text{가스사용량 x 발열량}}$

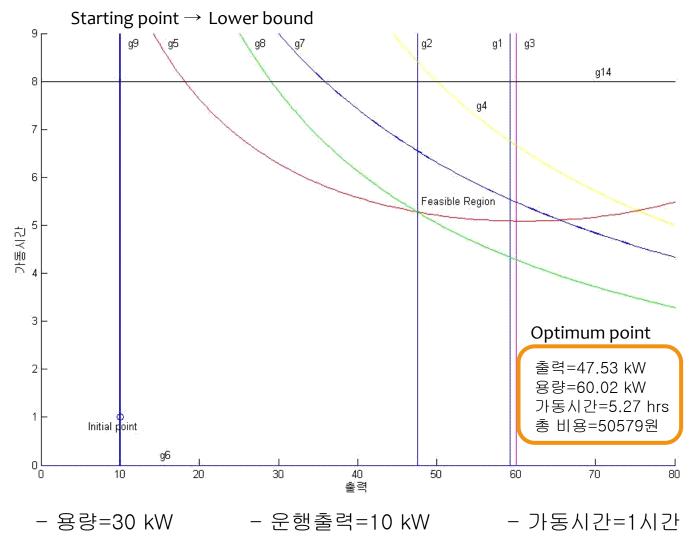
 CO2저감량 = 출력 x 가동시간 x
 상용전력배출계수 +
 가동시간 * 발열량 x 열효율

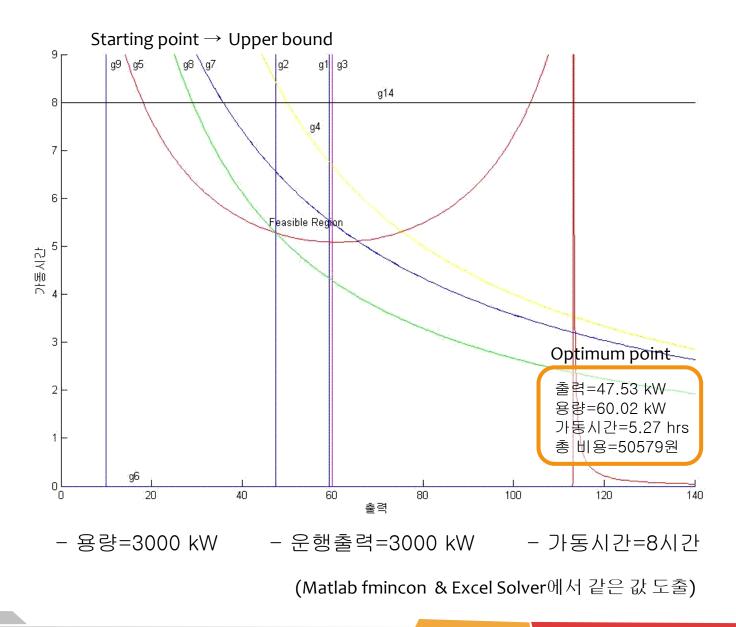
× 보일러배출계수 - CHP배출계수


기존설비운영비용 = 총전력부하 \times 전력단가 + $\frac{ * 9부하 \times 가스요금}{0.9 \times$ 발열량

초기투자비용 = 용량 × 250만

회수비용 = (기존설비 운영비용 - 열병합 운영비용) × 식당운영 일수(280일) × 회수기간(6년)


OPT. Point Searching With Different Initial Points


(Matlab fmincon & Excel Solver에서 같은 값 도출)

OOOOOPT. Point Searching With Different Initial Points OO

(Matlab fmincon & Excel Solver에서 같은 값 도출)

OOOOOPT. Point Searching With Different Initial Points O

OOO Comparing With Different Algorithm & Conclusion OOO

Method	출력 (kW)	용량 (kW)	가동시간 (hr)	반복회수	총 비용 (원)	
초기값	25	30	6	ı	ı	
fmincon	47.53	60.02	5.27	5	50579	$\longrightarrow 1$
pattern search	26.54	37.53	7.84	6	50767	$\longrightarrow 2$
Excel Solver	47.53	60.02	5.27	22	50579	

계산된 여러 값들에 대한 결론

- 1.비슷한 총 비용 → 수식상으로는 multiple solution
- 2.실제 발전기가 설치될 수 있는 대상 장소를 고려하여 위 값들 중 적절한 값 선정

ex)

대상 장소가 소음에 민감한 업종이면 가동 시간이 적은 1번 Model 대상 장소가 안정적인 전력과 열의 안정적인 발전을 원하는 업종이면 가동시간이 긴 2번 Model

Comparing With Other Actual Example

비교 모델 (자료 참조 '에너지 총설' - 병원)				
부하	연간수요량	일일수요량		
총 전력부하	4671 MWh	16682 kWh		
총 급탕부하	822 Gcal	3413 kWh		
설치된 발전기 용량	400 kW			

Method	출력 (kW)	용량 (kW)	가동시간 (hr)	총 비용 (원)
fmincon	413.57	449.97	5.37	1192658
pattern search	500	500	8	1332355
추천 용량		450 ~ 500 kW		

- 해당 부하에 맞는 적절한 설비의 선택이 중요한 열병합의 <mark>용량 선정 지표</mark>로 활용
- 계산된 <mark>용량, 출력, 가동시간</mark>을 토대로 근사적 설계

