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1
Introduction to Design Optimization

Upon completion of this chapter, you will be able to:

•	 Describe	the	overall	process	of	designing	
systems

•	 Distinguish	between	engineering	design	and	
engineering	analysis	activities

•	 Distinguish	between	the	conventional	design	
process	and	optimum	design	process

•	 Distinguish	between	optimum	design	and	
optimal control problems

•	 Understand	the	notations	used	for	
operations	with	vectors,	matrices,	and	
functions	and	their	derivatives

Engineering	consists	of	a	number	of	well-established	activities,	including	analysis,	design,	
fabrication,	sales,	research,	and	development	of	systems.	The	subject	of	this	text—the	design	
of	systems—is	a	major	field	in	the	engineering	profession.	The	process	of	designing	and	fab-
ricating	systems	has	been	developed	over	centuries.	The	existence	of	many	complex	systems,	
such	as	buildings,	bridges,	highways,	automobiles,	airplanes,	space	vehicles,	and	others,	is	
an	excellent	testimonial	to	its	long	history.	However,	the	evolution	of	such	systems	has	been	
slow	and	the	entire	process	is	both	time-consuming	and	costly,	requiring	substantial	human	
and	 material	 resources.	 Therefore,	 the	 procedure	 is	 to	 design,	 fabricate,	 and	 use	 a	 system	
regardless	of	whether	it	 is	the	best one.	 Improved	systems	have	been	designed	only	after	a	
substantial	investment	has	been	recovered.

The	preceding	discussion	indicates	that	several	systems	can	usually	accomplish	the	same	
task,	 and	 that	 some	 systems	 are	 better	 than	 others.	 For	 example,	 the	 purpose	 of	 a	 bridge	
is	 to	 provide	 continuity	 in	 traffic	 from	 one	 side	 of	 the	 river	 to	 the	 other.	 Several	 types	 of	
bridges	can	serve	this	purpose.	However,	to	analyze	and	design	all	possibilities	can	be	time-
consuming	and	costly.	Usually	one	type	is	selected	based	on	some	preliminary	analyses	and	
is	designed	in	detail.

The	design	of	a	system	can	be	formulated as a problem of optimization in which a performance 
measure	is	optimized	while	all	other	requirements	are	satisfied.	Many	numerical	methods	of	
optimization	have	been	developed	and	used	to	design	better	systems.	This	text	describes	the	
basic	concepts	of	optimization	and	numerical	methods	for	the	design	of	engineering	systems.	
Design	process,	rather	than	optimization	theory,	is	emphasized.	Various	theorems	are	stated	
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as	results	without	rigorous	proofs.	However,	their	implications	from	an	engineering	point	of	
view	are	discussed.

any	problem	in	which	certain	parameters	need	to	be	determined	to	satisfy	constraints	
can	be	formulated	as	an	optimization	problem.	once	this	has	been	done,	optimization	con-
cepts	and	methods	described	in	this	text	can	be	used	to	solve	it.	optimization	methods	are	
quite	 general,	 having	 a	 wide	 range	 of	 applicability	 in	 diverse	 fields.	 It	 is	 not	 possible	 to	
discuss	every	application	of	optimization	concepts	and	methods	in	this	 introductory	text.	
However,	using	simple	applications,	we	discuss	concepts,	fundamental	principles,	and	basic	
techniques	that	are	used	in	most	applications.	The	student	should	understand	them	with-
out	getting	bogged	down	with	notations,	terminologies,	and	details	on	particular	areas	of	
	application.

1.1 THE DESIGN PROCESS

How Do I Begin to Design a System?

Designing	engineering	systems	can	be	a	complex	process.	assumptions	must	be	made	to	
develop	realistic	models	that	can	be	subjected	to	mathematical	analysis	by	the	available	meth-
ods.	The	models	may	need	to	be	verified	by	experiments.	Many	possibilities	and	factors	must	
be	considered	during	 the	optimization	problem	formulation	phase.	Economic considerations 
play	an	important	role	in	designing	cost-effective	systems.	To	complete	the	design	of	an	en-
gineering	system,	designers	from	different	fields	of	engineering	must	usually	cooperate.	For	
example,	the	design	of	a	high-rise	building	involves	designers	from	architectural,	structural,	
mechanical,	electrical,	and	environmental	engineering,	as	well	as	construction	management	
experts.	Design	of	a	passenger	car	requires	cooperation	among	structural,	mechanical,	auto-
motive,	electrical,	chemical,	hydraulics	design,	and	human	factor	engineers.	Thus,	in	an	inter-
disciplinary environment,	considerable	interaction	is	needed	among	design	teams	to	complete	
the	project.	For	most	applications,	the	entire	design	project	must	be	broken	down	into	several	
subproblems,	which	are	then	treated	somewhat	independently.	Each	of	the	subproblems	can	
be	posed	as	a	problem	of	optimum	design.

The	design	of	a	system	begins	with	the	analysis	of	various	options.	Subsystems	and	their	
components	are	 identified,	designed,	and	tested.	This	process	results	 in	a	set	of	drawings,	
calculations,	and	reports	with	the	help	of	which	the	system	can	be	fabricated.	We	use	a	sys-
tems	engineering	model	to	describe	the	design process.	although	complete	discussion	of	this	
subject	 is	beyond	 the	scope	of	 this	 text,	 some	basic	concepts	are	discussed	using	a	simple	
block	diagram.

Design	is	an	iterative process.	Iterative	implies	analyzing	several	trial designs one after an-
other	until	an	acceptable	design	is	obtained.	It	 is	 important	to	understand	the	concept	of	
a	 trial	 design.	 In	 the	 design	 process,	 the	 designer	 estimates	 a	 trial	 design	 of	 the	 system	
based	on	experience,	 intuition,	or	some	simple	mathematical	analyses.	The	trial	design	is	
then	analyzed	to	determine	if	 it	 is	acceptable.	In	case	it	gets	accepted,	the	design	process	 
is	terminated.	In	the	optimization	process,	the	trial	design	is	analyzed	to	determine	if	it	is	the	
best.	Depending	on	the	specifications,	“best”	can	have	different	connotations	for	different	
systems.	In	general,	it	implies	that	a	system	is	cost-effective,	efficient,	reliable,	and	durable.	
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The	 basic	 concepts	 are	 described	 in	 this	 text	 to	 aid	 the	 engineer	 in	 designing	 systems	 at	
minimum	cost.

The	design	process	should	be	well	organized.	To	discuss	 it,	we	consider	a	system evolu-
tion model, shown in Fig.	1.1,	where	the	process	begins	with	the	identification	of	a	need	that	
may	be	conceived	by	engineers	or	nonengineers.	The	five	steps	of	the	model	in	the	figure	are	
	described	in	the	following	paragraphs.

1. The	first step	in	the	evolutionary	process	is	to	precisely	define	the	specifications	for	the	
system.	considerable	interaction	between	the	engineer	and	the	sponsor	of	the	project	is	
usually	necessary	to	quantify	the	system specifications.

2. The	second step	in	the	process	is	to	develop	a	preliminary design	of	the	system.	Various	
system	concepts	are	studied.	Since	this	must	be	done	in	a	relatively	short	time,	simplified 
models	are	used	at	this	stage.	Various	subsystems	are	identified	and	their	preliminary	
designs	are	estimated.	Decisions	made	at	this	stage	generally	influence	the	system’s	
final	appearance	and	performance.	at	the	end	of	the	preliminary	design	phase,	a	few	
promising	design	concepts	that	need	further	analysis	are	identified.

3. The	third step in the process is a detailed design	for	all	subsystems	using	the	iterative	
process	described	earlier.	To	evaluate	various	possibilities,	this	must	be	done	for	all	
previously	identified	promising	design	concepts.	The	design	parameters	for	the	
subsystems	must	be	identified.	The	system	performance	requirements	must	be	
identified	and	formulated.	The	subsystems	must	be	designed	to	maximize	system	
worth	or	to	minimize	a	measure	of	the	cost.	Systematic	optimization	methods	described	
in	this	text	aid	the	designer	in	accelerating	the	detailed	design	process.	at	the	end	of	
the	process,	a	description	of	the	final	design	is	available	in	the	form	of	reports	and	
drawings.

4. The	fourth and fifth steps shown in Fig.	1.1	may	or	may	not	be	necessary	for	all	systems.	
They	involve	fabrication	of	a	prototype	system	and	testing,	and	are	necessary	when	the	
system	must	be	mass-produced	or	when	human	lives	are	involved.	These	steps	may	
appear	to	be	the	final	ones	in	the	design	process,	but	they	are	not	because	the	system	
may	not	perform	according	to	specifications	during	the	testing	phase.	Therefore,	the	
specifications	may	have	to	be	modified	or	other	concepts	may	have	to	be	studied.	In	fact,	
this	reexamination	may	be	necessary	at	any	point	during	the	design	process.	It	is	for	this	
reason that feedback loops	are	placed	at	every	stage	of	the	system	evolution	process,	as	
shown in Fig.	1.1.	This	iterative	process	must	be	continued	until	the	best	system	evolves.	

FIGURE 1.1 System evolution model.
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Depending	on	the	complexity	of	the	system,	this	process	may	take	a	few	days	or	several	
months.

The	 model	 described	 in	 Fig.	1.1	 is	 a	 simplified	 block	 diagram	 for	 system	 evolution.	 In	
	actual	practice,	each	block	may	be	broken	down	into	several	subblocks	to	carry	out	the	stud-
ies	properly	and	arrive	at	rational	decisions.	The important point is that optimization concepts 
and methods are helpful at every stage of the process.	Such	methods,	along	with	the	appropriate	
software,	can	be	useful	in	studying	various	design	possibilities	rapidly.

1.2 ENGINEERING DESIGN VERSUS ENGINEERING ANALYSIS

Can I Design Without Analysis?

No, You Must Analyze!
It	is	important	to	recognize	the	differences	between	engineering analysis	and	design activities.	

The	analysis	problem	is	concerned	with	determining	the	behavior	of	an	existing	system	or	a	
trial	system	being	designed	for	a	known	task.	Determination	of	the	behavior	of	the	system	
implies	calculation	of	 its	 response	 to	specified	 inputs.	For	 this	 reason,	 the	sizes	of	various	
parts	and	their	configurations	are	given	for	the	analysis	problem;	that	is,	the	design	of	the	
system	is	known.	on	the	other	hand,	the	design	process	calculates	the	sizes	and	shapes	of	
various	parts	of	the	system	to	meet	performance	requirements.

The	design	of	a	system	is	an	iterative process.	We	estimate	a	trial	design	and	analyze	it	to	
see	if	it	performs	according	to	given	specifications.	If	it	does,	we	have	an	acceptable (feasible) 
design,	although	we	may	still	want	to	change	it	to	improve	its	performance.	If	the	trial	design	
does	not	work,	we	need	to	change	it	to	come	up	with	an	acceptable	system.	In	both	cases,	we	
must be able to analyze designs	to	make	further	decisions.	Thus,	analysis	capability	must	be	
available	in	the	design	process.

This	book	is	intended	for	use	in	all	branches	of	engineering.	It	is	assumed	throughout	that	
students	understand	the	analysis	methods	covered	in	undergraduate	engineering	statics	and	
physics	courses.	However,	we will not let the lack of analysis capability hinder understanding of the 
systematic process of optimum design.	Equations	for	analysis	of	the	system	are	given	wherever	
feasible.

1.3 CONVENTIONAL VERSUS OPTIMUM DESIGN PROCESS

Why Do I Want to Optimize?

Because You Want to Beat the Competition and Improve Your Bottom Line!
It	is	a	challenge	for	engineers	to	design	efficient	and	cost-effective	systems	without	com-

promising	their	 integrity.	Fig.	1.2a	presents	a	self-explanatory	flowchart	 for	a	conventional	
design	method;	Fig.	1.2b	presents	a	similar	flowchart	for	the	optimum	design	method.	It	is	
important	to	note	that	both	methods	are	iterative,	as	indicated	by	a	loop	between	blocks	6	and	
3.	Both	methods	have	some	blocks	that	require	similar	calculations	and	others	that	require	
different	calculations.	The	key	features	of	the	two	processes	are	as	follows.
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0. The	optimum	design	method	has	block	0,	where	the	problem	is	formulated	as	one	of	
	optimization	(see	chapter:	optimum	Design	problem	Formulation	for	detailed	discus-
sion).	an	objective	function	is	defined	that	measures	the	merits	of	different	designs.

1. Both	methods	require	data	to	describe	the	system	in	block	1.
2. Both	methods	require	an	initial	design	estimate	in	block	2.
3. Both	methods	require	analysis	of	the	system	in	block	3.
4. In	block	4,	the	conventional	design	method	checks	to	ensure	that	the	performance	

criteria	are	met,	whereas	the	optimum	design	method	checks	for	satisfaction	of	all	of	the	
constraints	for	the	problem	formulated	in	block	0.

5. In	block	5,	stopping	criteria	for	the	two	methods	are	checked,	and	the	iteration	is	stopped	
if	the	specified	stopping	criteria	are	met.

6. In	block	6,	the	conventional	design	method	updates	the	design	based	on	the	designer’s	
experience	and	intuition	and	other	information	gathered	from	one	or	more	trial	designs;	
the	optimum	design	method	uses	optimization	concepts	and	procedures	to	update	the	
current	design.

The	foregoing	distinction	between	the	two	design	approaches	indicates	that	the	conven-
tional	design	process	is	less	formal.	an	objective	function	that	measures	a	design’s	merit	is	
not	identified.	Trend	information	is	usually	not	calculated;	nor	is	it	used	in	block	6	to	make	
	design		decisions	for	system	improvement.	In	contrast,	the	optimization	process	is	more	for-
mal,		using	trend	information	to	make	design	changes.

FIGURE 1.2	 comparison	of:	(a)	conventional	design	method;	and	(b)	optimum	design	method.
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1.4 OPTIMUM DESIGN VERSUS OPTIMAL CONTROL

What Is Optimal Control?

optimum	 design	 and	 optimal	 control	 of	 systems	 are	 separate	 activities.	 There	 are	
	numerous	applications	in	which	methods	of	optimum	design	are	useful	in	designing	sys-
tems.	 There	 are	 many	 other	 applications	 where	 optimal	 control	 concepts	 are	 needed.	 In	
	addition,	there	are	some	applications	in	which	both	optimum	design	and	optimal	control	
concepts	must	be	used.	Sample	applications	of	both	techniques	include	robotics	and	aerospace 
structures.	 In	this	text,	optimal	control	problems	and	methods	are	not	described	in	detail.	
However,	 the	fundamental	differences	between	the	two	activities	are	briefly	explained	in	
the	sequel.	It	turns	out	that	some	optimal	control	problems	can	be	transformed	into	opti-
mum	design	problems	and	 treated	by	 the	methods	described	 in	 this	 text.	Thus,	methods	
of	 optimum	 design	 are	 very	 powerful	 and	 should	 be	 clearly	 understood.	a	 simple	 opti-
mal	control	problem	is	described	in	chapter:	practical	applications	of	optimization	and	is	
solved	by	the	methods	of	optimum	design.

The	optimal	control	problem	consists	of	finding	feedback	controllers	for	a	system	to	pro-
duce	the	desired	output.	The	system	has	active	elements	that	sense	output	fluctuations.	Sys-
tem	controls	are	automatically	adjusted	to	correct	the	situation	and	optimize	a	measure	of	
performance.	Thus,	control	problems	are	usually	dynamic	in	nature.	In	optimum	design,	on	
the	other	hand,	we	design	the	system	and	its	elements	to	optimize	an	objective	function.	The	
system	then	remains	fixed	for	its	entire	life.

as	an	example,	consider	the	cruise	control	mechanism	in	passenger	cars.	The	idea	behind	
this	feedback	system	is	to	control	fuel	injection	to	maintain	a	constant	speed.	Thus,	the	sys-
tem’s	output	(ie,	 the	vehicle’s	cruising	speed)	is	known.	The	 job	of	the	control	mechanism	
is	to	sense	fluctuations	in	speed	depending	on	road	conditions	and	to	adjust	fuel	injection	
accordingly.

1.5 BASIC TERMINOLOGY AND NOTATION

Which Notation Do I Need to Know?

To	understand	and	to	be	comfortable	with	the	methods	of	optimum	design,	a	student	must	
be	familiar	with	linear	algebra	(vector	and	matrix	operations)	and	basic	calculus.		operations	of	
linear algebra	are	described	in	appendix	a.	Students	who	are	not	comfortable	with	this		material	
need	to	review	it	thoroughly.	calculus	of	functions	of	single	and	multiple	variables	must	also	
be	 understood.	 calculus	 concepts	 are	 reviewed	 wherever	 they	 are	 needed.	 In	 this	 section,	
the standard terminology	and	notations	used	throughout	the	text	are	defined.	It	is		important	to	
	understand	and	memorize	these	notations	and	operations.

1.5.1 Vectors and Points

Since	realistic	systems	generally	involve	several	variables,	it	is	necessary	to	define	and	use	
some	convenient	and	compact	notations	to	represent	them.	Set	and	vector	notations	serve	this	
purpose	quite	well.
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A point is an ordered list of numbers.	Thus,	(x1, x2)	is	a	point	consisting	of	two	numbers	where-
as (x1, x2, …, xn)	is	a	point	consisting	of	n	numbers.	Such	a	point	is	often	called	an	n-tuple.	The	
n components x1, x2, …, xn	are	collected	into	a	column	vector	as

=



















=  
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x

x

x x xx . . .

n

n
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2
1 2
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(1.1)

where the superscript T	denotes	the	transpose	of	a	vector	or	a	matrix.	This	is	called	an	n-vector.	
Each number xi	is	called	a	component	of	the	(point)	vector.	Thus,	x1	is	the	first	component,	x2 
is	the	second,	and	so	on.

We	also	use	the	following	notation	to	represent	a	point	or	a	vector	in	the	n-dimensional	
space:

x x xx , , . . . , n1 2( )= (1.2)

In	3-dimensional	 (3D)	 space,	 the	vector	x = [x1 x2 x3]T represents a point P, as shown in 
Fig.	1.3.	 	Similarly,	when	 there	are	n	 components	 in	a	vector,	as	 in	Eqs.	 (1.1)	and	 (1.2), x is 
interpreted	as	a	point	in	the	n-dimensional	space,	denoted	as	Rn.	The	space	Rn is simply the 
collection of all  n-dimensional	vectors	(points)	of	real	numbers.	For	example,	the	real	line	is	
R1, the plane is R2,	and	so	on.

The terms vector and point are used interchangeably, and lowercase letters in roman 
boldface are used to denote them. Uppercase letters in roman boldface represent matrices.

1.5.2 Sets

often	we	deal	with	sets	of	points	satisfying	certain	conditions.	For	example,	we	may	con-
sider	a	set	S	of	all	points	having	three	components,	with	the	last	having	a	fixed	value	of	3,	
which is written as

x=x1x2⋮xn=x1   x2   .   .   .   xnT,

x=x1,   x2,   .   .   .   ,   xn

FIGURE 1.3 Vector representation of a point P in 3D space.
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{ }( )= = =S x x x xx , , 31 2 3 3 (1.3)

Information	about	the	set	is	contained	in	braces	({	}).	Eq.	(1.3)	reads	as	“S	equals	the	set	of	
all points (x1, x2, x3) with x3	=	3.”	The	vertical	bar	divides	information	about	the	set	S into two 
parts:	To	the	left	of	the	bar	is	the	dimension	of	points	in	the	set;	to	the	right	are	the	properties	
that	distinguish	those	points	from	others	not	in	the	set	(eg,	properties	a	point	must	possess	
to be in the set S).

Members	of	a	set	are	sometimes	called	elements.	If	a	point	x is an element of the set S, then 
we write x ∈ S.	The	expression	x ∈ S	is	read	as	“x	is	an	element	of	(belongs	to)	S.”	conversely,	
the	expression	“y ∉ S”	is	read	as	“y	is	not	an	element	of	(does	not	belong	to)	S.”

If all the elements of a set S are also elements of another set T, then S	is	said	to	be	a	subset of 
T.	Symbolically,	we	write	S ⊂ T,	which	is	read	as	“S is a subset of T”	or	“S	is	contained	in	T.”	
alternatively,	we	say	“T is a superset of S,”	which	is	written	as	T ⊃ S.

as	an	example	of	a	set	S,	consider	a	domain	of	the	xl – x2	plane	enclosed	by	a	circle	of	radius	
3 with the center at the point (4, 4), as shown in Fig.	1.4.	Mathematically,	all	points	within	and	
on	the	circle	can	be	expressed	as

S R x xx 4 4 92
1

2
2

2{ }( ) ( )= ∈ − + − ≤
 

(1.4)

Thus,	the	center	of	the	circle	(4,	4)	is	in	the	set	S	because	it	satisfies	the	inequality	in	Eq.	(1.4).	
We	write	this	as	(4,	4)	∈ S.	The	origin	of	coordinates	(0,	0)	does	not	belong	to	the	set		because	it	
does	not	satisfy	the	inequality	in	Eq.	(1.4).	We	write	this	as	(0,	0)	∉ S.	It	can	be	verified	that	the	
following	points	belong	to	the	set:	(3,	3),	(2,	2),	(3,	2),	(6,	6).	In	fact,	set	S	has	an	infinite	number	
of	points.	Many	other	points	are	not	in	the	set.	It	can	be	verified	that	the	following	points	are	
not	in	the	set:	(1,	1),	(8,	8),	and	(−1,	2).

S=x=x1,   x2,   x3      x3=3

S=x   ∈   R2      x1−42+x2−42   ≤   9

FIGURE 1.4 Geometrical representation of the set == −− ++ −− ≤≤{ }( ) ( )S x xx 4 4 91
2

2
2

.S=x|x1−42+x2−42
≤9
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1.5.3 Notation for Constraints

constraints	arise	naturally	in	optimum	design	problems.	For	example,	the	material	of	the	
system	must	not	fail,	the	demand	must	be	met,	resources	must	not	be	exceeded,	and	so	on.	We	
shall	discuss	the	constraints	in	more	detail	in	chapter:	optimum	Design	problem	Formula-
tion.	Here	we	discuss	the	terminology	and	notations	for	the	constraints.

We	encountered	a	constraint	in	Fig.	1.4 that shows a set S	of	points	within	and	on	the	circle	
of	radius	3.	The	set	S	is	defined	by	the	following	constraint:

( ) ( )− + − ≤x x4 4 91
2

2
2

 (1.5)

a	constraint	of	this	form	is	a	“less	than	or	equal	to	type”	constraint	and	is	abbreviated	as	
“≤		type.”	Similarly,	there	are	greater than or equal to type constraints,	abbreviated	as	“≥	type.”	
Both	are	called	inequality constraints.

1.5.4 Superscripts/Subscripts and Summation Notation

Later	we	will	discuss	a	set	of	vectors,	components	of	vectors,	and	multiplication	of	matri-
ces	and	vectors.	To	write	such	quantities	in	a	convenient	form,	consistent	and	compact	nota-
tions	must	be	used.	We	define	these	notations	here.	Superscripts are used to represent different 
vectors and matrices.	For	example,	x(i) represents the ith	vector	of	a	set	and	A(k) represents the 
kth	matrix.	Subscripts are used to represent components of vectors and matrices.	For	example,	xj is 
the jth component of x	and	aij is the i–jth	element	of	matrix	A.	Double	subscripts	are	used	to	
denote	elements	of	a	matrix.

To	indicate	the	range of a subscript or superscript we use the notation

x i n; 1 toi = (1.6)

This	represents	the	numbers	x1, x2, …, xn.	note	that	“i	=	1	to	n”	represents	the	range	for	the	
index	i	and	is	read,	“i	goes	from	1	to	n.”	Similarly,	a	set	of	k	vectors,	each	having	n compo-
nents,	is	represented	by	the	superscript notation as

j kx ; 1 toj =( )
 (1.7)

This	represents	the	k	vectors	x(l), x(2), …, x(k). It is important to note that subscript i	in	Eq.	(1.6) 
and	superscript	j	in	Eq.	(1.7) are free indices;	that	is,	they	can	be	replaced	by	any	other	variable.	
For	example,	Eq.	(1.6) can also be written as xj, j =	1	to	n	and	Eq.	(1.7) can be written as x(i), i	=	1	
to k.	note	that	the	superscript	j	in	Eq.	(1.7)	does	not	represent	the	power	of	x.	It	is	an	index	that	
represents the jth	vector	of	a	set	of	vectors.

We	also	use	the	summation notation	quite	frequently.	For	example,

c x y x y x y. . . n n1 1 2 2= + + + (1.8)

is written as

c x yi i
i

n

1
∑=

= 
(1.9)

x1−42+x2−42   ≤   9

xi; i=1 to n

xj; j=1 to k

c=x1y1+x2y2+   .   .   .   +xnyn

c=∑i=1nxiyi
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also,	multiplication	of	an	n-dimensional	vector	x by an m × n	matrix	A to obtain an m-
dimensional	vector	y is written as

y Ax= (1.10)

or,	in	summation	notation,	the	ith component of y is

y a x a x a x a x i m. . . ; 1 toi ij
j

n

j i i in n
1

1 1 2 2∑= = + + + =
= 

(1.11)

There	is	another	way	of	writing	the	matrix	multiplication	of	Eq.	(1.10).	Let	m-dimensional	
vectors	a(i);	i	=	1	to	n	represent	columns	of	the	matrix	A.	Then	y = Ax is also written as

∑= = + + +( ) ( ) ( ) ( )

=

x x x xy a a a a. . .j

j

n

j
n

n
1

1
1

2
2

 
(1.12)

The	sum	on	the	right	side	of	Eq.	(1.12)	is	said	to	be	a	linear combination	of	columns	of	matrix	
A with xj, j	=	1	to	n	as	its	multipliers.	or	y	is	given	as	a	linear	combination	of	columns	of	A 
(refer	appendix	a	for	further	discussion	of	the	linear	combination	of	vectors).

occasionally,	we	must	use	the	double	summation	notation.	For	example,	assuming	m = n 
and	substituting	yi	from	Eq.	(1.11)	into	Eq.	(1.9),	we	obtain	the	double	sum	as

c x a x a x xi ij j
j

n

i

n

ij i j
j

n

i

n

11 11
∑∑ ∑∑=









 =

== == 
(1.13)

note	that	the	indices	i	and	j	in	Eq.	(1.13)	can	be	interchanged.	This	is	possible	because	c is 
a scalar quantity,	so	its	value	is	not	affected	by	whether	we	sum	first	on	i or on j.	Eq.	(1.13) can 
also	be	written	in	the	matrix	form,	as	we	will	see	later.

1.5.5 Norm/Length of a Vector

If we let x	and	y be two n-dimensional	vectors,	then	their	dot product	is	defined	as

∑( )• = =
=

x yx y x yT
i i

i

n

1 
(1.14)

Thus,	the	dot	product	is	a	sum	of	the	product	of	corresponding	elements	of	the	vectors	x 
and	y.	Two	vectors	are	said	to	be	orthogonal (normal)	if	their	dot	product	is	0;	that	is,	x	and	y 
are	orthogonal	if	(x	•	y)	=	0.	If	the	vectors	are	not	orthogonal,	the	angle	between	them	can	be	
calculated	from	the	definition	of	the	dot	product:

θ( )• =x y x y cos , (1.15)

where u	is	the	angle	between	vectors	x	and	y,	and	‖x‖ represents the length of vector x (also 
called	the	norm of the vector).	The	length	of	vector	x	is	defined	as	the	square	root	of	the	sum	of	
squares	of	the	components:

y=Ax

yi=∑j=1naijxj=ai1x1+ai2x2+   .   .   .   
+ainxn;      i=1 to m

y=∑j=1najxj=a1x1+a2x2+   .   .   .   
+anxn

c=∑i=1nxi∑j=1naijxj=∑i=1n∑j
=1naijxixj

x   •y=xTy=∑i=1nxiyi

x•y=x   y   cosu,
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∑ ( )= = •
=

xx x xi
i

n
2

1 
(1.16)

The	double	sum	of	Eq.	(1.13)	can	be	written	in	the	matrix	form	as	follows:

c a x x x a x x Axij i j
j

n

i

n

i
i

n

ij j
j

n
T

11 1 1
∑∑ ∑ ∑= =









 =

== = = 
(1.17)

Since	Ax	represents	a	vector,	the	triple	product	of	Eq.	(1.17)	is	also	written	as	a	dot	product:

( )= = •c x Ax x AxT
 (1.18)

1.5.6 Functions of Several Variables

Just	as	a	function	of	a	single	variable	is	represented	as	 f(x), a function of n	 independent	
variables	x1, x2, …, xn is written as

( )( ) =f f x x xx , , . . . , n1 2 (1.19)

We	deal	with	many	functions	of	vector	variables.	To	distinguish	between	functions,	sub-
scripts	are	used.	Thus,	the	ith function is written as

g g x x xx , , . . . ,i i n1 2( )( ) = (1.20)

If there are m functions gi(x), i	=	1	to	m,	these	are	represented	in	the	vector	form

( )

( )
( )

( )

( ) ( ) ( )=
:





















=  

g

g

g

g g gg x

x

x

x

x x x. . .

m

m
T

1

2
1 2

 

(1.21)

Throughout	the	text	it	is	assumed that all functions are continuous	and	at	least	twice continu-
ously differentiable.	a	function	 f(x) of n	variables	is	continuous at a point x* if, for any ε >	0,	
there is a d >	0	such	that

ε( ) ( )− <f fx x * (1.22)

whenever	‖x − x*‖ < d.	Thus,	for	all	points	x	in	a	small	neighborhood	of	point	x*,	a	change	in	
the	function	value	from	x* to x	is	small	when	the	function	is	continuous.	a	continuous	func-
tion	need	not	be	differentiable.	Twice-continuous differentiability of a function implies not only 
that	it	is	differentiable	two	times,	but	also	that	its	second	derivative	is	continuous.

Fig.	1.5a,b	 shows	 continuous	 and	 discontinuous	 functions.	 The	 function	 in	 Fig.	1.5a is 
differentiable	 everywhere,	 whereas	 the	 function	 in	 Fig.	1.5b	 is	 not	 differentiable	 at	 points	
x1, x2,	and	x3.	Fig.	1.5c	is	an	example	in	which	f	is	not	a	function	because	it	has	infinite	values	
at x1.	 Fig.	1.5d	 is	 an	 example	 of	 a	 discontinuous	 function.	as	 examples,	 functions	 f(x) = x3 

x   =∑i=1nxi2=x•x

c=∑i=1n∑j=1naijxixj=∑i=1nxi∑
j=1naijxj=xTAx

c=xTAx=x•Ax

fx=fx1,   x2,   .   .   .   ,   xn

gix=gix1,   x2,   .   .   .   ,   xn

gx=g1xg2x:gmx=g1x   g2x   .   .   .   gmxT

fx−fx*<ε



14 1. INTrODuCTION TO DESIgN OPTImIzATION

I.	 THE	BaSIc	concEpTS

and	f(x) = sinx	are	continuous	everywhere	and	are	also	continuously	differentiable.	However,	
function f(x) = |x|	is	continuous	everywhere	but	not	differentiable	at	x	=	0.

1.5.7 Partial Derivatives of Functions

often	in	this	text	we	must	calculate	derivatives	of	functions	of	several	variables.	Here	we	
introduce	some	of	the	basic	notations	used	to	represent	the	partial	derivatives	of	functions	of	
several	variables.

First Partial Derivatives
For	a	function	f(x) of n	variables,	the	first	partial	derivatives	are	written	as

( )∂
∂

=
f

x
i n

x
; 1 to

i 
(1.23)

The	n	partial	derivatives	in	Eq.	(1.23)	are	usually	arranged	in	a	column	vector	known	as	the	
gradient of the function f(x).	The	gradient	is	written	as	∂f/∂x or ∇f(x).	Therefore,

�
∇ = ∂

∂
=

∂ ∂
∂ ∂

∂ ∂





















f
f

f x
f x

f x

x
x
x

x
x

x

( )
( )

[ ( )]/
[ ( )]/

[ ( )]/

1

2

n
 

(1.24)

∂fx∂xi;  i=1to n

∇f(x)=∂f(x)∂x=[∂f(x)]/∂x1[∂f(x)]/
∂x2∇[∂f(x)]/∂xn

FIGURE 1.5 Continuous and discontinuous functions.	(a)	and	(b)	continuous	functions;	(c)	not	a	function;	and	
(d)	discontinuous	function.
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note	that	each	component	of	the	gradient	in	Eqs.	(1.23) or (1.24)	is	a	function	of	vector	x.

Second Partial Derivatives
Each	component	of	the	gradient	vector	in	Eq.	(1.24)	can	be	differentiated	again	with	respect	

to	a	variable	to	obtain	the	second	partial	derivatives	for	the	function	f(x):

( )∂
∂ ∂

=
f

x x
i j n; , 1 to

i j

2 x

 
(1.25)

We	see	that	there	are	n2	partial	derivatives	in	Eq.	(1.25).	These	can	be	arranged	in	a	matrix	
known as the Hessian matrix, written as H(x),	or	simply	the	matrix	of	second	partial	deriva-
tives	of	f(x), written as ∇2f(x):

= ∇ =
∂

∂ ∂










×

f
f

x x
H x x

x
( ) ( )

( )

i j n n

2
2

 
(1.26)

note	 that	 if	 f(x)	 is	 continuously	 differentiable	 two	 times,	 then	 Hessian	 matrix	 H(x) in 
Eq.	(1.26) is symmetric.

Partial Derivatives of Vector Functions
on	several	occasions	we	must	differentiate	a	vector	 function	of	n	variables,	such	as	 the	

vector	g(x)	in	Eq.	(1.21), with respect to the n	variables	in	vector	x.	Differentiation	of	each	com-
ponent	of	the	vector	g(x)	results	in	a	gradient	vector,	such	as	∇gi(x).	Each	of	these	gradients	
is an n-dimensional	vector.	They	can	be	arranged	as	columns	of	a	matrix	of	dimension	n × m, 
referred	to	as	the	gradient	matrix	of	g(x).	This	is	written	as

…( ) ( )
∇ =

∂
∂

= ∇ ∇ ∇  ×
g g g( ) ( ) ( )m n m1 2g x

g x

x
x x x

 
(1.27)

This	gradient	matrix	is	usually	written	as	matrix	A:

=   =
∂
∂

= =
×

a a
g
x

i n j m; ; 1 to ; 1 toij n m ij
j

i

A
 

(1.28)

1.5.8 US–British Versus SI Units

The	formulation	of	the	design	problem	and	the	methods	of	optimization	do	not	depend	
on	 the	units	of	measure	used.	Thus,	 it	does	not	matter	which	units	are	used	 to	 formulate	
the	problem.	However,	the	final	form	of	some	of	the	analytical	expressions	for	the	problem	
does	depend	on	the	units	used.	In	the	text,	we	use	both	US–British	and	SI	units	in	examples	
and	exercises.	Readers	unfamiliar	with	either	system	should	not	feel	at	a	disadvantage	when	
reading	and	understanding	the	material	since	it	is	simple	to	switch	from	one	system	to	the	
other.	To	facilitate	the	conversion	from	US–British	to	SI	units	or	vice	versa,	Table	1.1	gives	

∂2fx∂xi∂xj;  i, j=1 to n

H(x)=∇2f(x)=∂2f(x)∂xi∂xjn×n

∇gx=∂gx∂x=∇g1(x)   ∇g2(x)   …   ∇gm(
x)n×m

A=aijn×m;  aij=∂gj∂xi; i=1 to n; j
=1 to m.
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TABLE 1.1 Conversion Factors for uS–British and SI units

To convert from US–British To SI units Multiply by

Acceleration

Foot/second2	(ft./s2) Meter/second2 (m/s2) 0.3048*

Inch/second2	(in./s2) Meter/second2 (m/s2) 0.0254*

Area

Foot2	(ft.2) Meter2 (m2) 0.09290304*

Inch2	(in.2) Meter2 (m2) 6.4516E–04*

Bending moment or torque

pound	force	inch	(lbf·in.) newton	meter	(n·m) 0.1129848

pound	force	foot	(lbf·ft.) newton	meter	(n·m) 1.355818

Density

pound	mass/inch3	(lbm/in.3) Kilogram/meter3	(kg/m3) 27,679.90

pound	mass/foot3	(lbm/ft.3) Kilogram/meter3	(kg/m3) 16.01846

Energy or work

British	thermal	unit	(BTU) Joule (J) 1055.056

Foot	pound	force	(ft.·lbf) Joule (J) 1.355818

Kilowatt-hour	(KWh) Joule (J) 3,600,000*

Force

Kip	(1000	lbf) newton	(n) 4448.222

pound	force	(lbf) newton	(n) 4.448222

Length

Foot	(ft.) Meter	(m) 0.3048*

Inch	(in.) Meter	(m) 0.0254*

Inch	(in.) Micron	(m);	micrometer	(mm) 25,400*

Mile	(mi),	US	statute Meter	(m) 1609.344

Mile	(mi),	International,	nautical Meter	(m) 1852*

Mass

pound	mass	(lbm) Kilogram	(kg) 0.4535924

ounce Grams 28.3495

Slug	(lbf·s2ft.) Kilogram	(kg) 14.5939

Ton	(short,	2000	lbm) Kilogram	(kg) 907.1847

Ton	(long,	2240	lbm) Kilogram	(kg) 1016.047

Tonne	(t,	metric	ton) Kilogram	(kg) 1000*

Power

Foot	pound/minute	(ft.·lbf/min) Watt	(W) 0.02259697

Horsepower	(550	ft.	lbf/s) Watt	(W) 745.6999
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To convert from US–British To SI units Multiply by

Pressure or stress

atmosphere	(std)	(14.7	lbf/in.2) newton/meter2	(n/m2	or	pa) 101,325*

one	bar	(b) newton/meter2	(n/m2	or	pa) 100,000*

pound/foot2	(lbf/ft.2) newton/meter2	(n/m2	or	pa) 47.88026

pound/inch2	(lbf/in.2 or psi) newton/meter2	(n/m2	or	pa) 6894.757

Velocity

Foot/minute	(ft./min) Meter/second	(m/s) 0.00508*

Foot/second	(ft./s) Meter/second	(m/s) 0.3048*

Knot (nautical mi/h), international Meter/second	(m/s) 0.5144444

Mile/hour	(mi/h),	international Meter/second	(m/s) 0.44704*

Mile/hour	(mi/h),	international Kilometer/hour (km/h) 1.609344*

Mile/second	(mi/s),	international Kilometer/second	(km/s) 1.609344*

Volume

Foot3	(ft.3) Meter3 (m3) 0.02831685

Inch3	(in.3) Meter3 (m3) 1.638706E–05

Gallon	(canadian	liquid) Meter3 (m3) 0.004546090

Gallon	(UK	liquid) Meter3 (m3) 0.004546092

Gallon	(UK	liquid) Liter (L) 4.546092

Gallon	(US	dry) Meter3 (m3) 0.004404884

Gallon	(US	liquid) Meter3 (m3) 0.003785412

Gallon	(US	liquid) Liter (L) 3.785412

one	liter	(L) Meter3 (m3) 0.001*

one	liter	(L) centimeter3 (cm3) 1000*

one	milliliter	(mL) centimeter3 (cm3) 1*

ounce	(UK	fluid) Meter3 (m3) 2.841307E–05

ounce	(US	fluid) Meter3 (m3) 2.957353E–05

ounce	(US	fluid) Liter (L) 2.957353E–02

ounce	(US	fluid) Milliliter	(mL) 29.57353

pint	(US	dry) Meter3 (m3) 5.506105E–04

pint	(US	liquid) Liter (L) 4.731765E–01

pint	(US	liquid) Meter3 (m3) 4.731765E–04

Quart	(US	dry) Meter3 (m3) 0.001101221

Quart	(US	liquid) Meter3 (m3) 9.463529E–04

* Exact conversion factor.

TABLE 1.1 Conversion Factors for uS–British and SI units (cont.)
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conversion	factors	for	the	most	commonly	used	quantities.	For	a	complete	list	of	conversion	
factors, consult the IEEE/aSTM	(2010)	publication.

Reference
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