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1
Introduction to Design Optimization

Upon completion of this chapter, you will be able to:

•	 Describe the overall process of designing 
systems

•	 Distinguish between engineering design and 
engineering analysis activities

•	 Distinguish between the conventional design 
process and optimum design process

•	 Distinguish between optimum design and 
optimal control problems

•	 Understand the notations used for 
operations with vectors, matrices, and 
functions and their derivatives

Engineering consists of a number of well-established activities, including analysis, design, 
fabrication, sales, research, and development of systems. The subject of this text—the design 
of systems—is a major field in the engineering profession. The process of designing and fab-
ricating systems has been developed over centuries. The existence of many complex systems, 
such as buildings, bridges, highways, automobiles, airplanes, space vehicles, and others, is 
an excellent testimonial to its long history. However, the evolution of such systems has been 
slow and the entire process is both time-consuming and costly, requiring substantial human 
and material resources. Therefore, the procedure is to design, fabricate, and use a system 
regardless of whether it is the best one. Improved systems have been designed only after a 
substantial investment has been recovered.

The preceding discussion indicates that several systems can usually accomplish the same 
task, and that some systems are better than others. For example, the purpose of a bridge 
is to provide continuity in traffic from one side of the river to the other. Several types of 
bridges can serve this purpose. However, to analyze and design all possibilities can be time-
consuming and costly. Usually one type is selected based on some preliminary analyses and 
is designed in detail.

The design of a system can be formulated as a problem of optimization in which a performance 
measure is optimized while all other requirements are satisfied. Many numerical methods of 
optimization have been developed and used to design better systems. This text describes the 
basic concepts of optimization and numerical methods for the design of engineering systems. 
Design process, rather than optimization theory, is emphasized. Various theorems are stated 
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as results without rigorous proofs. However, their implications from an engineering point of 
view are discussed.

Any problem in which certain parameters need to be determined to satisfy constraints 
can be formulated as an optimization problem. Once this has been done, optimization con-
cepts and methods described in this text can be used to solve it. Optimization methods are 
quite general, having a wide range of applicability in diverse fields. It is not possible to 
discuss every application of optimization concepts and methods in this introductory text. 
However, using simple applications, we discuss concepts, fundamental principles, and basic 
techniques that are used in most applications. The student should understand them with-
out getting bogged down with notations, terminologies, and details on particular areas of 
application.

1.1  THE DESIGN PROCESS

How Do I Begin to Design a System?

Designing engineering systems can be a complex process. Assumptions must be made to 
develop realistic models that can be subjected to mathematical analysis by the available meth-
ods. The models may need to be verified by experiments. Many possibilities and factors must 
be considered during the optimization problem formulation phase. Economic considerations 
play an important role in designing cost-effective systems. To complete the design of an en-
gineering system, designers from different fields of engineering must usually cooperate. For 
example, the design of a high-rise building involves designers from architectural, structural, 
mechanical, electrical, and environmental engineering, as well as construction management 
experts. Design of a passenger car requires cooperation among structural, mechanical, auto-
motive, electrical, chemical, hydraulics design, and human factor engineers. Thus, in an inter-
disciplinary environment, considerable interaction is needed among design teams to complete 
the project. For most applications, the entire design project must be broken down into several 
subproblems, which are then treated somewhat independently. Each of the subproblems can 
be posed as a problem of optimum design.

The design of a system begins with the analysis of various options. Subsystems and their 
components are identified, designed, and tested. This process results in a set of drawings, 
calculations, and reports with the help of which the system can be fabricated. We use a sys-
tems engineering model to describe the design process. Although complete discussion of this 
subject is beyond the scope of this text, some basic concepts are discussed using a simple 
block diagram.

Design is an iterative process. Iterative implies analyzing several trial designs one after an-
other until an acceptable design is obtained. It is important to understand the concept of 
a trial design. In the design process, the designer estimates a trial design of the system 
based on experience, intuition, or some simple mathematical analyses. The trial design is 
then analyzed to determine if it is acceptable. In case it gets accepted, the design process  
is terminated. In the optimization process, the trial design is analyzed to determine if it is the 
best. Depending on the specifications, “best” can have different connotations for different 
systems. In general, it implies that a system is cost-effective, efficient, reliable, and durable. 
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The basic concepts are described in this text to aid the engineer in designing systems at 
minimum cost.

The design process should be well organized. To discuss it, we consider a system evolu-
tion model, shown in Fig. 1.1, where the process begins with the identification of a need that 
may be conceived by engineers or nonengineers. The five steps of the model in the figure are 
described in the following paragraphs.

1.	 The first step in the evolutionary process is to precisely define the specifications for the 
system. Considerable interaction between the engineer and the sponsor of the project is 
usually necessary to quantify the system specifications.

2.	 The second step in the process is to develop a preliminary design of the system. Various 
system concepts are studied. Since this must be done in a relatively short time, simplified 
models are used at this stage. Various subsystems are identified and their preliminary 
designs are estimated. Decisions made at this stage generally influence the system’s 
final appearance and performance. At the end of the preliminary design phase, a few 
promising design concepts that need further analysis are identified.

3.	 The third step in the process is a detailed design for all subsystems using the iterative 
process described earlier. To evaluate various possibilities, this must be done for all 
previously identified promising design concepts. The design parameters for the 
subsystems must be identified. The system performance requirements must be 
identified and formulated. The subsystems must be designed to maximize system 
worth or to minimize a measure of the cost. Systematic optimization methods described 
in this text aid the designer in accelerating the detailed design process. At the end of 
the process, a description of the final design is available in the form of reports and 
drawings.

4.	 The fourth and fifth steps shown in Fig. 1.1 may or may not be necessary for all systems. 
They involve fabrication of a prototype system and testing, and are necessary when the 
system must be mass-produced or when human lives are involved. These steps may 
appear to be the final ones in the design process, but they are not because the system 
may not perform according to specifications during the testing phase. Therefore, the 
specifications may have to be modified or other concepts may have to be studied. In fact, 
this reexamination may be necessary at any point during the design process. It is for this 
reason that feedback loops are placed at every stage of the system evolution process, as 
shown in Fig. 1.1. This iterative process must be continued until the best system evolves. 

FIGURE 1.1  System evolution model.



6	 1.  Introduction to Design Optimization

I.  The Basic Concepts

Depending on the complexity of the system, this process may take a few days or several 
months.

The model described in Fig. 1.1 is a simplified block diagram for system evolution. In 
actual practice, each block may be broken down into several subblocks to carry out the stud-
ies properly and arrive at rational decisions. The important point is that optimization concepts 
and methods are helpful at every stage of the process. Such methods, along with the appropriate 
software, can be useful in studying various design possibilities rapidly.

1.2  ENGINEERING DESIGN VERSUS ENGINEERING ANALYSIS

Can I Design Without Analysis?

No, You Must Analyze!
It is important to recognize the differences between engineering analysis and design activities. 

The analysis problem is concerned with determining the behavior of an existing system or a 
trial system being designed for a known task. Determination of the behavior of the system 
implies calculation of its response to specified inputs. For this reason, the sizes of various 
parts and their configurations are given for the analysis problem; that is, the design of the 
system is known. On the other hand, the design process calculates the sizes and shapes of 
various parts of the system to meet performance requirements.

The design of a system is an iterative process. We estimate a trial design and analyze it to 
see if it performs according to given specifications. If it does, we have an acceptable (feasible) 
design, although we may still want to change it to improve its performance. If the trial design 
does not work, we need to change it to come up with an acceptable system. In both cases, we 
must be able to analyze designs to make further decisions. Thus, analysis capability must be 
available in the design process.

This book is intended for use in all branches of engineering. It is assumed throughout that 
students understand the analysis methods covered in undergraduate engineering statics and 
physics courses. However, we will not let the lack of analysis capability hinder understanding of the 
systematic process of optimum design. Equations for analysis of the system are given wherever 
feasible.

1.3  CONVENTIONAL VERSUS OPTIMUM DESIGN PROCESS

Why Do I Want to Optimize?

Because You Want to Beat the Competition and Improve Your Bottom Line!
It is a challenge for engineers to design efficient and cost-effective systems without com-

promising their integrity. Fig. 1.2a presents a self-explanatory flowchart for a conventional 
design method; Fig. 1.2b presents a similar flowchart for the optimum design method. It is 
important to note that both methods are iterative, as indicated by a loop between blocks 6 and 
3. Both methods have some blocks that require similar calculations and others that require 
different calculations. The key features of the two processes are as follows.
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0.	 The optimum design method has block 0, where the problem is formulated as one of 
optimization (see chapter: Optimum Design Problem Formulation for detailed discus-
sion). An objective function is defined that measures the merits of different designs.

1.	 Both methods require data to describe the system in block 1.
2.	 Both methods require an initial design estimate in block 2.
3.	 Both methods require analysis of the system in block 3.
4.	 In block 4, the conventional design method checks to ensure that the performance 

criteria are met, whereas the optimum design method checks for satisfaction of all of the 
constraints for the problem formulated in block 0.

5.	 In block 5, stopping criteria for the two methods are checked, and the iteration is stopped 
if the specified stopping criteria are met.

6.	 In block 6, the conventional design method updates the design based on the designer’s 
experience and intuition and other information gathered from one or more trial designs; 
the optimum design method uses optimization concepts and procedures to update the 
current design.

The foregoing distinction between the two design approaches indicates that the conven-
tional design process is less formal. An objective function that measures a design’s merit is 
not identified. Trend information is usually not calculated; nor is it used in block 6 to make 
design decisions for system improvement. In contrast, the optimization process is more for-
mal, using trend information to make design changes.

FIGURE 1.2 C omparison of: (a) conventional design method; and (b) optimum design method.
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1.4  OPTIMUM DESIGN VERSUS OPTIMAL CONTROL

What Is Optimal Control?

Optimum design and optimal control of systems are separate activities. There are 
numerous applications in which methods of optimum design are useful in designing sys-
tems. There are many other applications where optimal control concepts are needed. In 
addition, there are some applications in which both optimum design and optimal control 
concepts must be used. Sample applications of both techniques include robotics and aerospace 
structures. In this text, optimal control problems and methods are not described in detail. 
However, the fundamental differences between the two activities are briefly explained in 
the sequel. It turns out that some optimal control problems can be transformed into opti-
mum design problems and treated by the methods described in this text. Thus, methods 
of optimum design are very powerful and should be clearly understood. A  simple opti-
mal control problem is described in chapter: Practical Applications of Optimization and is 
solved by the methods of optimum design.

The optimal control problem consists of finding feedback controllers for a system to pro-
duce the desired output. The system has active elements that sense output fluctuations. Sys-
tem controls are automatically adjusted to correct the situation and optimize a measure of 
performance. Thus, control problems are usually dynamic in nature. In optimum design, on 
the other hand, we design the system and its elements to optimize an objective function. The 
system then remains fixed for its entire life.

As an example, consider the cruise control mechanism in passenger cars. The idea behind 
this feedback system is to control fuel injection to maintain a constant speed. Thus, the sys-
tem’s output (ie, the vehicle’s cruising speed) is known. The job of the control mechanism 
is to sense fluctuations in speed depending on road conditions and to adjust fuel injection 
accordingly.

1.5  BASIC TERMINOLOGY AND NOTATION

Which Notation Do I Need to Know?

To understand and to be comfortable with the methods of optimum design, a student must 
be familiar with linear algebra (vector and matrix operations) and basic calculus. Operations of 
linear algebra are described in Appendix A. Students who are not comfortable with this material 
need to review it thoroughly. Calculus of functions of single and multiple variables must also 
be understood. C alculus concepts are reviewed wherever they are needed. In this section, 
the standard terminology and notations used throughout the text are defined. It is important to 
understand and memorize these notations and operations.

1.5.1 Vectors and Points

Since realistic systems generally involve several variables, it is necessary to define and use 
some convenient and compact notations to represent them. Set and vector notations serve this 
purpose quite well.
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A point is an ordered list of numbers. Thus, (x1, x2) is a point consisting of two numbers where-
as (x1, x2, …, xn) is a point consisting of n numbers. Such a point is often called an n-tuple. The 
n components x1, x2, …, xn are collected into a column vector as

=
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







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
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

=  

x
x

x

x x xx . . .

n

n
T

1

2
1 2

�
	

(1.1)

where the superscript T denotes the transpose of a vector or a matrix. This is called an n-vector. 
Each number xi is called a component of the (point) vector. Thus, x1 is the first component, x2 
is the second, and so on.

We also use the following notation to represent a point or a vector in the n-dimensional 
space:

x x xx , , . . . , n1 2( )=	 (1.2)

In 3-dimensional (3D) space, the vector x = [x1 x2 x3]T represents a point P, as shown in 
Fig. 1.3. Similarly, when there are n components in a vector, as in Eqs. (1.1) and (1.2), x is 
interpreted as a point in the n-dimensional space, denoted as Rn. The space Rn is simply the 
collection of all n-dimensional vectors (points) of real numbers. For example, the real line is 
R1, the plane is R2, and so on.

The terms vector and point are used interchangeably, and lowercase letters in roman 
boldface are used to denote them. Uppercase letters in roman boldface represent matrices.

1.5.2 Sets

Often we deal with sets of points satisfying certain conditions. For example, we may con-
sider a set S of all points having three components, with the last having a fixed value of 3, 
which is written as

x=x1x2⋮xn=x1   x2   .   .   .   xnT,

x=x1,   x2,   .   .   .   ,   xn

FIGURE 1.3  Vector representation of a point P in 3D space.
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{ }( )= = =S x x x xx , , 31 2 3 3	 (1.3)

Information about the set is contained in braces ({ }). Eq. (1.3) reads as “S equals the set of 
all points (x1, x2, x3) with x3 = 3.” The vertical bar divides information about the set S into two 
parts: To the left of the bar is the dimension of points in the set; to the right are the properties 
that distinguish those points from others not in the set (eg, properties a point must possess 
to be in the set S).

Members of a set are sometimes called elements. If a point x is an element of the set S, then 
we write x ∈ S. The expression x ∈ S is read as “x is an element of (belongs to) S.” Conversely, 
the expression “y ∉ S” is read as “y is not an element of (does not belong to) S.”

If all the elements of a set S are also elements of another set T, then S is said to be a subset of 
T. Symbolically, we write S ⊂ T, which is read as “S is a subset of T” or “S is contained in T.” 
Alternatively, we say “T is a superset of S,” which is written as T ⊃ S.

As an example of a set S, consider a domain of the xl – x2 plane enclosed by a circle of radius 
3 with the center at the point (4, 4), as shown in Fig. 1.4. Mathematically, all points within and 
on the circle can be expressed as

S R x xx 4 4 92
1

2
2

2{ }( ) ( )= ∈ − + − ≤
	

(1.4)

Thus, the center of the circle (4, 4) is in the set S because it satisfies the inequality in Eq. (1.4). 
We write this as (4, 4) ∈ S. The origin of coordinates (0, 0) does not belong to the set because it 
does not satisfy the inequality in Eq. (1.4). We write this as (0, 0) ∉ S. It can be verified that the 
following points belong to the set: (3, 3), (2, 2), (3, 2), (6, 6). In fact, set S has an infinite number 
of points. Many other points are not in the set. It can be verified that the following points are 
not in the set: (1, 1), (8, 8), and (−1, 2).

S=x=x1,   x2,   x3      x3=3

S=x   ∈   R2      x1−42+x2−42   ≤   9

FIGURE 1.4  Geometrical representation of the set == −− ++ −− ≤≤{ }( ) ( )S x xx 4 4 91
2

2
2

.S=x|x1−42+x2−42
≤9
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1.5.3 Notation for Constraints

Constraints arise naturally in optimum design problems. For example, the material of the 
system must not fail, the demand must be met, resources must not be exceeded, and so on. We 
shall discuss the constraints in more detail in chapter: Optimum Design Problem Formula-
tion. Here we discuss the terminology and notations for the constraints.

We encountered a constraint in Fig. 1.4 that shows a set S of points within and on the circle 
of radius 3. The set S is defined by the following constraint:

( ) ( )− + − ≤x x4 4 91
2

2
2

	 (1.5)

A constraint of this form is a “less than or equal to type” constraint and is abbreviated as 
“≤  type.” Similarly, there are greater than or equal to type constraints, abbreviated as “≥ type.” 
Both are called inequality constraints.

1.5.4 Superscripts/Subscripts and Summation Notation

Later we will discuss a set of vectors, components of vectors, and multiplication of matri-
ces and vectors. To write such quantities in a convenient form, consistent and compact nota-
tions must be used. We define these notations here. Superscripts are used to represent different 
vectors and matrices. For example, x(i) represents the ith vector of a set and A(k) represents the 
kth matrix. Subscripts are used to represent components of vectors and matrices. For example, xj is 
the jth component of x and aij is the i–jth element of matrix A. Double subscripts are used to 
denote elements of a matrix.

To indicate the range of a subscript or superscript we use the notation

x i n; 1 toi =	 (1.6)

This represents the numbers x1, x2, …, xn. Note that “i = 1 to n” represents the range for the 
index i and is read, “i goes from 1 to n.” Similarly, a set of k vectors, each having n compo-
nents, is represented by the superscript notation as

j kx ; 1 toj =( )
	 (1.7)

This represents the k vectors x(l), x(2), …, x(k). It is important to note that subscript i in Eq. (1.6) 
and superscript j in Eq. (1.7) are free indices; that is, they can be replaced by any other variable. 
For example, Eq. (1.6) can also be written as xj, j = 1 to n and Eq. (1.7) can be written as x(i), i = 1 
to k. Note that the superscript j in Eq. (1.7) does not represent the power of x. It is an index that 
represents the jth vector of a set of vectors.

We also use the summation notation quite frequently. For example,

c x y x y x y. . . n n1 1 2 2= + + +	 (1.8)

is written as

c x yi i
i

n

1
∑=

=	
(1.9)

x1−42+x2−42   ≤   9

xi; i=1 to n

xj; j=1 to k

c=x1y1+x2y2+   .   .   .   +xnyn

c=∑i=1nxiyi
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Also, multiplication of an n-dimensional vector x by an m × n matrix A to obtain an m-
dimensional vector y is written as

y Ax=	 (1.10)

Or, in summation notation, the ith component of y is

y a x a x a x a x i m. . . ; 1 toi ij
j

n

j i i in n
1

1 1 2 2∑= = + + + =
=	

(1.11)

There is another way of writing the matrix multiplication of Eq. (1.10). Let m-dimensional 
vectors a(i); i = 1 to n represent columns of the matrix A. Then y = Ax is also written as

∑= = + + +( ) ( ) ( ) ( )

=

x x x xy a a a a. . .j

j

n

j
n

n
1

1
1

2
2

	
(1.12)

The sum on the right side of Eq. (1.12) is said to be a linear combination of columns of matrix 
A with xj, j = 1 to n as its multipliers. Or y is given as a linear combination of columns of A 
(refer Appendix A for further discussion of the linear combination of vectors).

Occasionally, we must use the double summation notation. For example, assuming m = n 
and substituting yi from Eq. (1.11) into Eq. (1.9), we obtain the double sum as

c x a x a x xi ij j
j

n

i

n

ij i j
j

n

i

n

11 11
∑∑ ∑∑=









 =

== ==	
(1.13)

Note that the indices i and j in Eq. (1.13) can be interchanged. This is possible because c is 
a scalar quantity, so its value is not affected by whether we sum first on i or on j. Eq. (1.13) can 
also be written in the matrix form, as we will see later.

1.5.5 Norm/Length of a Vector

If we let x and y be two n-dimensional vectors, then their dot product is defined as

∑( )• = =
=

x yx y x yT
i i

i

n

1	
(1.14)

Thus, the dot product is a sum of the product of corresponding elements of the vectors x 
and y. Two vectors are said to be orthogonal (normal) if their dot product is 0; that is, x and y 
are orthogonal if (x • y) = 0. If the vectors are not orthogonal, the angle between them can be 
calculated from the definition of the dot product:

θ( )• =x y x y cos ,	 (1.15)

where u is the angle between vectors x and y, and ‖x‖ represents the length of vector x (also 
called the norm of the vector). The length of vector x is defined as the square root of the sum of 
squares of the components:

y=Ax

yi=∑j=1naijxj=ai1x1+ai2x2+   .   .   .   
+ainxn;      i=1 to m

y=∑j=1najxj=a1x1+a2x2+   .   .   .   
+anxn

c=∑i=1nxi∑j=1naijxj=∑i=1n∑j
=1naijxixj

x   •y=xTy=∑i=1nxiyi

x•y=x   y   cosu,
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∑ ( )= = •
=

xx x xi
i

n
2

1	
(1.16)

The double sum of Eq. (1.13) can be written in the matrix form as follows:

c a x x x a x x Axij i j
j

n

i

n

i
i

n

ij j
j

n
T

11 1 1
∑∑ ∑ ∑= =









 =

== = =	
(1.17)

Since Ax represents a vector, the triple product of Eq. (1.17) is also written as a dot product:

( )= = •c x Ax x AxT
	 (1.18)

1.5.6 Functions of Several Variables

Just as a function of a single variable is represented as f(x), a function of n independent 
variables x1, x2, …, xn is written as

( )( ) =f f x x xx , , . . . , n1 2	 (1.19)

We deal with many functions of vector variables. To distinguish between functions, sub-
scripts are used. Thus, the ith function is written as

g g x x xx , , . . . ,i i n1 2( )( ) =	 (1.20)

If there are m functions gi(x), i = 1 to m, these are represented in the vector form

( )

( )
( )

( )

( ) ( ) ( )=
:









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
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
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=  
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g g gg x
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x

x x x. . .

m

m
T

1

2
1 2

	

(1.21)

Throughout the text it is assumed that all functions are continuous and at least twice continu-
ously differentiable. A function f(x) of n variables is continuous at a point x* if, for any ε > 0, 
there is a d > 0 such that

ε( ) ( )− <f fx x *	 (1.22)

whenever ‖x − x*‖ < d. Thus, for all points x in a small neighborhood of point x*, a change in 
the function value from x* to x is small when the function is continuous. A continuous func-
tion need not be differentiable. Twice-continuous differentiability of a function implies not only 
that it is differentiable two times, but also that its second derivative is continuous.

Fig. 1.5a,b shows continuous and discontinuous functions. The function in Fig. 1.5a is 
differentiable everywhere, whereas the function in Fig. 1.5b is not differentiable at points 
x1, x2, and x3. Fig. 1.5c is an example in which f is not a function because it has infinite values 
at x1. Fig. 1.5d is an example of a discontinuous function. As examples, functions f(x) = x3 

x   =∑i=1nxi2=x•x

c=∑i=1n∑j=1naijxixj=∑i=1nxi∑
j=1naijxj=xTAx

c=xTAx=x•Ax

fx=fx1,   x2,   .   .   .   ,   xn

gix=gix1,   x2,   .   .   .   ,   xn

gx=g1xg2x:gmx=g1x   g2x   .   .   .   gmxT

fx−fx*<ε
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and f(x) = sinx are continuous everywhere and are also continuously differentiable. However, 
function f(x) = |x| is continuous everywhere but not differentiable at x = 0.

1.5.7 Partial Derivatives of Functions

Often in this text we must calculate derivatives of functions of several variables. Here we 
introduce some of the basic notations used to represent the partial derivatives of functions of 
several variables.

First Partial Derivatives
For a function f(x) of n variables, the first partial derivatives are written as

( )∂
∂

=
f

x
i n

x
; 1 to

i	
(1.23)

The n partial derivatives in Eq. (1.23) are usually arranged in a column vector known as the 
gradient of the function f(x). The gradient is written as ∂f/∂x or ∇f(x). Therefore,

�
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∂
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∂ ∂
∂ ∂

∂ ∂


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
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
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




f
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f x
f x

f x

x
x
x

x
x

x
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( )
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[ ( )]/

[ ( )]/

1

2

n
	

(1.24)

∂fx∂xi;  i=1to n

∇f(x)=∂f(x)∂x=[∂f(x)]/∂x1[∂f(x)]/
∂x2⋮[∂f(x)]/∂xn

FIGURE 1.5  Continuous and discontinuous functions. (a) and (b) Continuous functions; (c) not a function; and 
(d) discontinuous function.
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Note that each component of the gradient in Eqs. (1.23) or (1.24) is a function of vector x.

Second Partial Derivatives
Each component of the gradient vector in Eq. (1.24) can be differentiated again with respect 

to a variable to obtain the second partial derivatives for the function f(x):

( )∂
∂ ∂

=
f

x x
i j n; , 1 to

i j

2 x

	
(1.25)

We see that there are n2 partial derivatives in Eq. (1.25). These can be arranged in a matrix 
known as the Hessian matrix, written as H(x), or simply the matrix of second partial deriva-
tives of f(x), written as ∇2f(x):

= ∇ =
∂

∂ ∂










×

f
f

x x
H x x

x
( ) ( )

( )

i j n n

2
2

	
(1.26)

Note that if f(x) is continuously differentiable two times, then Hessian matrix H(x) in 
Eq. (1.26) is symmetric.

Partial Derivatives of Vector Functions
On several occasions we must differentiate a vector function of n variables, such as the 

vector g(x) in Eq. (1.21), with respect to the n variables in vector x. Differentiation of each com-
ponent of the vector g(x) results in a gradient vector, such as ∇gi(x). Each of these gradients 
is an n-dimensional vector. They can be arranged as columns of a matrix of dimension n × m, 
referred to as the gradient matrix of g(x). This is written as

…( ) ( )
∇ =

∂
∂

= ∇ ∇ ∇  ×
g g g( ) ( ) ( )m n m1 2g x

g x

x
x x x

	
(1.27)

This gradient matrix is usually written as matrix A:

=   =
∂
∂

= =
×

a a
g
x

i n j m; ; 1 to ; 1 toij n m ij
j

i

A
	

(1.28)

1.5.8 US–British Versus SI Units

The formulation of the design problem and the methods of optimization do not depend 
on the units of measure used. Thus, it does not matter which units are used to formulate 
the problem. However, the final form of some of the analytical expressions for the problem 
does depend on the units used. In the text, we use both US–British and SI units in examples 
and exercises. Readers unfamiliar with either system should not feel at a disadvantage when 
reading and understanding the material since it is simple to switch from one system to the 
other. To facilitate the conversion from US–British to SI units or vice versa, Table 1.1 gives 

∂2fx∂xi∂xj;  i, j=1 to n

H(x)=∇2f(x)=∂2f(x)∂xi∂xjn×n

∇gx=∂gx∂x=∇g1(x)   ∇g2(x)   …   ∇gm(
x)n×m

A=aijn×m;  aij=∂gj∂xi; i=1 to n; j
=1 to m.
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TABLE 1.1  Conversion Factors for US–British and SI Units

To convert from US–British To SI units Multiply by

Acceleration

Foot/second2 (ft./s2) Meter/second2 (m/s2) 0.3048*

Inch/second2 (in./s2) Meter/second2 (m/s2) 0.0254*

Area

Foot2 (ft.2) Meter2 (m2) 0.09290304*

Inch2 (in.2) Meter2 (m2) 6.4516E–04*

Bending moment or torque

Pound force inch (lbf·in.) Newton meter (N·m) 0.1129848

Pound force foot (lbf·ft.) Newton meter (N·m) 1.355818

Density

Pound mass/inch3 (lbm/in.3) Kilogram/meter3 (kg/m3) 27,679.90

Pound mass/foot3 (lbm/ft.3) Kilogram/meter3 (kg/m3) 16.01846

Energy or work

British thermal unit (BTU) Joule (J) 1055.056

Foot pound force (ft.·lbf) Joule (J) 1.355818

Kilowatt-hour (KWh) Joule (J) 3,600,000*

Force

Kip (1000 lbf) Newton (N) 4448.222

Pound force (lbf) Newton (N) 4.448222

Length

Foot (ft.) Meter (m) 0.3048*

Inch (in.) Meter (m) 0.0254*

Inch (in.) Micron (m); micrometer (mm) 25,400*

Mile (mi), US statute Meter (m) 1609.344

Mile (mi), International, nautical Meter (m) 1852*

Mass

Pound mass (lbm) Kilogram (kg) 0.4535924

Ounce Grams 28.3495

Slug (lbf·s2ft.) Kilogram (kg) 14.5939

Ton (short, 2000 lbm) Kilogram (kg) 907.1847

Ton (long, 2240 lbm) Kilogram (kg) 1016.047

Tonne (t, metric ton) Kilogram (kg) 1000*

Power

Foot pound/minute (ft.·lbf/min) Watt (W) 0.02259697

Horsepower (550 ft. lbf/s) Watt (W) 745.6999
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To convert from US–British To SI units Multiply by

Pressure or stress

Atmosphere (std) (14.7 lbf/in.2) Newton/meter2 (N/m2 or Pa) 101,325*

One bar (b) Newton/meter2 (N/m2 or Pa) 100,000*

Pound/foot2 (lbf/ft.2) Newton/meter2 (N/m2 or Pa) 47.88026

Pound/inch2 (lbf/in.2 or psi) Newton/meter2 (N/m2 or Pa) 6894.757

Velocity

Foot/minute (ft./min) Meter/second (m/s) 0.00508*

Foot/second (ft./s) Meter/second (m/s) 0.3048*

Knot (nautical mi/h), international Meter/second (m/s) 0.5144444

Mile/hour (mi/h), international Meter/second (m/s) 0.44704*

Mile/hour (mi/h), international Kilometer/hour (km/h) 1.609344*

Mile/second (mi/s), international Kilometer/second (km/s) 1.609344*

Volume

Foot3 (ft.3) Meter3 (m3) 0.02831685

Inch3 (in.3) Meter3 (m3) 1.638706E–05

Gallon (Canadian liquid) Meter3 (m3) 0.004546090

Gallon (UK liquid) Meter3 (m3) 0.004546092

Gallon (UK liquid) Liter (L) 4.546092

Gallon (US dry) Meter3 (m3) 0.004404884

Gallon (US liquid) Meter3 (m3) 0.003785412

Gallon (US liquid) Liter (L) 3.785412

One liter (L) Meter3 (m3) 0.001*

One liter (L) Centimeter3 (cm3) 1000*

One milliliter (mL) Centimeter3 (cm3) 1*

Ounce (UK fluid) Meter3 (m3) 2.841307E–05

Ounce (US fluid) Meter3 (m3) 2.957353E–05

Ounce (US fluid) Liter (L) 2.957353E–02

Ounce (US fluid) Milliliter (mL) 29.57353

Pint (US dry) Meter3 (m3) 5.506105E–04

Pint (US liquid) Liter (L) 4.731765E–01

Pint (US liquid) Meter3 (m3) 4.731765E–04

Quart (US dry) Meter3 (m3) 0.001101221

Quart (US liquid) Meter3 (m3) 9.463529E–04

* Exact conversion factor.

TABLE 1.1  Conversion Factors for US–British and SI Units (cont.)
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conversion factors for the most commonly used quantities. For a complete list of conversion 
factors, consult the IEEE/ASTM (2010) publication.
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