
C H A P T E R

739

Introduction to Optimum Design. http://dx.doi.org/10.1016/B978-0-12-800806-5.00017-2
Copyright © 2017 Elsevier Inc. All rights reserved.

17
Nature-Inspired Search Methods

Upon completion of this chapter, you will be able to:

•	 Explain	the	basic	concepts,	terminology,	and	
steps	of	genetic	algorithms	(GAs)

•	 Explain	and	use	the	differential	evolution	
algorithm	(DEA)

•	 Explain	and	use	the	ant	colony	optimization	
(ACO)	algorithm

•	 Explain	and	use	the	particle	swarm	
optimization	(PSO)	algorithm

In	 this	chapter,	optimization	algorithms	 inspired	by	natural	phenomena	are	described.	
These	 fall	 into	 the	general	class	of	direct search methods	described	earlier	 in	chapter:	More	
on	Numerical	Methods	for	Unconstrained	Optimum	Design.	However,	in	contrast	to	some	
direct	 search	 methods,	 they	 do	 not	 require	 the	 continuity	 or	 differentiability	 of	 problem	
functions.	The	only	requirement	is	to	be	able	to	evaluate	functions	at	any	point	within	the	
allowable	ranges	for	the	design	variables.	Nature-inspired	methods	use	stochastic	ideas	and	
random	numbers	in	their	calculations	to	search	for	the	optimum	point.	Decisions	made	at	
most	steps	of	the	algorithms	are	based	on	random	number	generation.	Therefore,	executed	
at	different	times,	the	algorithms	can	lead	to	a	different	sequence	of	designs	and	a	different	
solution	even	with	the	same	initial	conditions.	They	tend	to	converge	to	a	global	minimum	
point	for	the	function,	but	there	is	no	guarantee	of	convergence	or	global	optimality	of	the	
final	solution.

Nature-inspired approaches have been called stochastic programming, evolutionary
algorithms, genetic programming, swarm intelligence, and evolutionary computa-
tion. They are also called nature-inspired metaheuristics methods, as they make no
assumptions about the optimization problem and can search very large spaces for
candidate solutions.

Nature-inspired	 algorithms	 can	 overcome	 some	 of	 the	 challenges	 that	 are	 due	 to	 mul-
tiple	objectives,	mixed	design	variables,	irregular/noisy	problem	functions,	implicit	problem	
functions,	expensive	and/or	unreliable	function	gradients,	and	uncertainty	in	the	model	and	
the	environment.	The	methods	are	very	general	and	can	be	applied	to	all	kinds	of	problems—
discrete,	continuous,	and	nondifferentiable.	They	are	relatively	easy	to	use	and	program	since	

740 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

they	do	not	require	the	use	of	gradients	of	cost	or	constraint	functions.	For	this	reason,	there	
has	been	considerable	 interest	 in	their	development	and	in	their	application	to	a	wide	va-
riety	of	practical	problems.	Several	books	on	various	methods	have	been	published;	a	few	
examples	 are	 Goldberg	 (1989), Gen	 and	 Cheng	 (1997), Corne	 et	 al.	 (1999), Kennedy	 et	 al.	
(2001), Glover	 and	 Kochenberger	 (2002), Coello-Coello	 et	 al.	 (2002), Osyczka	 (2002), Price	
et	al.	(2005),	and	Qing	(2009).

There	 have	 also	 been	 conferences	 and	 workshops	 on	 various	 nature-inspired	 methods	
such	as	the	IEEE	Congress	on	Evolutionary	Computation,	Soft	Computing,	Genetic	and	Evo-
lutionary	Computation	Conference	(GECCO),	International	Conference	on	Parallel	Problem	
Solving	from	Nature	(PPSN),	Ant	Colony	Optimization	and	Swarm	Intelligence	(ANTS),	the	
Evolutionary	Programming	Conference,	and	others.	Journals	devoted	to	research	on	nature-
inspired	methods	include:	IEEE Transactions on Evolutionary Computation, Applied Intelligence,
Neural Network World, Artificial Intelligence Review, Applied Soft Computing, Physics of Life Re-
views, AI Communications, Evolutionary Computing, Journal of Artificial Intelligence Research,
Journal of Heuristics,	and	Artificial Life.

The drawbacks	of	these	algorithms	are	as	follows:

1. They	require	a	large	amount	of	function	evaluations	for	even	reasonably	sized	prob-
lems.	For	problems	where	evaluation	of	functions	itself	requires	massive	calculation,	the	
amount	of	computing	time	required	to	solve	the	problem	can	be	prohibitive.

2. There	is	no	absolute	guarantee	that	a	global	solution	has	been	obtained.

The	first	drawback	can	be	overcome	to	some	extent	by	the	use	of	massively	parallel	com-
puters.	The	second	drawback	can	be	overcome	to	some	extent	by	executing	 the	algorithm	
several	times	and	allowing	it	to	run	longer.

The	methods	usually	start	with	a	collection	of	design	points	called	the	population.	Using	
certain	stochastic	processes,	the	methods	try	to	come	up	with	a	better	design	point	for	each	
generation	(iteration	of	the	algorithm).	To	give	a	flavor	of	nature-inspired	methods,	we	will	de-
scribe	four	methods	in	this	chapter	that	are	relatively	popular.	(Other	methods	in	this	class	are	
noted	in	Das	and	Suganthan,	2011.)	Each	one	uses	specific	terminology	from	the	correspond-
ing	biological	phenomenon	or	other	natural	phenomena	that	may	be	unfamiliar	to	engineers,	
so	we	will	describe	such	terminology	wherever	used.

The	methods	presented	here	treat	the	following	optimization	problem:
Minimize

() ∈f Sx for x (17.1)

where S	 is	 the	 feasible	set	of	designs	and	x is the n-dimensional	design	variable	vector.	 If	
the	problem	is	unconstrained,	the	set	S	is	the	entire	design	space,	and	if	it	is	constrained,	S
is	determined	by	the	constraints.	The	methods	presented	in	this	chapter	are	generally	used	
for	unconstrained	problems.	However,	constrained	optimization	problems,	can	be	addressed	
using	the	penalty	function	approach	described	in	chapter:	More	on	Numerical	Methods	for	
Unconstrained	Optimum	Design	or	the	exact	penalty	function	defined	in	chapter:	Numerical	
Methods	for	Constrained	Optimum	Design.

In	the	following	presentation,	the	terms	design vector, design point,	and	design	are	used	inter-
changeably.	They	all	refer	to	the	n-dimensional	design	variable	vector	x.

fx for x∈S

 17.1 GeNetIc alGorIthMS (Ga) for optIMuM deSIGN 741

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

17.1 GENETIC ALGORITHMS (GA) FOR OPTIMUM DESIGN

In	this	section,	concepts	and	terminology	associated	with	GAs	are	defined	and	explained	
for	the	optimization	problem.	Fundamentals	of	GAs	are	presented	and	explained.	Although	
the	algorithm	can	be	used	for	continuous	problems,	our	 focus	will	be	on	discrete	variable	
optimization	problems.	various	steps	of	a	GA	are	described	that	can	be	implemented	in	dif-
ferent	ways.

Most	of	the	material	for	this	chapter	is	derived	from	the	work	of	the	author	and	his	cowork-
ers	and	is	introductory	in	nature	(Arora	et	al.,	1994;	Huang	and	Arora,	1997;	Huang	et	al.,	1997;	
Arora,	2002).	Numerous	other	good	references	on	the	subject	are	available	(eg,	Holland,	1975;	
Goldberg,	1989;	Mitchell,	1996;	Gen	and	Cheng,	1997;	Pezeshk	and	Camp,	2002).

17.1.1 Basic Concepts and Definitions Related to GA

Genetic	algorithms	loosely	parallel	biological evolution	and	are	based	on	Darwin’s	theory	
of	natural	selection.	The	specific	mechanics	of	the	algorithm	uses	the	language	of	microbiol-
ogy,	and	its	implementation	mimics	genetic	operations.	We	will	explain	this	in	subsequent	
paragraphs	and	sections.	The basic idea of the approach is to start with a set of designs,	randomly	
generated	using	the	allowable	values	for	each	design	variable.	Each	design	is	also	assigned	a	
fitness	value,	usually	using	the	cost	function	for	unconstrained	problems	or	the	penalty	func-
tion	for	constrained	problems.	From	the	current	set	of	designs,	a	subset	is	selected	randomly	
with	a	bias	allocated	to	more	fit	members	of	the	set.	random	processes	are	used	to	generate	
new	designs	using	the	selected	subset	of	designs.

The	size	of	the	design	set	is	kept	fixed.	Since	more	fit	members	of	the	set	are	used	to	create	
new	designs,	the	successive	sets	of	designs	have	a	higher	probability	of	having	designs	with	
better	fitness	values.	The	process	is	continued	until	a	stopping	criterion	is	met.	In	the	follow-
ing	paragraphs,	some	details	of	implementing	these	basic	steps	are	presented	and	explained.	
First	we	will	define	and	explain	various	terms	associated	with	the	algorithm.

Population:	The	set	of	design	points	at	the	current	iteration	is	called	a	population.	It	
represents	a	group	of	designs	as	potential	solution	points.	Np	is	the	number	of	designs	in	
a	population;	this	is	also	called	the	population	size.
Generation:	An	iteration	of	the	GA	is	called	a	generation.	A	generation	has	a	population	of	
size	Np	that	is	manipulated	in	a	GA.
Chromosome:	This	term	is	used	to	represent	a	design	point.	Thus	a	chromosome	represents	
a	design	of	the	system,	whether	feasible	or	infeasible.	It	contains	values	for	all	the	design	
variables	of	the	system.
Gene:	This	term	is	used	for	a	scalar	component	of	the	design	vector;	that	is,	it	represents	
the	value	of	a	particular	design	variable.

Design Representation
A	method	is	needed	to	represent	design	variable	values	in	their	allowable	sets	and	to	rep-

resent	design	points	so	that	they	can	be	used	and	manipulated	in	the	algorithm.	This	is	called	
a schema,	and	it	needs	to	be	encoded	(ie,	defined).	Although	binary	encoding	is	the	most	com-
mon	approach,	real-number	coding,	and	integer	encoding	are	also	possible.	Binary	encoding	

742 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

implies	a	string	of	0s	and	1s.	Binary	strings	are	also	useful	because	it	is	easier	to	explain	the	
operations	of	the	GA	with	them.

A	 binary	 string	 of	 0s	 and	 1s	 can	 represent	 a	 design	 variable	 (a	 gene).	Also,	 an	 L-digit	
string	with	a	0	or	1	for	each	digit,	where	L	is	the	total	number	of	binary	digits,	can	be	used	
to	specify	a	design	point	(a	chromosome).	Elements	of	a	binary	string	are	called	bits;	a	bit	
can	have	a	value	of	0	or	1.	We	will	use	the	term “V–string” for a binary string that represents
the value of a variable;	that	is,	the	component	of	a	design	vector	(a	gene).	Also,	we	will	use	the	
term “D–string” for a binary string that represents a design of the system—that	is,	a	particular	
combination of n	v–strings,	where	n	is	the	number	of	design	variables.	This	is	also	called	a	
genetic string	(or	a	chromosome).

An	m-digit	binary	string	has	2m	possible	0–1	combinations	implying	that	2m	discrete	values	
can	be	represented.	The	following	method	can	be	used	to	transform	a	v–string	consisting	of	a	
combination of m	0s	and	1s	to	its	corresponding	discrete	value	of	a	variable	having	Nc allowable
discrete	values:	let	m	be	the	smallest	integer	satisfying	2m > Nc;	calculate	the	integer	j:

∑ ()= +()−

=

j ICH i 2 1i

i

m
1

1
(17.2)

where ICH(i)	is	the	value	of	the	ith	digit	(either	0	or	1).	Thus	the	jth	allowable	discrete	value	
corresponds	to	this	0–1	combination;	that	is,	the	jth	discrete	value	corresponds	to	this	v–string.	
Note that when j > Nc	in	Eq.	(17.2),	the	following	procedure	can	be	used	to	adjust	j such that
j ≤ Nc:

()=
−

−j
N

N
j NINT

2
c

m
c

c

(17.3)

where	INT(x)	is	the	integer	part	of	x.	As	an	example,	consider	a	problem	with	three	design	
variables	each	having	Nc	=	10	possible	discrete	values.	Thus,	we	will	need	a	four-digit	binary	
string	to	represent	discrete	values	for	each	design	variable;	that	is,	m	=	4	implying	that	16	pos-
sible	discrete	values	can	be	represented.	Let	a	design	point	x	=	(x1, x2, x3)	be	encoded	as	the	
following	D–string	(genetic	string):

x x x
0110 1111 1101

1 2 3

(17.4)

Using	Eq.	(17.2), the j	values	for	the	three	v–strings	are	calculated	as	7,	16,	and	12.	Since	
the	last	two	numbers	are	larger	than	Nc	=	10,	they	are	adjusted	by	using	Eq.	(17.3)	as	6	and	2,	
respectively.	Thus	the	foregoing	D–string	(genetic	string)	represents	a	design	point	where	the	
seventh,	sixth,	and	second	allowable	discrete	values	are	assigned	to	the	design	variables	x1,
x2,	and	x3,	respectively.

Initial Generation/Starting Design Set
With	a	method	to	represent	a	design	point	defined,	the	first	population	consisting	of	Np	de-

signs	needs	to	be	created.	This	means	that	Np	D–strings	need	to	be	created.	In	some	cases,	the	
designer	already	knows	some	good	usable	designs	for	the	system.	These	can	be	used	as	seed

j=∑i=1mICHi2i−1+1

j=INTNc2m−Ncj−Nc

x1x2x3011011111101

 17.1 GeNetIc alGorIthMS (Ga) for optIMuM deSIGN 743

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

designs	to	generate	the	required	number	of	designs	for	the	population	using	some	random	
process.	Otherwise,	the	initial	population	can	be	generated	randomly	via	the	use	of	a	random	
number	generator.	Several	methods	can	be	used	for	this	purpose.	The	following	procedure	
shows	a	way	to	produce	a	32-digit	D–string:

1. Generate	two	random	numbers	between	0	and	1	as	“0.3468	0254	7932	7612	and	0.6757	
2163	5862	3845.”

2. Create	a	string	by	combining	the	two	numbers	as	“3468	0254	7932	7612	6757	2163	5862	
3845.”

3. The	32	digits	of	the	above	string	are	converted	to	0s	and	1s	by	using	a	rule	in	which	“0”	is	
used	for	any	value	between	0	and	4	and	“1”	for	any	value	between	5	and	9,	as	“0011	0010	
1100	1100	1111	0010	1110	0101.”

Fitness Function
The	fitness	function	defines	the	relative	importance	of	a	design.	A	higher	fitness	value	im-

plies	a	better	design.	The	fitness	function	may	be	defined	in	several	different	ways;	it	can	be	
defined	using	the	cost	function	value	as	follows:

ε()= + −F f f1 ,i imax (17.5)

where fi	 is	 the	 cost	 function	 (penalty	 function	 value	 for	 a	 constrained	 problems)	 for	 the	
ith	design,	 fmax	 is	 the	 largest	recorded	cost	 (penalty)	 function	value,	and	ε	 is	a	small	value	
(eg,	2	×	10−7)	to	prevent	numerical	difficulties	when	Fi	becomes	0.

17.1.2 Fundamentals of Genetic Algorithms

The	basic	idea	of	a	GA	is	to	generate	a	new	set	of	designs	(population)	from	the	current	set	
such	that	the	average	fitness	of	the	population	is	improved.	The	process	is	continued	until	
a	stopping	criterion	is	satisfied	or	the	number	of	iterations	exceeds	a	specified	limit.	Three	
genetic	operators	are	used	to	accomplish	this	task:	reproduction,	crossover,	and	mutation.

Reproduction	is	an	operator	where	an	old	design	(D–string)	is	copied	into	the	new	
population	according	to	the	design’s	fitness.	There	are	many	different	strategies	to	
implement	this	reproduction	operator.	This	is	also	called	the	selection process.
Crossover	corresponds	to	allowing	two	selected	members	of	the	new	population	to	
exchange	characteristics	of	their	designs	among	themselves.	Crossover	entails	selection	
of	starting	and	ending	positions	on	a	pair	of	randomly	selected	strings	(called	mating
strings),	and	simply	exchanging	the	string	of	0s	and	1s	between	these	positions.
Mutation	is	the	third	step	that	safeguards	the	process	from	a	complete	premature	loss	of	
valuable	genetic	material	during	reproduction	and	crossover.	In	terms	of	a	binary	string,	
this	step	corresponds	to	selection	of	a	few	members	of	the	population,	determining	a	
location	on	the	strings	at	random,	and	switching	0	to	1	or	vice	versa.

The	foregoing	three	steps	are	repeated	for	successive	generations	of	the	population	until	
no	further	improvement	in	fitness	is	attainable.	The	member	in	this	generation	with	the	high-
est	level	of	fitness	is	taken	as	the	optimum	design.	Some	details	of	the	GA	implemented	by	
Huang	and	Arora	(1997a)	are	described	in	the	sequel.

Fi=1+εfmax−fi,

744 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

Reproduction Procedure
reproduction	is	a	process	of	selecting	a	set	of	designs	(D–strings)	from	the	current	popula-

tion	and	carrying	them	into	the	next	generation.	The	selection process	is	biased	toward	more	fit	
members	of	the	current	design	set	(population).	Using	the	fitness	value	Fi	for	each	design	in	
the	set,	its	probability	of	selection	is	calculated	as:

∑= =
=

P
F
Q

Q F;i
i

j
j

N

1

p

(17.6)

It	is	seen	that	the	members	with	higher	fitness	value	have	larger	probability	of	selection.	To	
explain	the	process	of	selection,	let	us	consider	a	roulette	wheel	with	a	handle	shown	in	Fig.	17.1.	
The wheel has Np	segments	to	cover	the	entire	population,	with	the	size	of	the	ith	segment	pro-
portional to the probability Pi.	Now	a	random	number	w	is	generated	between	0	and	1.	The	wheel	
is	then	rotated	clockwise,	with	the	rotation	proportional	to	the	random	number	w.	After	spinning	
the	wheel,	the	member	pointed	to	by	the	arrow	at	the	starting	location	is	selected	for	inclusion	
in	the	next	generation.	In	the	example	shown	in	Fig.	17.1,	member	2	of	the	current	population	is	
carried	into	the	next	generation.	Since	the	segments	on	the	wheel	are	sized	according	to	the	prob-
abilities Pi,	the	selection	process	is	biased	toward	the	more	fit	members	of	the	current	population.

Note	that	a	member	copied	to	the	mating	pool	remains	in	the	current	population	for	fur-
ther	selection.	Thus,	the	new	population	may	contain	identical	members	and	may	not	contain	
some	of	the	members	found	in	the	current	population.	This	way,	the	average	fitness	of	the	
new	population	is	increased.

Crossover
Once	a	new	set	of	designs	is	determined,	crossover	is	conducted	as	a	means	to	introduce	

variation	into	a	population.	Crossover	is	the	process	of	combining	or	mixing	two	different	

Pi=FiQ; Q=∑j=1NpFj

FIGURE 17.1 Roulette wheel process for selection of designs for new generation (reproduction). Source:
Huang, Hsieh and Arora, 1997.

 17.1 GeNetIc alGorIthMS (Ga) for optIMuM deSIGN 745

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

designs	(chromosomes)	of	the	population.	Although	there	are	many	methods	for	perform-
ing	crossover,	the	most	common	ones	are	the	one-cut-point	and	two-cut-point methods.	A	cut	
point	 is	a	position	on	the	D–string	(genetic	string).	 In	the	one-cut	method	a	position	on	
the	string	is	randomly	selected	that	marks	the	point	at	which	two	parent	designs	(chro-
mosomes)	 split.	 The	 resulting	 four	 halves	 are	 then	 exchanged	 to	 produce	 new	 designs	
(children).

The	process	is	illustrated	in	Fig.	17.2,	where	the	cut	point	is	determined	as	four	digits	from	
the	right	end.	The	lightly	shaded	four	digits	1001	from	one	parent	design	are	exchanged	with	
heavily	shaded	four	digit	1011	from	another	parent	design.	This	produces	two	new	designs	
x19	and	x29	that	replace	the	old	designs	(parents).	Similarly,	the	two-cut-point	method	is	illus-
trated	in	Fig.	17.3.	Selecting	how	many	or	what	percentage	of	chromosomes	crossover,	and	at	
what	points	the	crossover	operation	occurs,	is	part	of	the	heuristic	nature	of	GAs.	There	are	
many	different	approaches,	and	most	are	based	on	random	selections.

Mutation
Mutation	is	the	next	operation	on	the	members	of	the	new	design	set	(population).	The	

idea	of	mutation	is	to	safeguard	the	process	from	a	complete	premature	loss	of	valuable	ge-
netic	material	during	the	reproduction	and	crossover	steps.	In	terms	of	a	genetic	string,	this	
step	corresponds	to	selecting	a	few	members	of	 the	population,	determining	a	 location	on	
each	string	randomly,	and	switching	0	to	1	or	vice	versa.	The	number	of	members	selected	
for	mutation	is	based	on	heuristics,	and	the	selection	of	location	on	the	string	for	mutation	is	
based	on	a	random	process.	Let	us	select	a	design	as	“10	1110	1001”	and	select	location	7	from	
the	right	end	of	its	D–string.	The	mutation	operation	involves	replacing	the	current	value	of	
1	at	the	seventh	location	with	0	as	“10	1010	1001.”

FIGURE 17.2 Crossover operation with one-cut point.	(a)	Designs	selected	for	crossover	(parent	chromosomes).	
(b)	New	designs	(children)	after	crossover.

FIGURE 17.3 Crossover operation with two-cut point.	(a)	Designs	selected	for	crossover	(parent	chromosomes).	
(b)	New	designs	(children)	after	crossover.

746 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

Number of Crossovers and Mutations
For	each	generation	(iteration),	three	operators—reproduction	or	selection,	crossover,	and	

mutation—are	performed.	While	the	number	of	the	reproduction	operations	is	always	equal	
to	the	size	of	the	population,	the	number	of	crossovers	and	mutation	can	be	adjusted	to	fine-
tune	the	performance	of	the	algorithm.

To	show	the	type	of	operations	needed	to	implement	the	mutation	and	crossover	at	each	
generation,	we	present	a	possible	procedure	as	follows.

1. Set	Imax	as	an	integer	that	controls	the	amount	of	crossover.	Calculate	Im, which controls
the amount of mutation as Im	=	INT(PmNp),	where	Pm represents a fraction of the popula-
tion	that	is	selected	for	mutation,	and	Np	is	the	size	of	the	population.	Too	many	cross-
overs	can	result	in	a	poorer	performance	of	the	algorithm	since	it	may	produce	designs	
that	are	far	away	from	the	mating	designs.	Therefore,	Imax	should	be	set	to	a	small	num-
ber.	The	mutation,	however,	changes	designs	in	the	neighborhood	of	the	current	design;	
therefore,	a	larger	amount	of	mutation	may	be	allowed.	Note	also	that	the	population	
size	Np	needs	to	be	set	to	a	reasonable	number	for	each	problem.	It	may	be	heuristically	
related	to	the	number	of	design	variables	and	the	number	of	all	possible	designs	deter-
mined	by	the	number	of	allowable	discrete	values	for	each	variable.

2. Let	 +fK 	denote	the	best	cost	(or	penalty)	function	value	for	the	population	at	the	Kth
iteration.	If	the	improvement	in	 +fK 	is	less	than	some	small	positive	number	ε9 for the last
two	consecutive	iterations,	then	Imax	is	doubled	temporarily.	This	“doubling”	strategy	
continues	at	the	subsequent	iterations	and	returns	to	the	original	value	as	soon	as	 +fK is
reduced.	The	concept	behind	this	is	that	we	do	not	want	too	much	crossover	or	mutation	
to	ruin	the	good	designs	in	D–strings	as	long	as	they	keep	producing	better	offspring.	On	
the	other	hand,	we	need	more	crossover	and	mutation	to	trigger	changes	when	progress	
stops.

3. If	improvement	in	 +fK is less than ε9 for the last Ig	consecutive	iterations,	Pm	is	doubled.
4. The	crossover	and	mutation	may	be	performed	as	follows:

FOR i = 1, Imax

Generate a random number z uniformly distributed in [0, 1]
If z > 0.5, perform crossover.
If z ≤ 0.5, skip crossover.
FOR j = 1, Im

Generate a random number z uniformly distributed in [0, 1]
If z > 0.5, perform mutation.
If z ≤ 0.5, skip to next j.
ENDFOR

ENDFOR

Leader of the Population
At	each	generation,	the	member	having	the	lowest	cost	function	value	among	all	of	the	

designs	is	defined	as	the	“leader”	of	the	population.	If	several	members	have	the	same	lowest	
cost,	only	one	of	them	is	chosen	as	the	leader.	The	leader	is	replaced	if	another	member	with	
lower	cost	appears.	In	this	way,	it	is	safeguarded	from	extinction	(as	a	result	of	reproduction,	
crossover,	or	mutation).	In	addition,	the	leader	is	guaranteed	a	higher	probability	of	selection	

fK+
fK+

fK+

fK+

 17.1 GeNetIc alGorIthMS (Ga) for optIMuM deSIGN 747

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

for	reproduction.	One	benefit	of	using	a	leader	is	that	the	best-cost	(penalty)	function	value	of	
the	population	can	never	increase	from	one	iteration	to	another,	and	some	of	the	best	design	
variable	values	(v–strings	or	genes)	will	be	able	to	always	survive.

Stopping Criteria
If	the	improvement	for	the	best-cost	(penalty)	function	value	is	less	than	ε9 for the last I

consecutive	iterations,	or	if	the	number	of	iterations	exceeds	a	specified	value,	then	the	algo-
rithm	terminates.

Genetic Algorithm
Based	on	the	ideas	presented	here,	a	sample	GA	is	stated.

Step 1:	Define	a	schema	to	represent	different	design	points.	randomly	generate	Np	genetic	
strings	(members	of	the	population)	according	to	the	schema,	where	Np is the population
size.	Or	use	the	seed	designs	to	generate	the	initial	population.	For	constrained problems,
only	the	feasible	strings	are	accepted	when	the	penalty	function	approach	is	not	used.	Set	
the iteration counter K	=	0.	Define	a	fitness	function	for	the	problem,	as	in	Eq.	(17.5).
Step 2:	Calculate	the	fitness	values	for	all	the	designs	in	the	population.	Set	K = K	+	1,	and	
the	counter	for	the	number	of	crossovers	Ic	=	1.
Step 3: Reproduction.	Select	designs	from	the	current	population	according	to	the	roulette	
wheel	selection	process	described	earlier	for	the	mating	pool	(next	generation)	from	
which	members	for	crossover	and	mutation	are	selected.
Step 4: Crossover.	Select	two	designs	from	the	mating	pool.	randomly	choose	two	sites	
on	the	genetic	strings	and	swap	strings	of	0s	and	1s	between	the	two	chosen	sites.	Set	
Ic = Ic	+	1.
Step 5: Mutation.	Choose	a	fraction	(Pm)	of	the	members	from	the	mating	pool	and	switch	
a	0	to	1	or	vice	versa	at	a	randomly	selected	site	on	each	chosen	string.	If,	for	the	past	Ig
consecutive	generations,	the	member	with	the	lowest	cost	remains	the	same,	the	mutation	
fraction Pm	is	doubled.	Ig	is	an	integer	defined	by	the	user.
Step 6:	If	the	member	with	the	lowest	cost	remains	the	same	for	the	past	two	consecutive	
generations,	then	increase	Imax.	If	Ic < Imax,	go	to	step	4.	Otherwise,	continue.
Step 7: Stopping criterion.	If	after	the	mutation	fraction	Pm	is	doubled,	the	best	value	of	the	
fitness	is	not	updated	for	the	past	Ig	consecutive	generations,	then	stop.	Otherwise,	go	to	
step	2.

Immigration
It	may	be	useful	to	introduce	completely	new	designs	into	the	population	in	an	effort	to	

increase	diversity.	This	is	called	immigration,	which	may	be	done	at	a	few	iterations	during	
the	solution	process	when	progress	toward	the	solution	point	is	slow.

Multiple Runs for a Problem
It	is	seen	that	the	GAs	make	decisions	at	several	places	based	on	random	number	genera-

tion.	Therefore,	when	the	same	problem	is	run	at	different	times,	it	may	give	different	final	
designs.	It	is	suggested	that	the	problem	be	run	a	few	times	to	ensure	that	the	best	possible	
solution	has	been	obtained.

748 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

17.1.3 Genetic Algorithm for Sequencing-Type Problems

There	are	many	applications	 in	engineering	where	 the	 sequence	of	operations	needs	 to	
be	determined.	To	introduce	the	type	of	problems	being	treated,	let	us	consider	the	design	
of	a	metal	plate	that	is	to	have	10	bolts	at	the	locations	shown	in	Fig.	17.4.	The	bolts	are	to	be	
inserted	into	predrilled	holes	by	a	computer-controlled	robotic	arm.	The	objective	is	to	mini-
mize	the	movement	of	the	robot	arm	while	it	passes	over	and	inserts	a	bolt	into	each	hole.	
This	class	of	problems	is	generally	known	as	traveling salesman problem,	which	is	defined	as:	
given	a	list	of	N	cities	and	a	means	to	calculate	the	traveling	distance	between	the	two	cities,	
we	must	plan	a	salesman’s	route	that	passes	through	each	city	once	(with	the	option	of	return-
ing	to	the	starting	point)	while	minimizing	the	total	distance.

For	such	problems,	a	feasible	design	is	a	string	of	numbers	(a	sequence	of	the	cities	to	be	
visited)	that	do	not	repeat	themselves	(eg,	“1	3	4	2”	is	feasible	and	“3	1	3	4”	is	not).	Typical	
operators	 used	 in	 GAs,	 such	 as	 crossover	 and	 mutation,	 are	 not	 applicable	 to	 these	 types	
of	problems	since	they	usually	create	infeasible	designs	with	repeated	numbers.	Therefore,	
other	operators	need	to	be	used	to	solve	such	problems.	We	will	describe	some	such	operators	
in	the	following	paragraphs.

Permutation type 1:	Let	n1	be	a	fraction	for	selection	of	the	mating	pool	members	for	
carrying	out	Type	1	permutation.	Choose	Nn1	members	from	the	mating	pool	at	random,	
and	reverse	the	sequence	between	two	randomly	selected	sites	on	each	chosen	string.	For	
example,	a	chosen	member	with	a	string	of	“345216”	and	two	randomly	selected	sites	of	
“4”	and	“1,”	is	changed	to	“312546.”
Permutation type 2:	Let	n2	be	a	fraction	for	selection	of	the	mating	pool	members	for	
carrying	out	the	Type	2	permutation.	Choose	Nn2	members	from	the	mating	pool	at	
random,	and	exchange	the	numbers	of	two	randomly	selected	sites	on	each	chosen	string.	
For	example,	a	chosen	member	with	a	string	of	“345216”	and	two	randomly	selected	
sites	of	“4”	and	“1,”	is	changed	to	“315246.”
Permutation type 3:	Let	n3	be	a	fraction	for	selection	of	the	mating	pool	members	for	
carrying	out	the	Type	3	permutation.	Choose	Nn3	members	from	the	mating	pool	at	
random,	and	exchange	the	numbers	of	one	randomly	selected	site	and	the	site	next	to	it	

34_521_6
31_254_6

34_521_6
31_524_6

FIGURE 17.4 Bolt insertion sequence determination at 10 locations. Source: Huang, Hsieh and Arora, 1997.

 17.1 GeNetIc alGorIthMS (Ga) for optIMuM deSIGN 749

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

on	each	chosen	string.	For	example,	a	chosen	member	with	a	string	of	“345216”	and	a	
randomly	selected	site	of	“4”,	is	changed	to	“354216”.

Relocation
Let	nr	be	a	fraction	for	selection	of	the	mating	pool	members	for	carrying	out	relocation.	

Choose	Nnr	members	from	the	mating	pool	at	random,	remove	the	number	of	a	randomly	
selected	site,	and	insert	it	in	front	of	another	randomly	selected	site	on	each	chosen	string.	For	
example,	a	chosen	member	with	a	string	of	“345216”	and	two	randomly	selected	sites	of	“4”	
and	“1”,	is	changed	to	“352416.”

A	computer	program	based	on	the	previously	mentioned	operators	is	developed	and	used	
to	solve	the	bolt	insertion	sequence	problem	in	Example	17.1.

EXAMPLE 17.1 BOLT INSERTION SEQUENCE
DETERMINATION AT 10 LOCATIONS

Solve	the	problem	shown	in	Fig.	17.4	using	the	GA	to	minimize	the	total	distance	traveled	by	the	
robotic	arm.

Solution
The	problem	is	solved	by	using	the	GA	explained	in	the	foregoing	(Huang,	Hsieh	and	Arora,	

1997).	The	population	size	Np	is	set	to	150,	and	Ig	(the	number	of	consecutive	iterations	for	which	
the	best	cost	function	did	not	improve	by	at	least	ε9)	is	set	to	10.	No	seed	designs	are	used	for	the	
problem.	The	optimum	bolting	sequence	is	not	unique	to	the	problem.	With	hole	1	as	the	starting	
point,	the	optimum	sequence	is	determined	as	(1,	5,	4,	10,	7,	8,	9,	3,	6,	2)	and	the	cost	function	value	
is	74.63	in.	The	number	of	function	evaluations	is	1445,	which	is	much	smaller	than	the	total	number	
of	possibilities	(10!	=	3,628,800).

Another	case	solved	in	Huang,	Hsieh	and	Arora	(1997) concerns	determining	the	bolting	sequence	
for	16	locations.	The	optimum	sequence	is	not	unique	for	this	problem	either.	The	solution	is	obtained	
in	3358	function	evaluations	compared	with	the	total	number	of	possibilities,	16!		2.092	×	1013.

EXAMPLE 17.2 A-PILLAR SUBASSEMBLY WELDING SEQUENCE
This problem concerns the A-pillar subassembly welding sequence	determination	for	a	passenger	

vehicle	 (Huang,	 Hsieh	 and	Arora	 1997).	 There	 are	 14	 welding	 locations.	 The	 objective	 is	 to	 de-
termine	the	best	welding	sequence	that	minimizes	the	deformation	at	some	critical	points	of	the	
structure.	Cases	where	one	and	two	welding	guns	are	used	are	also	considered.	This	is	equivalent	to	
having	two	salesmen	traveling	between	N	cities	for	the	traveling	salesman	problem.	The	optimum	
sequences	are	obtained	with	3341	and	3048	function	evaluations	for	the	two	cases,	which	are	much	
smaller	than	those	for	the	full	enumeration.

17.1.4 Applications of GA

Numerous	applications	of	GAs	for	different	classes	of	problems	have	been	presented	in	
the	literature.	There	are	specialty	conferences	focusing	on	developments	in	genetic	and	other	

34_5_216
35_4_216

34_521_6
3524_1_6

750 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

evolutionary	algorithms	and	their	applications.	The	literature	in	this	area	is	substantial.	There-
fore,	a	survey	of	all	the	applications	is	not	attempted	here.	For	mechanical	and	structural	de-
sign,	some	of	the	applications	are	covered	in	Arora	(2002), Pezeshk	and	Camp	(2002), Arora	
and	Huang	(1996),	and	Chen	and	rajan	(2000).	Applications	of	the	GAs	for	optimum	design	
of	electric	transmission	line	structures	are	given	in	Kocer	and	Arora	(1996,	1997,	1999,	2002).

17.2 DIFFERENTIAL EVOLUTION ALGORITHM

The	differential	evolution	algorithm	(DEA)	works	with	a	population	of	designs.	At	each	
iteration,	called	a	generation,	a	new	design	is	generated	using	some	current	designs	and	cer-
tain	random	operations.	If	the	new	design	is	better	than	a	preselected	parent	design,	then	it	
replaces	that	design	in	the	population;	otherwise,	the	old	design	is	retained	and	the	process	is	
repeated.	In	this	section,	the	steps	of	a	basic	DEA	are	described.	The	material	is	derived	from	
the article by Das	and	Suganthan	(2011).

Compared	to	GAs,	DEAs	are	easier	to	implement	on	the	computer.	Unlike	GAs,	they	do	
not	require	binary	number	coding	and	encoding,	as	seen	later	(although	GAs	have	been	im-
plemented	with	real	number	coding	as	well).	Therefore,	they	are	quite	popular	for	numerous	
practical	applications.	There	are	four	steps	in	executing	the	basic	DEA:

Step 1:	Generation	of	the	initial	population	of	designs.
Step 2:	Mutation	with	difference	of	vectors	to	generate	a	so-called	donor design vector.
Step 3:	Crossover/recombination	to	generate	a	so-called	trial design vector.
Step 4:	Selection,	that	is,	acceptance	or	rejection	of	the	trial	design	vector	using	the	fitness
function,	which	is	usually	the	cost	function.

Details	of	these	steps	are	described	in	the	following	subsections.	The	notation	and	termi-
nology	listed	in	Table	17.1	are	used.

17.2.1 Generation of Initial Population for DEA

A	first	step	in	DEA	is	to	generate	an	initial	population	of	Np	design	points;	Np is usually
selected	as	a	large	number,	say,	between	5n	and	10n.	Each	design	point/vector	is	also	called	
a chromosome.	Initial	designs	can	be	generated	by	any	procedure	that	tries	to	cover	the	entire	
design	space	in	a	uniformly	distributed	random	manner.	If	some	designs	for	the	system	are	
known,	 they	can	be	 included	 in	 the	 initial	population.	One	way	 to	generate	 the	 initial	 set	
of	designs	is	to	use	the	lower	and	upper	limits	on	the	design	variables	and	uniformly	dis-
tributed	random	numbers.	For	example,	the	ith	member	(design)	of	the	population	may	be	
generated	as	follows:

x x r x x j n; 1 toj
i

jL ij jU jL
,0 ()= + − =()

 (17.7)

where rij	 is	a	uniformly	distributed	random	number	between	0	and	1	that	 is	generated	for	
each	component	of	the	design	point.	Each	member	of	the	population	is	a	potential	solution/
optimum	point.

xji,0=xjL+rijxjU−xjL; j=1 to n

 17.2 dIffereNtIal evolutIoN alGorIthM 751

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

17.2.2 Generation of a Donor Design for DEA

In	this	subsection,	we	describe	the	idea	of	a	donor	design	and	its	generation.	A	donor design
is	 generated	 using	 mutation	 of	 a	 selected	 design	 with	 the	 difference	 of	 two	 other	 distinct	
designs	in	the	population.	Biologically,	mutation	means	a	change	in	the	gene	(a	component	
of	the	design	vector)	characteristics	of	a	chromosome	(the	complete	design	vector).	The	donor	
design	point	is	created	by	changing	a	design	point	of	the	current	population.	This	change	is	
accomplished	by	combining	the	design	vector	with	the	difference	of	two	other	vectors	of	the	
population,	all	selected	randomly.	The	design	vector	thus	generated	is	called	the	donor	de-
sign/vector.	In	the	context	of	donor	design,	then,	mutation	implies	changing	all	components	
of	a	design	vector.

To	generate	the	donor	design	vector,	we	randomly	select	three	distinct	design	points	from	
the	current	population	in	the	generation	k: ()x r k,1 , ()x r k,2 ,	and	 ()x r k,3 , where the superscripts r1,
r2,	and	r3	refer	to	three	different	designs.	In	addition,	we	select	a	fourth	point	x(p,k),	called	the	
 parent/target	design	point;	its	use	in	the	crossover	operation	is	explained	later	(the	superscript	
p	refers	to	the	parent	design).	We	then	form	a	difference	vector	using	two	design	points,	say	r2

and	r3, as ()−() ()x xr k r k, ,2 3 .	This	difference	vector	is	scaled	and	added	to	the	third	vector	to	form	

the	donor	design	vector	V(p,k):

()= + × −() () () ()FV x x xp k r k r k r k, , , ,1 2 3

 (17.8)

where F	 is	 a	 scale	 factor,	 typically	 selected	 between	 0.4	 and	 1.	 Note	 that	 any	 procedure	
can	be	used	to	randomly	select	the	foregoing	four	members	of	the	current	population;	one	
example	is	the	roulette	wheel	procedure	described	earlier	in	Section	17.1.2.

xr1,kxr2,kxr3,k

xr2,k−xr3,k

Vp,k=xr1,k+F×xr2,k−xr3,k

TABLE 17.1 Notation and terminology for the dea

Notation Terminology

Cr Crossover	rate;	an	algorithm	parameter

F Scale	factor,	usually	in	the	interval	[0.4,	1.0];	an	algorithm	parameter

k kth	generation	of	the	iterative	process

kmax Limit	on	the	number	of	generations

n Number	of	design	variables

Np Number	of	design	points	in	the	population;	population	size

rij random	number	uniformly	distributed	between	0	and	1	for	the	ith	design	and	its	jth component

xj jth	component	of	the	design	variable	vector	x

U(p,k) Trial	design	vector	at	the	kth	generation/iteration	associated	with	the	parent	design	p

V(p,k) Donor	design	vector	at	the	kth	generation/iteration	associated	with	the	parent	design	p

x(i,k) ith	design	point	of	the	population	at	the	kth	generation/iteration

x(p,k) Parent	design	(also	called	the	target	design)	of	the	population	at	the	kth	generation/iteration

xL vector	containing	the	lower	limits	on	the	design	variables

xU vector	containing	the	upper	limits	on	the	design	variables

752 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

17.2.3 Crossover Operation to Generate the Trial Design in DEA

A	crossover	operation	is	performed	after	generating	the	donor	design	through	mutation.	
In	it,	the	donor	design	vector	V(p,k)	exchanges	some	of	its	components	with	the	parent	design	
vector	to	form	the	trial	design	vector	xj

(p,k).	The	crossover	operation	is	described	in	the	follow-
ing	equation:

=
≤ =

=()

()

()U
V r Cr j j

x
j n

, if or

, otherwise
; 1 toj

p k j
p k

pj r

j
p k

,
.

,

(17.9)

where rpj	is	a	uniformly	distributed	random	number	between	0	and	1	and	jr	is	a	randomly	
generated	index	between	1	and	n that ensures that U(p,k)	receives	at	least	one	component	from	
V(p,k).

The	crossover	operation	in	Eq.	(17.9)	says	that	when	the	random	number	rpj for each com-
ponent	 of	 the	 design	 vector	 does	 not	 exceed	 the	 Cr	 value,	 or	 if	 j = jr,	 set	 the	 trial	 design	
component Uj

(p,k)	to	the	donor	design	component	Vj
(p,k);	otherwise,	replace	it	with	the	parent	

design	component	xj
(p,k).	With	this	approach,	the	number	of	components	inherited	from	the	

donor	design	vector	has	a	(nearly)	binomial	distribution.	Therefore,	this	operation	sometimes	
is	called	binomial crossover.

17.2.4 Acceptance/Rejection of the Trial Design in DEA

The	next	step	of	the	algorithm	is	to	check	if	the	trial	design	U(p,k) is better than the parent
design	x(p,k);	if	it	is,	it	replaces	the	parent	design	in	the	population	to	keep	the	population	size	
constant	 (as	 a	 variation,	 both	 vectors	 may	 be	 retained	 sometimes	 increasing	 the	 size	 of	 the	
population	by	one	every	time).	Usually	called	the	selection	step,	this	is	described	in	the	follow-
ing	equation:

() ()=
≤

()

() () ()

()
+ f f

x
U U x

x

, if

, otherwise

p k
p k p k p k

p k

, 1
, , ,

,

(17.10)

Accordingly,	if	the	cost	function	value	for	the	trial	design	point	does	not	exceed	that	for	the	
parent	design,	it	replaces	the	parent	design	point	in	the	next	generation;	otherwise,	the	parent	
design	is	retained.	Thus	the	population	either	gets	better	or	remains	the	same	in	fitness	sta-
tus,	but	it	never	deteriorates.	Note	that	in	Eq.	(17.10)	the	parent	design	is	replaced	by	the	trial	
design	even	if	both	yield	the	same	value	for	the	cost	function.	This	allows	the	design	vectors	
to	move	over	the	flat	fitness	landscape.

17.2.5 Differential Evolution Algorithm

The	basic	DEA	is	quite	straightforward	to	implement.	It	requires	specification	of	only	three	
parameters: Np, F,	and	Cr.	A	flow	diagram	describing	the	basic	steps	of	the	algorithm	is	shown	
in Fig.	17.5.

Ujp,k=Vjp.k,if rpj≤Cr or j=jrxjp,
k,otherwise; j=1 to n

xp,k+1=Up,k,if fUp,k≤fxp,k
xp,k,otherwise

 17.2 dIffereNtIal evolutIoN alGorIthM 753

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

The	termination	criteria	for	the	algorithm	are	defined	as	follows:

1. A	specified	limit	kmax	on	the	number	of	generations	is	reached.
2. The	best	fitness/cost	function	value	of	the	population	does	not	change	appreciably	for	

several	generations.
3. A	prespecified	value	for	the	cost	function	is	reached.

Because	of	its	simplicity,	the	DEA	has	been	quite	popular	in	many	application	fields	since	
its	inception	in	the	mid-1990s.	It	was	inspired	by	the	Nelder	and	Mead	(1965)	direct	search	
method,	which	also	uses	the	difference	of	vectors,	as	described	in	chapter:	More	on	Numeri-
cal	 Methods	 for	 Unconstrained	 Optimum	 Design.	 Numerous	 variations	 of	 the	 algorithm	
have	been	studied	and	evaluated.	It	has	been	used	to	solve	continuous	variable,	mixed–dis-
crete–continuous	variable,	and	multi-objective	optimization	problems,	and	it	has	also	been	
evaluated	against	many	other	nature-inspired	algorithms.	A	detailed	review	is	beyond	the	
scope	of	the	present	text.	An	excellent	recent	survey	paper	by	Das	and	Suganthan	(2011)	and	
numerous	references	cited	there	should	be	consulted.

EXAMPLE 17.3 APPLICATION OF DEA
Minimize

= − + −xf x x() (1) (2)1
2

2
2

 (a)

subject to:

− ≤ ≤ − ≤ ≤x x10 10, 10 101 2 (b)

Solution
For	the	example	problem,	the	DEA	parameters	are	set	to	be	within	their	recommended	ranges	

as follows:

n = 2	since	there	are	only	two	design	variables	in	this	problem.
Np	=	10	since	the	problem	contains	only	2	design	variables,	5	×	2	=	10,	Np	is	set	to	10.

kmax = 10,000	Iterations.
Cr = 0.8
F = 0.6

Step 1: Generation of an Initial Population.	 The	 initial	 population	 is	 generated	 using	 Eq.	 (17.7).	
Table	17.2 shows the initial population:

f(x)=(x1−1)2+(x2−2)2

−10≤x1≤10,−10≤x2≤10

FIGURE 17.5 Main steps of the DEA.

754 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

Step 2: Generation of Donor Design.	As	described	earlier	 the	generation	of	 the	donor	design	re-
quires	 randomly	 selecting	 three	 distinct	 design	 points:	 ()x r k,1 , ()x r k,2 	 and	 ()x r k,3 ,	 in	 addition	 to	 a	
fourth	design	point	which	is	the	parent/target	design	x(p,k).	For	the	first	iteration	the	four	randomly	
selected	design	points	are	as	follows:

()
()
()
()

= −
= −
= −
= −

x

x

x

x

5.423, 3.962
9.40, 4.380

0.848, 7.648
3.717, 1.600

r

r

r

p

(,1)

(,1)

(,1)

(,1)

1

2

3

(c)

	 The	donor	following	design	is	generated	according	to	Eq.	(17.8) as:

()= −V 0.725, 3.254p(,1)
 (d)

Step 3: Crossover Operation to Generate the Trial Design.	The	cross	over	operation	is	accomplished	
as	described	in	Eq.	(17.9).	In	the	first	iteration,	the	randomly	distributed	numbers	rp1	and	rp2 were
0.13	and	0.56,	which	are	both	less	than	the	Cr,	which	means	both	components	of	the	trial	design	
should	come	from	the	donor	design.

()= = −U V 0.725, 3.254p p(,1) (,1)
 (e)

Step 4: Acceptance/ Rejection of the Trial Design.	The	trial	design	is	accepted	and	replaces	the	parent	
design	in	the	next	iteration	if	it	has	a	better	(smaller)	cost	function	value	than	that	for	the	parent	de-
sign.	In	the	first	iteration	the	cost	function	value	for	the	trial	design	is	 () =f U 27.686p(,1) 	and	for	the	
parent	design	 () =f x 20.342p(,1) ,	which	means	that	the	parent	design	is	retained	in	the	next	iteration.

The	previous	steps	are	repeated	until	the	maximum	number	of	iterations	kmax	is	reached.	After	
10,000	iterations	the	trial	design	point	(0.97,	1.96)	was	reached	with	a	cost	function	value	of	0.00222	
which	is	close	to	the	true	solution	of	(1,	2)	with	a	cost	function	value	of	0.0.

xr1,kxr2,kxr3,k

x(r1,1)=−5.423 3.962x(r2,1)=9.
40 −4.380x(r3,1)=−0.848 7.6

48x(p,1)=3.717 −1.600

V(p,1)=0.725 −3.254

U(p,1)=V(p,1)=0.725−3.254

FU(p,1)=27.686
Fx(p,1)=20.342

TABLE 17.2 Initial population for example 17.3

xi number x1 x2

1 3.717 −1.600

2 9.400 −4.380

3 9.048 −8.659

4 −2.935 −2.920

5 −5.423 3.962

6 −4.442 2.470

7 −0.848 7.648

8 −8.394 −5.238

9 2.678 −2.884

10 7.059 −1.567

 17.3 aNt coloNy optIMIzatIoN 755

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

17.3 ANT COLONY OPTIMIZATION

Ant	 colony	 optimization	 (ACO),	 another	 nature-inspired	 approach,	 emulates	 the	 food-
searching	behavior	of	ants.	It	was	developed	by	Dorigo	(1992) to search for an optimal path
for	a	problem	represented	by	a	graph	based	on	the	behavior	of	ants	seeking	the	shortest	path	
between	their	colony	and	a	food	source.	ACO	falls	into	the	class	of	metaheuristics	and	swarm	
intelligence	methods.	It	can	be	viewed	as	a	stochastic	technique	for	solving	computational	
problems	that	can	be	reduced	to	finding	optimal	paths	through	graphs.

Ants	are	social	insects	that	live	in	colonies.	From	the	colony,	they	go	out	to	search	for	food	
and,	surprisingly,	find	the	shortest	path	from	the	colony	to	the	food	source.	In	this	section,	the	
process	that	ants	use	is	described	and	translated	into	a	computational	algorithm	for	design	
optimization.	 The	 algorithm	 was	 developed	 originally	 for	 discrete	 variable	 combinatorial	
optimization	problems,	although	it	has	been	applied	to	continuous	variable	and	other	prob-
lems	as	well.	Some	of	the	material	in	this	section	is	derived	from	Blum	(2005)	and	associated	
references.

ACO	uses	the	following	terminology:

Pheromone:	The	word	is	derived	from	the	Greek	words	pherin	(to	transport)	and	hormone
(to	stimulate).	It	refers	to	a	secreted	or	excreted	chemical	factor	that	triggers	a	social	
response	in	members	of	the	same	species.	Pheromones	are	capable	of	acting	outside	
the	body	of	the	secreting	individual	in	order	to	impact	the	behavior	of	the	receiving	
individual.	This	is	also	called	a	chemical	messenger.
Pheromone trail:	Ants	deposit	pheromones	wherever	they	go.	This	is	called	the	
pheromone	trail.	Other	ants	can	smell	the	pheromones	and	are	likely	to	follow	an	
existing	trail.
Pheromone density:	When	ants	travel	on	the	same	path	again	and	again,	they	continuously	
deposit	pheromones	on	it.	In	this	way	the	amount	of	pheromones	increases	and	is	called	
the	pheromone	density.	The	ants	are	likely	to	follow	paths	having	higher	pheromone	
densities.
Pheromone evaporation:	Pheromones	have	the	property	of	evaporation	over	time.	
Therefore,	if	a	path	is	not	being	traveled	by	the	ants,	the	pheromones	evaporate,	and	the	
path	disappears	over	time.

17.3.1 Ant Behavior

A	first	step	in	developing	the	ACO	algorithm	is	to	understand	the	behavior	of	ants,	which	
is	 described	 in	 this	 subsection.	 Initially	 ants	 move	 from	 their	 nest	 randomly	 to	 search	 for	
food.	Upon	finding	it,	they	return	to	their	colony	following	the	path	they	took	to	it	while	lay-
ing	down	pheromone	trails.	If	other	ants	find	such	a	path,	they	are	likely	to	follow	it	instead	
of	moving	randomly.	The	path	is	thus	reinforced,	since	ants	deposit	more	pheromone	on	it.	
However,	the	pheromone	evaporates	over	time;	the	longer	the	path,	the	more	time	there	is	
available	for	it	to	evaporate.	For	a	shorter	path,	pheromone	reinforcement	is	quicker	as	more	
and	more	ants	travel	this	route.	Therefore,	the	pheromone	density	is	higher	on	shorter	paths	
than	on	 the	 longer	ones.	Pheromone	provides	a	positive	 feedback	mechanism	 for	ants,	 so	
eventually	all	the	ants	follow	the	shortest	path.

756 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

The	basic	idea	of	an	ant	colony	algorithm	is	to	emulate	this	behavior	with	“virtual	ants,”	
which	means	that	we	need	to	model	the	pheromone	deposit,	measure	its	density,	and	model	
its	evaporation.	The	following	notation	and	terminology	are	used	in	this	section:

Q	 =	positive	constant;	an	algorithm	parameter
ρ	 =	pheromone	evaporation	rate,	ρ ∈	(0,	1];	an	algorithm	parameter
Na = number of ants
τi	 =	pheromone	value	for	the	ith path

A Simple Model/Algorithm
To	transcribe	the	ants’	food-searching	behavior	into	a	computational	algorithm,	we	con-

sider	a	simplified	model	consisting	of	two	paths	from	the	ant	colony	to	the	food	source	and	
six	ants,	as	shown	in	Fig.	17.6a.	This	is	a	highly	idealized	model,	introduced	to	explain	the	
transcription	of	ant	behavior	into	a	computational	algorithm.	The	model	can	be	represented	
in	a	graph	G	=	(N, L),	where	N	consists	of	two	nodes	(nc,	representing	the	ant	colony,	and	nf,
representing	the	food	source;	in	general	a	graph	has	many	nodes	as	seen	later),	and	L consists
of	two	links,	L1	and	L2, between nc	and	nf.

Let	L1	have	a	length	of	d1,	and	L2	a	length	of	d2, with d1 > d2,	implying	that	L2 is a shorter
path between nc	and	nf.	Fig.	17.6	is	a	graph	that	shows	various	stages	of	ant	movement,	which	
are	explained	as	follows:

1. Six	ants	start	from	their	colony	in	search	for	food.	randomly,	three	ants	(shown	as	
solid	circles)	take	the	shorter	route	and	three	(shown	as	open	circles)	take	the	longer	
route.

2. The	three	ants	that	took	the	shorter	route	have	reached	their	destination,	while	the	ants	
on	the	longer	route	are	still	traveling.	Initially,	the	pheromone	concentration	is	the	same	
for	the	two	routes,	as	shown	by	the	dashed	lines.

FIGURE 17.6 A simple set up showing shortest path finding capability of ants.	 (a)	Movement	of	ants	from	
colony	to	food	source.	(b)	Ants	taking	the	shorter	route	have	reached	the	food	source.	(c)	Ants	taking	the	longer	route	
have	reached	the	food	source	while	ants	that	took	the	shorter	route	are	already	returning	to	their	colony.

 17.3 aNt coloNy optIMIzatIoN 757

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

3. The	ants	that	took	the	shorter	route	are	on	their	return	journey	to	the	colony	while	the	
ants	taking	the	longer	route	are	just	arriving	at	their	destination.	Pheromone	concentra-
tion	on	the	shorter	route	is	higher,	as	shown	by	the	heavier	dashed	line.

The	ants	deposit	pheromone	while	traveling	on	a	route.	The	pheromone	trails	are	modeled	
by	introducing	a	virtual	pheromone	value	τi for each of the two routes, i	=	1,	2	(initially	both	
values	may	be	set	as	one).	Such	a	value	indicates	the	strength	of	the	pheromone	trail	on	the	
corresponding	route.

Each	ant	behaves	as	follows:	Starting	from	the	node	nc	(ie,	the	colony),	the	ant	chooses	be-
tween route L1	and	route	L2 to reach nf with the probability:

τ
τ τ

=
+

=p i, 1, 2i
i

1 2
(17.11)

If τ2 > τ1,	 the	 probability	 of	 choosing	 L2	 is	 higher,	 and	 vice	 versa.	 The	 selection	 of	 a	
path	 by	 an	 ant	 is	 based	 on	 some	 selection	 scheme	 that	 uses	 probabilities	 from	 Eq.	 (17.11)
and	a	random	number,	such	as	 the	roulette	wheel	selection	procedure	described	earlier	 in	
Section	17.1.2.	While	returning	from	the	node	nf to the node	nc, the ant uses the same route it
chose to reach nf.	It	deposits	additional	virtual	pheromone	on	the	route	to	increase	its	density	
(this	is	also	called	pheromone	reinforcement)	as	follows:

τ τ← +
Q
di i

i
(17.12)

where	the	positive	constant	Q	is	a	parameter	of	the	model.	Equation	(17.12)	models	the	higher	
amount	of	virtual	pheromone	deposit	for	a	shorter	path	and	a	smaller	amount	for	a	longer	
path.

In	the	iterative	process,	all	ants	start	from	the	node	nc	at	the	beginning	of	each	iteration.	
Each	 ant	 moves	 from	 that	 node	 nc	 to	 node	 nf	 depositing	 pheromone	 on	 the	 chosen	 route.	
However,	with	time	the	pheromone	is	subject	to	evaporation.	This	evaporation	process	in	the	
virtual	model	is	simulated	as	follows:

τ ρ τ()← −1i i (17.13)

where ρ ∈	(0,	1]	is	a	parameter	of	the	model	that	regulates	evaporation.	After	reaching	the	
food	source,	the	ants	return	to	their	colony,	reinforcing	the	chosen	path	by	depositing	more	
pheromone	on	it.

17.3.2 ACO Algorithm for the Traveling Salesman Problem

The	procedure	described	in	the	previous	subsection	to	simulate	the	food-searching	behav-
ior	of	ants	cannot	be	used	directly	for	combinatorial	optimization	problems.	The	reason	is	that	
we	assume	the	solution	to	the	problem	to	be	known	and	the	pheromone	values	to	be	associ-
ated	with	the	solution,	as	in	Eq.	(17.12).	In	general	this	is	not	the	case	because	we	are	trying	to	
find	the	optimum	solution	and	the	associated	path	with	the	minimum	distance.	Therefore,	for	
combinatorial	optimization	problems,	the	pheromone	values	are	associated	with	the	solution	
components.	Solution	components	are	the	units	from	which	the	entire	solution	to	the	problem	

pi=τiτ1+τ2, i=1, 2

τi←τi+Qdi

τi←1−ρτi

758 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

can	be	constructed.	This	will	become	clearer	later,	when	we	describe	the	ACO	algorithm	for	
combinatorial	optimization	problems.

In	this	subsection,	we	describe	an	ant	colony	algorithm	for	discrete	variable,	or	traveling
salesman	(TS),	problems.	The	TS	problem	is	a	classical	combinatorial optimization	problem.	In	it	
a	traveling	salesman	is	required	to	visit	a	specified	number	of	cities	(called	a	tour).	The	goal	
is	to	visit	a	city	only	once	while	minimizing	the	total	distance	traveled.	Many	practical	prob-
lems	can	be	modeled	as	the	TS	problem;	another	example	is	the	welding	sequence	problem	
described	earlier	in	Example	17.2.

The	following	assumptions	are	made	in	deriving	the	algorithm:

1. While	a	real	ant	can	take	a	return	path	to	the	colony	that	is	different	from	the	original	
path	depending	on	the	pheromone	values,	a	virtual	ant	takes	the	return	path	that	is	the	
same	as	the	original	path.

2. The	virtual	ant	always	finds	a	feasible	solution	and	deposits	pheromone	only	on	its	way	
back	to	the	nest.

3. While	real	ants	evaluate	a	solution	based	on	the	length	of	the	path	from	their	nest	to	the	
food	source,	virtual	ants	evaluate	their	solution	based	on	a	cost	function	value.

To	describe	the	ACO	algorithm	for	the	TS	problem,	we	consider	a	simple	problem	of	touring	
four	cities	by	the	traveling	salesman.	The	situation	is	depicted	in	Fig.	17.7, where the cities are
represented	as	the	nodes	c1	through	c4	of	the	graph,	with	distances	between	the	cities	known.	
From	each	city,	there	are	links	to	other	cities;	that	is,	the	salesman	can	travel	to	any	other	city,	
but	travel	to	the	already	visited	cities	(ie,	backtracking)	is	not	allowed.	Thus,	a	feasible	solution	
to	the	problem	consists	of	a	sequence	of	cities	visited	on	a	tour—for	example,	c1c3c2c4c1.	The	
distance	traveled	on	a	tour	is	the	cost	function	f	(x),	which	depends	on	the	links	used.

The definition of the task for the virtual ant changes from “finding a path from the
nest to the food source” to “finding a feasible solution to the TS problem.”

The	TS	 tour	must	start	 from	a	city	 that	can	be	randomly	selected.	We	will	call	 it	c1;	 the	
remaining	cities	are	numbered	randomly.	To	complete	a	four-city	tour,	four	links	need	to	be	
selected.	The	following	notation	and	terminology	are	used	in	this	subsection:

Qa	=	positive	constant;	an	algorithm	parameter
ρ	 =	pheromone	evaporation	rate,	ρ ∈	(0,	1];	an	algorithm	parameter
n	 =	number	of	design	variables;	four	for	the	example

FIGURE 17.7 Traveling salesman problem for four cities.	(a)	Start	of	tour	at	c1;	feasible	links	from	the	current	
city	are	shown	by	dashed	lines;	current	city	is	displayed	with	darker	shading.	(b)	The	link	already	traveled	is	shown	
with	a	thicker	line;	city	already	visited	is	displayed	with	lighter	shading.	(c)	A	feasible	solution	is	shown.

 17.3 aNt coloNy optIMIzatIoN 759

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

Na	=	number	of	virtual	ants	used	in	the	algorithm
τij	 =	pheromone	value	for	the	link	ij
xj = jth	component	of	the	design	variable	vector	x;	represents	the	link	selected	from	the	

jth city
xij	 =	link	between	the	ith	city	and	the	jth	city;	also	represents	the	distance	between	them
Di	=	the	list	of	integers	corresponding	to	the	cities	that	can	be	visited	from	the	ith city

For	the	example	in	Fig.	17.7, x12, x13	and	x14	are	the	links	from	city	c1 to cities c2, c3	and	c4,
respectively;	D1	=	{2,	3,	4}	for	city	c1,	with	the	associated	feasible	links	given	as	{x12, x13, x14}.	
The	design	variable	vector	is	given	as	x	=	[x1 x2 x3 x4]T.	A	feasible	solution	to	the	problem	is	
given	as	x	=	[x12 x24 x43 x31]T.

Now	let	us	begin	the	tour.	From	each	city,	selection	of	the	next	city	to	visit	by	the	virtual	ant	is	
based	on	certain	probabilities.	For	the	ACO	algorithm,	the	probabilities	are	calculated	using	the	
pheromone	values	τij	for	each	of	the	links	from	the	current	city;	initially	all	τij	can	be	selected	as	1	
for	all	links.	Also,	the	number	of	virtual	ants	Na	is	selected	as	reasonable	depending	on	the	num-
ber	of	design	variables	(say	5n	to	10n).	Individual	ants	can	start	randomly	from	any	city.	Their	
task	is	to	construct	a	feasible	solution	(ie,	a	feasible	tour)	for	the	TS	problem,	one	component	at	
a	time;	that	is,	from	each	city	visited,	a	link	to	the	next	feasible	city	is	determined	in	a	sequence.

Each	ant	constructs	a	feasible	solution	(tour)	for	the	problem,	starting	from	a	randomly	
selected	city	and	moving	from	one	city	to	another	one	that	has	not	been	visited.	At	each	step,	
the	traveled	link	is	added	to	the	solution	under	construction	by	a	specific	ant.	In	this	way	the	
ACO	algorithm	constructs	a	solution	one	component	at	a	time:	For	example,	x1	and	then	x2,
and	so	on.	Different	ants	pursue	feasible	solutions	concurrently,	although	different	ants	may	
find	the	same	one.	When	no	unvisited	city	is	left	for	a	specific	ant,	that	ant	moves	to	the	start-
ing	city	to	complete	the	tour.	This	solution	process	implies	that	an	ant	has	memory	M to store
already	visited	cities.	Using	this	memory,	we	can	construct	an	index	set	Di of feasible cities to
visit	from	the	current	city	i.

The ACO algorithm constructs a feasible solution, one component (ie, one design
variable) at a time.

Fig.	17.7a	shows	the	starting	city	for	a	virtual	ant	as	c1;	 the	starting	city	 is	 identified	by	
darker	shading.	The	feasible	links	from	the	city	are	shown	with	dashed	lines:	D1	=	{2,	3,	4},	
and	the	associated	link	list	is	{x12, x13, x14}.	The	probability	of	taking	a	feasible	route	from	the	
ith	city	is	calculated	as

∑
τ

τ()= ∈
∈

p j D; for allij
ij

k D ik
i

i
(17.14)

where Di	is	the	list	of	feasible	cities	that	can	be	visited	from	city	i.	For	Fig.	17.7a, the probabili-
ties	for	the	cities	that	can	be	visited	from	city	c1	are	calculated	as

τ
τ τ τ

=
+ +

=p j; 2, 3, 4j
j

1
1

12 13 14
(17.15)

Once	these	probabilities	are	calculated,	a	selection	process	is	used	for	the	route	and	the	city	
to	visit	next.	The	roulette	wheel	selection	process	described	earlier	in	Section	17.1.2,	or	any	

pij=τij∑τik; for all j∈Di

p1j=τ1jτ12+τ13+τ14; j=2, 3, 4

760 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

other	procedure,	can	be	used	for	this.	That	process	requires	calculation	of	a	random	number	
between	0	and	1.	Based	on	it,	let	the	next	city	to	visit	be	c2.	Thus	the	link	x12	is	used	here	and	
the	design	variable	x1 is set as x12.	This	is	shown	by	a	darker	line	in	Fig.	17.7(b).	From	c2, city c3
or c4	can	be	visited.	This	is	shown	by	the	dashed	lines	in	Fig.	17.7b.	The	cities	that	have	already	
been	visited	are	shown	by	lighter	shading.	Therefore,	D2	=	{3,	4}	and	the	associated	link	list	is	
{x23, x24}.	The	probabilities	of	visiting	cities	c3	and	c4 from city c2	are	given	as:

τ
τ τ

=
+

=p j; 3, 4j
j

2
2

23 24
(17.16)

Using	the	foregoing	procedure,	the	virtual	ant	completes	the	tour	as	follows:

→ → → →c c c c c1 2 3 4 1 (17.17)

This	gives	the	design	variable	values	as:

= x x x xx
T

12 23 34 41 (17.18)

Using	this	design,	the	cost	function	f	(x),	which	is	the	total	distance	traveled	on	this	tour,	can	
be	calculated.

Once	all	virtual	ants	have	constructed	their	solution,	pheromone	evaporation	(ie,	a	reduc-
tion	in	the	pheromone	density	for	each	link)	is	performed	as	follows:

τ ρ τ()← − i j1 for all andij ij (17.19)

Now	the	virtual	ants	start	 their	 return	 journey,	depositing	pheromone	on	 the	path	 that	
was	used	to	reach	the	destination.	This	is	equivalent	to	increasing	the	pheromone	level	for	
the	links	belonging	to	each	ant’s	solution.	For	the	kth	ant,	pheromone	deposit	is	performed	
as follows:

τ τ ()← + ()
Q

f
i j k

x
for all , belonging to th ant’s solutionij ij k

(17.20)

where Q	is	a	positive	constant	and	f	(x(k))	is	the	cost	function	value	for	the	kth	ant’s	solution	
x(k).	The	process	of	pheromone	deposit	in	Eq.	(17.20)	is	repeated	for	the	solution	of	each	of	the	
Na	ants.	Note	that	a	tour	(solution)	that	has	a	smaller	cost	function	value	deposits	a	larger	
pheromone	value.	Also,	a	 link	 that	 is	 traveled	 in	multiple	solutions	receives	a	pheromone	
deposit	multiple	times.

The	foregoing	process	represents	one	iteration	of	the	ACO	algorithm.	It	is	repeated	several	
times	until	a	stopping	criterion	is	satisfied—that	is,	all	ants	follow	the	same	route	or	the	limit	
on	the	number	of	iterations	or	on	CPU	time	is	reached.

17.3.3 ACO Algorithm for Design Optimization

Problem Definition
In	this	subsection,	we	discuss	the	ACO	algorithm	for	the	following	unconstrained	discrete	

variable	design	optimization	problem:

p2j=τ2jτ23+τ24; j=3, 4

c1→c2→c3→c4→c1

x=x12 x23 x34 x41T

τij←1−ρτij for all i and j

τij←τij+Qfxk for all i, j belong-
ing to kth ant's solution

 17.3 aNt coloNy optIMIzatIoN 761

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

Minimize

()f x (17.21)

()∈ = =x D D d d d i n; , , , , 1 toi i i i i iq1 2 i… (17.22)

where Di	is	the	set	of	discrete	values	and	qi	is	the	number	of	discrete	values	allowed	for	
the ith	design	variable.	This	 type	of	design	problem	is	encountered	quite	 frequently	 in	
practical	 applications,	 as	was	discussed	 in	 chapter:	Discrete	variable	Optimum	Design	
Concepts	 and	 Methods.	 For	 example,	 the	 thickness	 of	 members	 must	 be	 selected	 from	
an	available	set,	structural	members	must	be	selected	from	the	members	available	in	the	
catalog,	concrete	reinforcing	bars	must	be	selected	from	the	available	bars	on	the	market,	
and	so	forth.

The	 problem	 described	 in	 Eqs.	 (17.21)	 and	 (17.22)	 is	 quite	 similar	 to	 the	 TS	 problem	
	described	and	discussed	in	the	previous	subsection.	One	major	difference	is	that	the	set	of	
available	values	for	a	design	variable	is	predefined,	whereas	for	the	TS	problem	it	must	be	
determined	once	a	city	 is	reached	(ie,	once	a	component	of	 the	design	variable	vector	has	
been	determined).	The	procedure	described	 in	 the	previous	 subsection	 can	be	adapted	 to	
solve	this	discrete	variable	optimization	problem.

EXAMPLE 17.4 DESCRIPTION OF ACO WITH AN EXAMPLE
To	describe	the	solution	algorithm,	we	consider	a	simpler	problem	having	three	design	variables,	

with	each	variable	having	four	allowable	discrete	values.	Therefore,	n	=	3,	and	qi	=	4,	i	=	1	to	4	in	Eqs.	
(17.21)	and	(17.22).	The	problem	can	be	displayed	in	a	multilayered	graph	as	shown	in	Fig.	17.8.	The	
graph	shows	the	starting	node	00	as	the	nest	and	the	destination	node	as	the	food	source.	The	start-
ing	point	is	called	Layer	0.	Layer	1	represents	the	allowable	values	for	the	design	variable	x1 in the
set D1;	each	allowable	value	is	represented	as	a	node,	such	as	node	d12.	There	are	links	from	the	nest	
to	each	of	these	nodes.	Level	2	represents	the	allowable	values	for	the	design	variable	x2	as	nodes.	
For	example,	from	d13	there	are	links	to	d21, d22, d23,	and	d24.	Similarly,	from	d11	there	are	links	to	d21,
d22, d23,	and	d24,	and	so	on	(note	that	all	these	links	are	not	shown	in	Fig.	17.8).

The	ACO	algorithm	proceeds	as	follows:	An	ant	starts	from	the	nest	and	chooses	a	link	to	travel	
to	a	node	at	Layer	1	based	on	probabilities	such	as	the	link	to	node	d13;	that	is,	design	variable	x1 is
assigned	the	value	d13	From	this	node,	the	probabilities	are	calculated	again	for	all	links	to	the	next	
layer	on	the	graph,	and	the	ant	moves	to,	say,	node	d22.	This	procedure	is	repeated	for	the	next	layer,	
and	the	ant	moves	to	node	d34.	Since	there	are	no	further	layers,	this	ant	has	reached	its	destination.	
Its	feasible	solution	is	obtained	as	x	=	(d13, d22, d34),	with	the	cost	function	value	as	f	(x).	The	route	for	
this	ant	is	shown	by	the	darker	lines	in	Fig.	17.8.

Once	all	the	ants	have	found	feasible	solutions,	pheromone	evaporation	is	performed	for	all	of	
the	links	using	Eq.	(17.19)	or	one	similar	to	it.	Then	each	ant	traces	its	path	back	to	the	nest,	deposit-
ing	pheromone	using	Eq.	(17.20)	or	one	similar	to	it	on	each	link	that	it	previously	traveled.	This	
is	equivalent	to	updating	(increasing)	the	pheromone	values	for	the	links	traveled	by	the	ants.	The	
entire	process	is	then	repeated	until	a	stopping	criterion	is	satisfied.

fx

xi∈Di; Di=di1, di2, ... , diqi,-
 i=1 to n

762 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

Finding Feasible Solutions
The	foregoing	procedure	can	be	generalized	to	the	case	of	n	design	variables	(an	n-layered	

graph),	each	having	qi	discrete	values.	The	following	notation	is	used:

τ ij
(rs)	=	pheromone	value	for	the	link	from	node	 rs	to	node	ij;	note	that	since	the	procedure	

moves	from	one	layer	to	the	next,	i = r	+	1	(eg,	τ 34
(22)	between	nodes	d22	and	d34 in Fig.	17.8).	

Thus, the superscript r	represents	the	layer	number	(design	variable	number),	the	
superscript s	represents	the	allowable	value	number	for	the	design	variable	number	r,
subscript i	represents	the	next	layer	(next	design	variable),	and	subscript	j represents the
allowable	design	variable	number	for	the	ith	design	variable.
p ij

(rs)	=	probability	of	selection	of	the	link	from	node	rs	to	node	ij.

To	find	a	feasible	solution	for	a	virtual	ant	k,	the	following	steps	are	suggested.

STEP 1. SELECTION OF AN INITIAL LINK

Ant	k	starts	from	the	nest	(ie,	node	00	of	layer	0).	Calculate	probabilities	for	the	links	from	
node	00	to	all	nodes	for	layer	1	(design	variable	x1)	as	follows:

∑
τ

τ
= =()

()

()
=

p j q; 1 toj
j

r
q

r
1
00 1

00

1 1
00 11

(17.23)

p1j00=τ1j00∑τ1r00; j=1 to q1

FIGURE 17.8 A multilayered graphical representation of a discrete variable problem with 3 design variables
each one having 4 allowable values; the links chosen by the ant are shown using the darker lines.	(Note	that	all	
possible	links	are	not	shown.)

 17.3 aNt coloNy optIMIzatIoN 763

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

Using	these	probabilities	and	a	selection	process,	choose	a	link	to	a	node	at	layer	1	and	go	
to	that	node.	Let	this	node	be	k1;	the	design	variable	x1	is	thus	assigned	the	value	dkl.

STEP 2. SELECTION OF A LINK FROM LAYER R

Let	ant	k	be	at	node	rs.	Calculate	probabilities	of	the	links	from	node	rs	to	all	nodes	at	the	
next	layer:

∑
τ

τ
= =()

()

()
=

p j q; 1 toij
rs ij

rs

l
q

il
rs i

1
1

(17.24)

Note that i = r	+	1.	Using	these	probabilities	and	a	selection	procedure,	select	a	link	to	the	
next	layer	and	the	corresponding	node	for	ant	k	to	travel.	repeat	this	step	until	the	nth layer
is	reached,	at	which	point	ant	k	has	reached	its	destination	and	a	feasible	solution	has	been	
obtained.

STEP 3. OBTAINING FEASIBLE SOLUTIONS FOR ALL ANTS

repeat	steps	1	and	2	for	each	virtual	ant	to	obtain	all	Na	feasible	solutions.	Let	the	solutions	
and	the	corresponding	cost	function	values	be	represented	as:

() =() ()f k Nx x, ; 1 tok k
a (17.25)

Pheromone Evaporation
Once	 all	 of	 the	 ants	 have	 reached	 their	 destination	 (all	 of	 them	 have	 found	 solutions),	

pheromone	evaporation	(ie,	reduction	in	the	pheromone	level)	is	performed	for	all	links	as	
follows:

τ ρ τ()← −() () r s i j1 for all , , andij
rs

ij
rs

 (17.26)

Pheromone Deposit
After	pheromone	evaporation,	the	ants	start	their	journey	back	to	their	nest,	which	means	

that	they	will	deposit	pheromone	on	the	return	trail.	This	involves	increasing	the	pheromone	
density	of	the	links	that	they	have	traveled.	For	the	kth	ant,	the	pheromone	deposit	is	per-
formed	as	follows:

τ τ ()← + ()
() () Q

f
r s i j k

x
for all , , , belonging to th ant’s solutionij

rs
ij
rs

k

(17.27)

The	operation	in	Eq.	(17.27)	is	performed	for	all	solutions	obtained	by	the	ants.	It	is	seen	
that	the	solutions	that	have	a	smaller	cost	function	value	receive	more	pheromone	deposit.	
Also,	 the	 links	 that	are	 traveled	multiple	 times	receive	more	reinforcement	of	pheromone.	
A	larger	value	of	the	pheromone	for	a	link	gives	a	larger	probability	value	from	Eq.	(17.23),

pijrs=τijrs∑τilrs; j=1 to qi

xk, fxk; k=1 to Na

τijrs←1−ρτijrs for all r, s, i and j

τijrs←τijrs+Qfxk for all r, s, i, j be-
longing to kth ant's solution

764 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

which	favors	it	selection	for	travel	by	the	virtual	ants	in	subsequent	iterations	of	the	ACO	
algorithm.

We	see	that	the	ACO	algorithm	is	quite	simple	to	implement,	requiring	specification	of	only	
three parameters, Na, ρ,	and	Q.	Na	can	be	given	a	reasonable	value	of	say,	5n	to	10n;	ρ ∈	[0,	1],	a	
value	of	say,	0.4	to	0.8;	Q	may	be	selected	as	a	typical	value	for	the	cost	function	f	(x).

17.4 PARTICLE SWARM OPTIMIZATION

Particle	swarm	optimization	(PSO),	another	nature-inspired	method,	mimics	 the	social	
behavior	of	bird	flocking	or	fish	schooling.	It	falls	into	the	class	of	metaheuristics	and	swarm
intelligence	methods.	It	is	also	a	population-based	stochastic	optimization	technique,	intro-
duced	 by	 Kennedy	 and	 Eberhart	 (1995).	 PSO	 shares	 many	 similarities	 with	 evolutionary	
computation	techniques	such	as	GA	and	DE.	Just	like	those	approaches,	PSO	starts	with	a	
randomly	generated	set	of	solutions	called	the	initial	population.	An	optimum	solution	is	
then	searched	by	updating	generations.

An	attractive	feature	of	PSO	is	that	it	has	fewer	algorithmic	parameters	to	specify	com-
pared	to	GAs.	It	does	not	use	any	of	the	GAs’	evolutionary	operators	such	as	crossover	and	
mutation.	Also,	unlike	GAs,	the	algorithm	does	not	require	binary	number	encoding	or	de-
coding	and	thus	is	easier	to	implement	into	a	computer	program.	PSO	has	been	successfully	
applied	to	many	classes	of	problems,	such	as	mechanical	and	structural	optimization	and	
multi-objective	optimization,	artificial	neural	network	training,	and	fuzzy	system	control.

In	 this	section,	we	present	 the	basic	 ideas	of	PSO	and	a	simple	PSO	algorithm.	Many	
variations	on	the	method	are	available	in	the	literature,	and	research	on	the	subject	con-
tinues	to	develop	better	algorithms	and	expand	the	range	of	 their	application	(Kennedy	
et	al.,	2001).

17.4.1 Swarm Behavior and Terminology

The	PSO	computational	algorithm	tries	to	emulate	the	social	behavior	of	a	swarm	of	ani-
mals,	such	as	a	flock	of	birds	or	a	school	of	fish	(moving	in	search	for	food).	In	a	swarm,	an	
individual	behaves	according	to	its	limited	intelligence	as	well	as	to	the	intelligence	of	the	
group.	Each	individual	observes	the	behavior	of	its	neighbors	and	adjusts	its	own	behavior	
accordingly.	If	an	individual	member	discovers	a	good	path	to	food,	other	members	follow	
this	path	no	matter	where	they	are	situated	in	the	swarm.

PSO	uses	the	following	terminology:

Particle:	This	term	is	used	to	identify	an	individual	in	the	swarm	(eg,	a	bird	in	the	flock	
or	a	fish	in	the	school).	Agent	is	also	used	in	some	circles.	Each	particle	has	a	location	in	
the	swarm.	In	the	optimization	algorithm,	each	particle	location	represents	a	design	point	
that	is	a	potential	solution	to	the	problem.
Particle position:	This	term	refers	to	the	coordinates	of	the	particle.	In	the	optimization	
algorithm,	it	refers	to	a	design	point	(a	vector	of	design	variables).
Particle velocity:	The	term	refers	to	the	rate	at	which	the	particles	are	moving	in	space.	In	
the	optimization	algorithm,	it	refers	to	the	design	change.

 17.4 partIcle SwarM optIMIzatIoN 765

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

Swarm leader:	This	is	the	particle	having	the	best	position.	For	the	optimization	algorithm,	
the	term	refers	to	a	design	point	having	the	smallest	value	for	the	cost	function.

17.4.2 Particle Swarm Optimization Algorithm

The	PSO	translates	the	social	behavior	of	the	swarm	described	previously	into	a	compu-
tational	algorithm.	The	notation	shown	in	Table	17.3	is	used	in	the	subsequent	step-by-step	
algorithm.

Each	particle	 in	the	swarm	keeps	track	of	 its	own	current	position	and	its	best	position	
(solution)	achieved	during	the	running	of	the	algorithm.	This	implies	that	each	point	stores	
not	only	its	current	value	but	also	its	best	value	achieved	thus	far.	The	best	position	for	the	
ith	particle	(design	point)	is	denoted	x P

(i,k).	Another	“best”	value	that	is	tracked	by	the	particle	
swarm	optimizer	is	the	best	position	for	the	entire	swarm,	denoted	x G

(k).	The	PSO	algorithm	
consists	of	changing,	at	each	time	step	(iteration),	the	velocity	of	each	particle	toward	its	own	
best	position	as	well	as	the	swarm’s	best	position	(also	sometimes	referred	to	as	accelerating	
the	particle	toward	the	best	known	position).

The	step-by-step	PCO	algorithm	is	stated	as	follows.

Step 0: Initialization.	Select	Np, c1, c2,	and	kmax	as	the	maximum	number	of	iterations.	Set	the	
initial	velocity	of	the	particle	v(i,0)	to	0.	Set	the	iteration	counter	at	k	=	1.
Step 1: Initial generation.	Using	a	random	procedure,	generate	Np particles x(i,0).	The	procedure	
described	in	Eq.	(17.7)	can	be	used	to	generate	these	points	within	their	allowable	ranges.	
Evaluate	the	cost	function	for	each	of	these	points	f		(x(i,0)).	Determine	the	best	solution	
among	all	particles	as	xG

(k)—that	is,	a	point	having	the	smallest	cost	function	value.

TABLE 17.3 Notation and terminology for the particle Swarm optimization algorithm

Notation Terminology

c1 Algorithm	parameter	(ie,	cognitive	parameter);	taken	between	0	and	4,	usually	set	to	2

c2 Algorithm	parameter	(ie,	social	parameter);	taken	between	0	and	4,	usually	set	to	2

r1, r2 random	numbers	between	0	and	1

k Iteration counter

kmax Limit	on	the	number	of	iterations

n Number	of	design	variables

Np Number	of	particles	(design	points)	in	the	swarm;	swarm size	(usually	5n	to	10n)

xj jth	component	of	the	design	variable	vector	x

v(i,k) velocity	of	the	ith	particle	(design	point)	of	the	swarm	at	the	kth	generation/iteration

x(i,k) Location	of	the	ith	particle	(design	point)	of	the	swarm	at	the	kth	generation/iteration

x P
(i,k) Best	position	of	the	ith	particle	based	on	its	travel	history	at	the	kth	generation/iteration

x G
(k) Best	solution	for	the	swarm	at	the	kth	generation;	considered	the	leader	of	the	swarm

xL vector	containing	lower	limits	on	the	design	variables

xU vector	containing	upper	limits	on	the	design	variables

766 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

Step 2: Calculate velocities.	Calculate	the	velocity	of	each	particle	at	the	k	+	1	iteration	as:

() ()= + − + − =() () () () () ()+ c r c r i Nv v x x x x ; 1 toi k i k
P
i k i k

G
k i k

p
, 1 ,

1 1
, ,

2 2
,

(17.28)

	 Update	the	positions	of	the	particles	as:

= + =() () ()+ + i Nx x v ; 1 toi k i k i k
p

, 1 , , 1
 (17.29)

	 Check	and	enforce	bounds	on	the	particle	positions:

≤ ≤()+x x xL
i k

U
, 1

 (17.30)

Step 3: Update the best solution.	Calculate	the	cost	function	at	all	new	points	f	(x(i,k+1)).	For	
each	particle,	perform	the	following	check:

()() ≤ =

= =

() () () ()

() ()

+ + +

+

f f

i N

x x x x

x x

If , then ;

otherwise for each 1 to

i k
P
i k

P
i k i k

P
i k

P
i k

p

, 1 , , 1 , 1

, 1 ,

(17.31)

() ()≤ = =() ()+ +f f i Nx x x xIf , then , 1 toP
i k

G G P
i k

p
, 1 , 1

(17.32)

Step 4: Stopping criterion.	Check	for	convergence	of	the	iterative	process.	If	a	stopping	
criterion	is	satisfied	(ie,	k = kmax	or	if	all	of	the	particles	have	converged	to	the	best	swarm	
solution),	stop.	Otherwise,	set	k = k	+	1	and	go	to	step	2.

EXERCISES FOR CHAPTER 17*

Section 17.1 Genetic Algorithm

Solve the following problems using a GA.

17.1 Example	15.1	with	the	available	discrete	values	for	the	variables	as	x1 ∈	{0,	1,	2,	3},	
and	x2 ∈	{0,	1,	2,	3,	4,	5,	6}.	Compare	the	solution	with	that	obtained	with	the	branch	
and	bound	method.

17.2 Exercise	3.34	using	the	outside	diameter	d0	and	the	inside	diameter	di	as	design	
variables.	The	outside	diameter	and	thickness	must	be	selected	from	the	following	
available	sets:

{ } { }∈ ∈d t0.020, 0.022, 0.024, ... , 0.48, 0.50 m; 5, 7, 9, ... , 23, 25 mm0

 Check	your	solution	using	the	graphical	method	of	chapter:	Graphical	Solution	
Method	and	Basic	Optimization	Concepts.	Compare	continuous	and	discrete	
solutions.	Study	the	effect	of	reducing	the	number	of	elements	in	the	available	
discrete	sets.

vi,k+1=vi,k+c1r1xPi,k−xi,k+c2r2

xGk−xi,k; i=1 to Np

xi,k+1=xi,k+vi,k+1; i=1 to Np

xL≤xi,k+1≤xU

If fxi,k+1≤fxPi,k, then xPi,k+1=xi
,k+1;otherwise xPi,k+1=xPi,k for

each i=1 to Np
If fxPi,k+1≤fxG, then xG=xPi

,k+1, i=1 to Np

d0∈0.020, 0.022, 0.024, ... , 0.48, 0.50
m; t∈5, 7, 9, ... , 23, 25mm

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

 eXercISeS for chapter 17 767

17.3 Formulate	the	minimum	mass	tubular	column	problem	described	in	Section	2.7	
using	the	following	data:	P	=	100	kN,	length,	l	=	5	m,	Young’s	modulus,	E	=	210	GPa,	
allowable stress, σ a	=	250	MPa,	mass	density,	ρ	=	7850	kg/m3, R ≤	0.4	m,	t ≤	0.05	m,	
and	R, t ≥	0.	The	design	variables	must	be	selected	from	the	following	sets:

{ } { }∈ ∈R t0.01, 0.012, 0.014, ... , 0.38, 0.40 m; 4, 6, 8, ... , 48, 50 mm

 Check	your	solution	using	the	graphical	method	of	chapter:	Graphical	Solution	
Method	and	Basic	Optimization	Concepts.	Compare	continuous	and	discrete	solutions.	
Study	the	effect	of	reducing	the	number	of	elements	in	the	available	discrete	sets.

17.4 Consider	the	plate	girder	design	problem	described	and	formulated	in	Section	6.8.	
The	design	variables	for	the	problem	must	be	selected	from	the	following	sets:

{ } { }∈ ∈h b t t, , 0.30, 0.31, 0.32, ... , 2.49, 2.50 m; , 10, 12, 14, ... , 98, 100 mmw f

 Compare	the	continuous	and	discrete	solutions.	Study	the	effect	of	reducing	the	
number	of	elements	in	the	available	discrete	sets.

17.5 Consider	the	plate	girder	design	problem	described	and	formulated	in	
Section	6.8.	The	design	variables	for	the	problem	must	be	selected	from	the	
following	sets:

{ } { }∈ ∈h b t t, , 0.30, 0.32, 0.34, ... , 2.48, 2.50 m; , 10, 14, 16, ... , 96, 100 mmw f

 Compare	the	continuous	and	discrete	solutions.	Study	the	effect	of	reducing	the	
number	of	elements	in	the	available	discrete	sets.

17.6 Solve	problems	of	Exercises	17.4	and	17.5.	Compare	the	two	solutions,	commenting	
on	the	effect	of	the	size	of	the	discreteness	of	variables	on	the	optimum	solution.	Also,	
compare	the	continuous	and	discrete	solutions.

17.7 Formulate	the	spring	design	problem	described	in	Section	2.9	and	solved	in	
Section	6.7.	Assume	that	the	wire	diameters	are	available	in	increments	of	0.01	in.,	the	
coils	can	be	fabricated	in	increments	of	1/16 	in.,	and	the	number	of	coils	must	be	an	
integer.	Compare	the	continuous	and	discrete	solutions.	Study	the	effect	of	reducing	
the	number	of	elements	in	the	available	discrete	sets.

17.8 Formulate	the	spring	design	problem	described	in	Section	2.9	and	solved	in	
Section	6.7.	Assume	that	the	wire	diameters	are	available	in	increments	of	0.015	in.,	
the	coils	can	be	fabricated	in	increments	of	1/8	in.,	and	the	number	of	coils	must	
be	an	integer.	Compare	the	continuous	and	discrete	solutions.	Study	the	effect	of	
reducing	the	number	of	elements	in	the	available	discrete	sets.

17.9 Solve	problems	of	Exercises	17.7	and	17.8.	Compare	the	two	solutions,	commenting	
on	the	effect	of	the	size	of	the	discreteness	of	variables	on	the	optimum	solution.	Also,	
compare	the	continuous	and	discrete	solutions.

17.10 Formulate	the	problem	of	optimum	design	of	prestressed	concrete	transmission	poles	
described	in	Kocer	and	Arora	(1996a).	Compare	your	solution	to	that	given	in	the	
reference.

17.11 Formulate	the	problem	of	optimum	design	of	steel	transmission	poles	described	in	
Kocer	and	Arora	(1996b).	Solve	the	problem	as	a	continuous	variable	optimization	
problem.

R∈0.01, 0.012, 0.014, ... , 0.38, 0.40
m; t∈4, 6, 8, ... , 48, 50mm

h,b,∈0.30, 0.31, 0.32, ... , 2.49, 2.50m
; tw, tf∈10, 12, 14, ... , 98, 100mm

h,b,∈0.30, 0.32, 0.34, ... , 2.48, 2.50m
; tw, tf∈10, 14, 16, ... , 96, 100mm

1/16

768 17. Nature-INSpIred Search MethodS

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

17.12 Formulate	the	problem	of	optimum	design	of	steel	transmission	poles	described	in	
Kocer	and	Arora	(1996b).	Assume	that	the	diameters	can	vary	in	increments	of	0.5	in.	
and	the	thicknesses	can	vary	in	increments	of	0.05	in.	Compare	your	solution	to	that	
given	in	the	reference.

17.13 Formulate	the	problem	of	optimum	design	of	steel	transmission	poles	using	standard	
sections	described	in	Kocer	and	Arora	(1997).	Compare	your	solution	to	the	solution	
given	in	the	reference.

17.14 Formulate	and	solve	three-bar	truss	of	Exercise	3.50	as	a	discrete	variable	problem	
where	the	cross-sectional	areas	must	be	selected	from	the	following	discrete	set:

{ }∈A 50, 100, 150, ... , 4950, 5000 mmi
2

 Check	your	solution	using	the	graphical	method	of	chapter:	Graphical	Solution	
Method	and	Basic	Optimization	Concepts.	Compare	continuous	and	discrete	
solutions.	Study	the	effect	of	reducing	the	number	of	elements	in	the	available	
discrete	sets.

17.15 Solve	Example	17.1	of	bolt	insertion	sequence	at	10	locations.	Compare	your	solution	
to	the	one	given	in	the	example.

17.16 Solve	the	16-bolt	insertion	sequence	determination	problem	described	in	Huang,	
Hsieh	and	Arora	(1997).	Compare	your	solution	to	the	one	given	in	the	reference.

17.17 The	material	for	the	spring	in	Exercise	17.7	must	be	selected	from	one	of	three	
possible	materials	given	in	Table	E17.17	(refer	to	Section	15.8	for	more	discussion	of	
the	problem)	(Huang	and	Arora,	1997).	Obtain	a	solution	to	the	problem.

17.18 The	material	for	the	spring	in	Exercise	17.8	must	be	selected	from	one	of	three	
possible	materials	given	in	Table	E17.17	(refer	to	Section	15.8	for	more	discussion	of	
the	problem)	(Huang	and	Arora,	1997).	Obtain	a	solution	to	the	problem.

Sections 17.2–17.4

17.19 Implement	the	DE	algorithm	into	a	computer	program.	Solve	the	Example	17.1	of	bolt	
insertion	sequence	determination	using	your	program.	Compare	performance	of	the	
DE	and	GA	algorithms.

17.20 Implement	the	ACO	algorithm	into	a	computer	program.	Solve	the	Example	17.1	of	
bolt	insertion	sequence	determination	using	your	program.	Compare	performance	of	
the	ACO	and	GA	algorithms.

Ai∈50, 100, 150, ... , 4950, 5000mm2

TABLE E17.17 Material data for the Spring design problem

Material Type G (lb/in.2) ρ (lb s2/in.4) τa (lb/in.2) Up

1 11.5	×	106 7.38342	×	10−4 80,000 1.0

2 12.6	×	106 8.51211	×	10−4 86,000 1.1

3 13.7	×	106 9.71362	×	10−4 87,000 1.5

G = shear modulus;	ρ = mass density;	τa = shear stress;	Up = relative unit price.

III.	 ADvANCED	AND	MODErN	TOPICS	ON	OPTIMUM	DESIGN

 refereNceS 769

17.21 Implement	the	PSO	algorithm	into	a	computer	program.	Solve	the	Example	17.1	of	
bolt	insertion	sequence	determination	using	your	program.	Compare	performance	of	
the	PSO	and	GA	algorithms.

References
Arora,	J.S.,	2002.	Methods	for	discrete	variable	structural	optimization.	In:	Burns,	S.	(Ed.),	recent	Advances	in	Opti-

mal	Structural	Design.	Structural	Engineering	Institute,	reston,	vA,	pp.	1–40.	
Arora,	 J.S.,	 Huang,	 M.W.,	 1996.	 Discrete	 structural	 optimization	 with	 commercially	 available	 sections:	 a	 review.	

J.	Struct.	Earthquake	Eng.	JSCE	13	(2),	93–110.	
Arora,	J.S.,	Huang,	M.W.,	Hsieh,	C.C.,	1994.	Methods	for	optimization	of	nonlinear	problems	with	discrete	variables:	

a	review.	Struct.	Optim.	8	(2/3),	69–85.	
Blum,	C.,	2005.	Ant	colony	optimization:	introduction	and	recent	trends.	Phys.	Life	rev.	2,	353–373.	
Chen,	S.Y.,	rajan,	S.D.,	2000.	A	robust	genetic	algorithm	for	structural	optimization.	Struct.	Eng.	Mech.	10,	313–336.	
Coello-Coello,	C.A.,	van	veldhuizen,	D.A.,	Lamont,	G.B.,	2002.	Evolutionary	Algorithms	for	Solving	Multi-Objective	

Problems.	Kluwer	Academic,	New	York.	
Corne,	D.,	Dorigo,	M.,	Glover,	F.	(Eds.),	1999.	New	Ideas	in	Optimization.	McGraw-Hill,	New	York.	
Das,	S.,	Suganthan,	N.,	2011.	Differential	evolution:	a	survey	of	the	state-of-the-art.	IEEE	Transac.Evolut.	Comput.	

15	(1),	4–31.	
Dorigo,	M.,	1992.	Optimization,	learning	and	natural	algorithms.	Ph.D.	Thesis,	Politecnico	di	Milano,	Italy.
Gen,	M.,	Cheng,	r.,	1997.	Genetic	Algorithms	and	Engineering	Design.	John	Wiley,	New	York.	
Glover,	F.,	Kochenberger,	G.	(Eds.),	2002.	Handbook	on	Metaheuristics.	Kluwer	Academic,	Norwell,	MA.	
Goldberg,	D.E.,	1989.	Genetic	Algorithms	in	Search,	Optimization	and	Machine	Learning.	Addison-Wesley,	reading,	MA.	
Holland,	J.H.,	1975.	Adaptation	in	Natural	and	Artificial	Systems.	University	of	Michigan	Press,	Ann	Arbor.	
Huang,	M.W.,	Arora,	J.S.,	1997a.	Optimal	design	with	discrete	variables:	some	numerical	experiments.	Int.	J.	Nuer.	

Methods	Eng.	40,	165–188.	
Huang,	M.W.,	Arora,	J.S.,	1997.	Optimal	design	of	steel	structures	using	standard	sections.	Struct.	Multidiscip.		Optim.	

14,	24–35.	
Huang,	M.W.,	Hsieh,	C.C.,	Arora,	J.S.,	1997.	A	genetic	algorithm	for	sequencing	type	problems	in	engineering	design.	

Int.	J.	Numer.	Methods	Eng.	40,	3105–3115.	
Kennedy,	 J.,	 Eberhart,	 r.C.,	 1995.	 Particle	 swarm	 optimization.	 Proceedings	 of	 IEEE	 International	 Conference	 on	

Neural	Network,	vol.	Iv,	IEEE	Service	Center,	Piscataway,	NJ,	1942–1948.
Kennedy,	J.,	Eberhart,	r.C.,	Shi,	Y.,	2001.	Swarm	Intelligence.	Morgan	Kaufmann,	San	Francisco.	
Kocer,	F.Y.,	Arora,	J.S.,	1996a.	Design	of	prestressed	concrete	poles:	an	optimization	approach.	J.	Struct.	Eng.	ASCE	

122	(7),	804–814.	
Kocer,	F.Y.,	Arora,	J.S.,	1996b.	Optimal	design	of	steel	transmission	poles.	J.	Struct.	Eng.	ASCE	122	(11),	1347–1356.	
Kocer,	 F.Y.,	 Arora,	 J.S.,	 1997.	 Standardization	 of	 transmission	 pole	 design	 using	 discrete	 optimization	 methods.	

J.	Struct.	Eng.	ASCE	123	(3),	345–349.	
Kocer,	F.Y.,	Arora,	J.S.,	1999.	Optimal	design	of	H-frame	transmission	poles	subjected	to	earthquake	loading.	J.	Struct.	

Eng.	ASCE	125	(11),	1299–1308.	
Kocer,	F.Y.,	Arora,	J.S.,	2002.	Optimal	design	of	latticed	towers	subjected	to	earthquake	loading.	J.	Struct.	Eng.	ASCE	

128	(2),	197–204.	
Mitchell,	M.,	1996.	An	Introduction	to	Genetic	Algorithms.	MIT	Press,	Cambridge,	MA.	
Nelder,	J.A.,	Mead,	r.A.,	1965.	A	Simplex	method	for	function	minimization.	Comput.	J.	7,	308–313.	
Osyczka,	A.,	2002.	Evolutionary	Algorithms	for	Single	and	Multicriteria	Design	Optimization.	Physica	verlag,	Berlin.	
Pezeshk,	S.,	Camp,	C.v.,	2002.	State-of-the-art	on	use	of	genetic	algorithms	in	design	of	steel	structures.	In:	Burns,	S.	

(Ed.),	recent	Advances	in	Optimal	Structural	Design.	Structural	Engineering	Institute,	ASCE,	reston,	vA.	
Price,	 K.,	 Storn,	 r.,	 Lampinen,	 J.,	 2005.	 Differential	 Evolution—A	 Practical	 Approach	 to	 Global	 Optimization.	

	Springer,	Berlin.	
Qing,	A.,	2009.	Differential	Evolution—Fundamentals	and	Applications	in	Electrical	Engineering.	Wiley-Interscience,	

New	York.	

http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0010
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0010
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0015
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0015
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0020
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0020
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0025
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0030
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref9010
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref9010
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0035
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0040
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0040
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0045
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0050
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0055
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0060
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0065
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0065
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0070
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0070
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0075
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0075
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0080
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0085
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0085
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0090
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0095
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0095
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0100
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0100
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0105
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0105
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0110
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0115
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref9029
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0120
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0120
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0125
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0125
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0130
http://refhub.elsevier.com/B978-0-12-800806-5.00017-2/ref0130

	Chapter 17 - Nature-Inspired Search Methods
	17.1 - Genetic algorithms (GA) for optimum design
	17.1.1 - Basic Concepts and Definitions Related to GA
	Design Representation
	Initial Generation/Starting Design Set
	Fitness Function

	17.1.2 - Fundamentals of Genetic Algorithms
	Reproduction Procedure
	Crossover
	Mutation
	Number of Crossovers and Mutations
	Leader of the Population
	Stopping Criteria
	Genetic Algorithm
	Immigration
	Multiple Runs for a Problem

	17.1.3 - Genetic Algorithm for Sequencing-Type Problems
	Relocation

	17.1.4 - Applications of GA

	17.2 - Differential evolution algorithm
	17.2.1 - Generation of Initial Population for DEA
	17.2.2 - Generation of a Donor Design for DEA
	17.2.3 - Crossover Operation to Generate the Trial Design in DEA
	17.2.4 - Acceptance/Rejection of the Trial Design in DEA
	17.2.5 - Differential Evolution Algorithm

	17.3 - Ant colony optimization
	17.3.1 - Ant Behavior
	A Simple Model/Algorithm

	17.3.2 - ACO Algorithm for the Traveling Salesman Problem
	17.3.3 - ACO Algorithm for Design Optimization
	Problem Definition
	Finding Feasible Solutions
	Step 1. Selection of an Initial Link
	Step 2. Selection of a Link from Layer R
	Step 3. Obtaining Feasible Solutions for all Ants

	Pheromone Evaporation
	Pheromone Deposit

	17.4 - Particle swarm optimization
	17.4.1 - Swarm Behavior and Terminology
	17.4.2 - Particle Swarm Optimization Algorithm

	Exercises for Chapter 17
	Section 17.1 Genetic Algorithm
	Sections 17.2–17.4

	References

