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17
Nature-Inspired Search Methods

Upon completion of this chapter, you will be able to:

•	 Explain the basic concepts, terminology, and 
steps of genetic algorithms (GAs)

•	 Explain and use the differential evolution 
algorithm (DEA)

•	 Explain and use the ant colony optimization 
(ACO) algorithm

•	 Explain and use the particle swarm 
optimization (PSO) algorithm

In this chapter, optimization algorithms inspired by natural phenomena are described. 
These fall into the general class of direct search methods described earlier in chapter: More 
on Numerical Methods for Unconstrained Optimum Design. However, in contrast to some 
direct search methods, they do not require the continuity or differentiability of problem 
functions. The only requirement is to be able to evaluate functions at any point within the 
allowable ranges for the design variables. Nature-inspired methods use stochastic ideas and 
random numbers in their calculations to search for the optimum point. Decisions made at 
most steps of the algorithms are based on random number generation. Therefore, executed 
at different times, the algorithms can lead to a different sequence of designs and a different 
solution even with the same initial conditions. They tend to converge to a global minimum 
point for the function, but there is no guarantee of convergence or global optimality of the 
final solution.

Nature-inspired approaches have been called stochastic programming, evolutionary 
algorithms, genetic programming, swarm intelligence, and evolutionary computa-
tion. They are also called nature-inspired metaheuristics methods, as they make no 
assumptions about the optimization problem and can search very large spaces for 
candidate solutions.

Nature-inspired algorithms can overcome some of the challenges that are due to mul-
tiple objectives, mixed design variables, irregular/noisy problem functions, implicit problem 
functions, expensive and/or unreliable function gradients, and uncertainty in the model and 
the environment. The methods are very general and can be applied to all kinds of problems—
discrete, continuous, and nondifferentiable. They are relatively easy to use and program since 
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they do not require the use of gradients of cost or constraint functions. For this reason, there 
has been considerable interest in their development and in their application to a wide va-
riety of practical problems. Several books on various methods have been published; a few 
examples are Goldberg (1989), Gen and Cheng (1997), Corne et  al. (1999), Kennedy et  al. 
(2001), Glover and Kochenberger (2002), Coello-Coello et  al. (2002), Osyczka (2002), Price 
et al. (2005), and Qing (2009).

There have also been conferences and workshops on various nature-inspired methods 
such as the IEEE Congress on Evolutionary Computation, Soft Computing, Genetic and Evo-
lutionary Computation Conference (GECCO), International Conference on Parallel Problem 
Solving from Nature (PPSN), Ant Colony Optimization and Swarm Intelligence (ANTS), the 
Evolutionary Programming Conference, and others. Journals devoted to research on nature-
inspired methods include: IEEE Transactions on Evolutionary Computation, Applied Intelligence, 
Neural Network World, Artificial Intelligence Review, Applied Soft Computing, Physics of Life Re-
views, AI Communications, Evolutionary Computing, Journal of Artificial Intelligence Research, 
Journal of Heuristics, and Artificial Life.

The drawbacks of these algorithms are as follows:

1.	 They require a large amount of function evaluations for even reasonably sized prob-
lems. For problems where evaluation of functions itself requires massive calculation, the 
amount of computing time required to solve the problem can be prohibitive.

2.	 There is no absolute guarantee that a global solution has been obtained.

The first drawback can be overcome to some extent by the use of massively parallel com-
puters. The second drawback can be overcome to some extent by executing the algorithm 
several times and allowing it to run longer.

The methods usually start with a collection of design points called the population. Using 
certain stochastic processes, the methods try to come up with a better design point for each 
generation (iteration of the algorithm). To give a flavor of nature-inspired methods, we will de-
scribe four methods in this chapter that are relatively popular. (Other methods in this class are 
noted in Das and Suganthan, 2011.) Each one uses specific terminology from the correspond-
ing biological phenomenon or other natural phenomena that may be unfamiliar to engineers, 
so we will describe such terminology wherever used.

The methods presented here treat the following optimization problem:
Minimize

( ) ∈f Sx for x	 (17.1)

where S is the feasible set of designs and x is the n-dimensional design variable vector. If 
the problem is unconstrained, the set S is the entire design space, and if it is constrained, S 
is determined by the constraints. The methods presented in this chapter are generally used 
for unconstrained problems. However, constrained optimization problems, can be addressed 
using the penalty function approach described in chapter: More on Numerical Methods for 
Unconstrained Optimum Design or the exact penalty function defined in chapter: Numerical 
Methods for Constrained Optimum Design.

In the following presentation, the terms design vector, design point, and design are used inter-
changeably. They all refer to the n-dimensional design variable vector x.

fx for x∈S
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17.1  GENETIC ALGORITHMS (GA) FOR OPTIMUM DESIGN

In this section, concepts and terminology associated with GAs are defined and explained 
for the optimization problem. Fundamentals of GAs are presented and explained. Although 
the algorithm can be used for continuous problems, our focus will be on discrete variable 
optimization problems. Various steps of a GA are described that can be implemented in dif-
ferent ways.

Most of the material for this chapter is derived from the work of the author and his cowork-
ers and is introductory in nature (Arora et al., 1994; Huang and Arora, 1997; Huang et al., 1997; 
Arora, 2002). Numerous other good references on the subject are available (eg, Holland, 1975; 
Goldberg, 1989; Mitchell, 1996; Gen and Cheng, 1997; Pezeshk and Camp, 2002).

17.1.1  Basic Concepts and Definitions Related to GA

Genetic algorithms loosely parallel biological evolution and are based on Darwin’s theory 
of natural selection. The specific mechanics of the algorithm uses the language of microbiol-
ogy, and its implementation mimics genetic operations. We will explain this in subsequent 
paragraphs and sections. The basic idea of the approach is to start with a set of designs, randomly 
generated using the allowable values for each design variable. Each design is also assigned a 
fitness value, usually using the cost function for unconstrained problems or the penalty func-
tion for constrained problems. From the current set of designs, a subset is selected randomly 
with a bias allocated to more fit members of the set. Random processes are used to generate 
new designs using the selected subset of designs.

The size of the design set is kept fixed. Since more fit members of the set are used to create 
new designs, the successive sets of designs have a higher probability of having designs with 
better fitness values. The process is continued until a stopping criterion is met. In the follow-
ing paragraphs, some details of implementing these basic steps are presented and explained. 
First we will define and explain various terms associated with the algorithm.

Population: The set of design points at the current iteration is called a population. It 
represents a group of designs as potential solution points. Np is the number of designs in 
a population; this is also called the population size.
Generation: An iteration of the GA is called a generation. A generation has a population of 
size Np that is manipulated in a GA.
Chromosome: This term is used to represent a design point. Thus a chromosome represents 
a design of the system, whether feasible or infeasible. It contains values for all the design 
variables of the system.
Gene: This term is used for a scalar component of the design vector; that is, it represents 
the value of a particular design variable.

Design Representation
A method is needed to represent design variable values in their allowable sets and to rep-

resent design points so that they can be used and manipulated in the algorithm. This is called 
a schema, and it needs to be encoded (ie, defined). Although binary encoding is the most com-
mon approach, real-number coding, and integer encoding are also possible. Binary encoding 
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implies a string of 0s and 1s. Binary strings are also useful because it is easier to explain the 
operations of the GA with them.

A binary string of 0s and 1s can represent a design variable (a gene). Also, an L-digit 
string with a 0 or 1 for each digit, where L is the total number of binary digits, can be used 
to specify a design point (a chromosome). Elements of a binary string are called bits; a bit 
can have a value of 0 or 1. We will use the term “V–string” for a binary string that represents 
the value of a variable; that is, the component of a design vector (a gene). Also, we will use the 
term “D–string” for a binary string that represents a design of the system—that is, a particular 
combination of n V–strings, where n is the number of design variables. This is also called a 
genetic string (or a chromosome).

An m-digit binary string has 2m possible 0–1 combinations implying that 2m discrete values 
can be represented. The following method can be used to transform a V–string consisting of a 
combination of m 0s and 1s to its corresponding discrete value of a variable having Nc allowable 
discrete values: let m be the smallest integer satisfying 2m > Nc; calculate the integer j:

∑ ( )= +( )−

=

j ICH i 2 1i

i

m
1

1	
(17.2)

where ICH(i) is the value of the ith digit (either 0 or 1). Thus the jth allowable discrete value 
corresponds to this 0–1 combination; that is, the jth discrete value corresponds to this V–string. 
Note that when j > Nc in Eq. (17.2), the following procedure can be used to adjust j such that 
j ≤ Nc:
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(17.3)

where INT(x) is the integer part of x. As an example, consider a problem with three design 
variables each having Nc = 10 possible discrete values. Thus, we will need a four-digit binary 
string to represent discrete values for each design variable; that is, m = 4 implying that 16 pos-
sible discrete values can be represented. Let a design point x = (x1, x2, x3) be encoded as the 
following D–string (genetic string):













x x x
0110 1111 1101

1 2 3

	
(17.4)

Using Eq. (17.2), the j values for the three V–strings are calculated as 7, 16, and 12. Since 
the last two numbers are larger than Nc = 10, they are adjusted by using Eq. (17.3) as 6 and 2, 
respectively. Thus the foregoing D–string (genetic string) represents a design point where the 
seventh, sixth, and second allowable discrete values are assigned to the design variables x1, 
x2, and x3, respectively.

Initial Generation/Starting Design Set
With a method to represent a design point defined, the first population consisting of Np de-

signs needs to be created. This means that Np D–strings need to be created. In some cases, the 
designer already knows some good usable designs for the system. These can be used as seed 

j=∑i=1mICHi2i−1+1

j=INTNc2m−Ncj−Nc

x1x2x3011011111101
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designs to generate the required number of designs for the population using some random 
process. Otherwise, the initial population can be generated randomly via the use of a random 
number generator. Several methods can be used for this purpose. The following procedure 
shows a way to produce a 32-digit D–string:

1.	 Generate two random numbers between 0 and 1 as “0.3468 0254 7932 7612 and 0.6757 
2163 5862 3845.”

2.	 Create a string by combining the two numbers as “3468 0254 7932 7612 6757 2163 5862 
3845.”

3.	 The 32 digits of the above string are converted to 0s and 1s by using a rule in which “0” is 
used for any value between 0 and 4 and “1” for any value between 5 and 9, as “0011 0010 
1100 1100 1111 0010 1110 0101.”

Fitness Function
The fitness function defines the relative importance of a design. A higher fitness value im-

plies a better design. The fitness function may be defined in several different ways; it can be 
defined using the cost function value as follows:

ε( )= + −F f f1 ,i imax	 (17.5)

where fi is the cost function (penalty function value for a constrained problems) for the 
ith design, fmax is the largest recorded cost (penalty) function value, and ε is a small value 
(eg, 2 × 10−7) to prevent numerical difficulties when Fi becomes 0.

17.1.2  Fundamentals of Genetic Algorithms

The basic idea of a GA is to generate a new set of designs (population) from the current set 
such that the average fitness of the population is improved. The process is continued until 
a stopping criterion is satisfied or the number of iterations exceeds a specified limit. Three 
genetic operators are used to accomplish this task: reproduction, crossover, and mutation.

Reproduction is an operator where an old design (D–string) is copied into the new 
population according to the design’s fitness. There are many different strategies to 
implement this reproduction operator. This is also called the selection process.
Crossover corresponds to allowing two selected members of the new population to 
exchange characteristics of their designs among themselves. Crossover entails selection 
of starting and ending positions on a pair of randomly selected strings (called mating 
strings), and simply exchanging the string of 0s and 1s between these positions.
Mutation is the third step that safeguards the process from a complete premature loss of 
valuable genetic material during reproduction and crossover. In terms of a binary string, 
this step corresponds to selection of a few members of the population, determining a 
location on the strings at random, and switching 0 to 1 or vice versa.

The foregoing three steps are repeated for successive generations of the population until 
no further improvement in fitness is attainable. The member in this generation with the high-
est level of fitness is taken as the optimum design. Some details of the GA implemented by 
Huang and Arora (1997a) are described in the sequel.

Fi=1+εfmax−fi,
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Reproduction Procedure
Reproduction is a process of selecting a set of designs (D–strings) from the current popula-

tion and carrying them into the next generation. The selection process is biased toward more fit 
members of the current design set (population). Using the fitness value Fi for each design in 
the set, its probability of selection is calculated as:

∑= =
=

P
F
Q

Q F;i
i

j
j

N

1

p

	
(17.6)

It is seen that the members with higher fitness value have larger probability of selection. To 
explain the process of selection, let us consider a roulette wheel with a handle shown in Fig. 17.1. 
The wheel has Np segments to cover the entire population, with the size of the ith segment pro-
portional to the probability Pi. Now a random number w is generated between 0 and 1. The wheel 
is then rotated clockwise, with the rotation proportional to the random number w. After spinning 
the wheel, the member pointed to by the arrow at the starting location is selected for inclusion 
in the next generation. In the example shown in Fig. 17.1, member 2 of the current population is 
carried into the next generation. Since the segments on the wheel are sized according to the prob-
abilities Pi, the selection process is biased toward the more fit members of the current population.

Note that a member copied to the mating pool remains in the current population for fur-
ther selection. Thus, the new population may contain identical members and may not contain 
some of the members found in the current population. This way, the average fitness of the 
new population is increased.

Crossover
Once a new set of designs is determined, crossover is conducted as a means to introduce 

variation into a population. Crossover is the process of combining or mixing two different 

Pi=FiQ;      Q=∑j=1NpFj

FIGURE 17.1  Roulette wheel process for selection of designs for new generation (reproduction). Source: 
Huang, Hsieh and Arora, 1997.
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designs (chromosomes) of the population. Although there are many methods for perform-
ing crossover, the most common ones are the one-cut-point and two-cut-point methods. A cut 
point is a position on the D–string (genetic string). In the one-cut method a position on 
the string is randomly selected that marks the point at which two parent designs (chro-
mosomes) split. The resulting four halves are then exchanged to produce new designs 
(children).

The process is illustrated in Fig. 17.2, where the cut point is determined as four digits from 
the right end. The lightly shaded four digits 1001 from one parent design are exchanged with 
heavily shaded four digit 1011 from another parent design. This produces two new designs 
x19 and x29 that replace the old designs (parents). Similarly, the two-cut-point method is illus-
trated in Fig. 17.3. Selecting how many or what percentage of chromosomes crossover, and at 
what points the crossover operation occurs, is part of the heuristic nature of GAs. There are 
many different approaches, and most are based on random selections.

Mutation
Mutation is the next operation on the members of the new design set (population). The 

idea of mutation is to safeguard the process from a complete premature loss of valuable ge-
netic material during the reproduction and crossover steps. In terms of a genetic string, this 
step corresponds to selecting a few members of the population, determining a location on 
each string randomly, and switching 0 to 1 or vice versa. The number of members selected 
for mutation is based on heuristics, and the selection of location on the string for mutation is 
based on a random process. Let us select a design as “10 1110 1001” and select location 7 from 
the right end of its D–string. The mutation operation involves replacing the current value of 
1 at the seventh location with 0 as “10 1010 1001.”

FIGURE 17.2  Crossover operation with one-cut point. (a) Designs selected for crossover (parent chromosomes). 
(b) New designs (children) after crossover.

FIGURE 17.3  Crossover operation with two-cut point. (a) Designs selected for crossover (parent chromosomes). 
(b) New designs (children) after crossover.



746	 17.  Nature-Inspired Search Methods

III.  Advanced and Modern Topics on Optimum Design

Number of Crossovers and Mutations
For each generation (iteration), three operators—reproduction or selection, crossover, and 

mutation—are performed. While the number of the reproduction operations is always equal 
to the size of the population, the number of crossovers and mutation can be adjusted to fine-
tune the performance of the algorithm.

To show the type of operations needed to implement the mutation and crossover at each 
generation, we present a possible procedure as follows.

1.	 Set Imax as an integer that controls the amount of crossover. Calculate Im, which controls 
the amount of mutation as Im = INT(PmNp), where Pm represents a fraction of the popula-
tion that is selected for mutation, and Np is the size of the population. Too many cross-
overs can result in a poorer performance of the algorithm since it may produce designs 
that are far away from the mating designs. Therefore, Imax should be set to a small num-
ber. The mutation, however, changes designs in the neighborhood of the current design; 
therefore, a larger amount of mutation may be allowed. Note also that the population 
size Np needs to be set to a reasonable number for each problem. It may be heuristically 
related to the number of design variables and the number of all possible designs deter-
mined by the number of allowable discrete values for each variable.

2.	 Let +fK  denote the best cost (or penalty) function value for the population at the Kth 
iteration. If the improvement in +fK  is less than some small positive number ε9 for the last 
two consecutive iterations, then Imax is doubled temporarily. This “doubling” strategy 
continues at the subsequent iterations and returns to the original value as soon as +fK  is 
reduced. The concept behind this is that we do not want too much crossover or mutation 
to ruin the good designs in D–strings as long as they keep producing better offspring. On 
the other hand, we need more crossover and mutation to trigger changes when progress 
stops.

3.	 If improvement in +fK  is less than ε9 for the last Ig consecutive iterations, Pm is doubled.
4.	 The crossover and mutation may be performed as follows:

FOR i = 1, Imax

Generate a random number z uniformly distributed in [0, 1]
If z > 0.5, perform crossover.
If z ≤ 0.5, skip crossover.
FOR j = 1, Im

Generate a random number z uniformly distributed in [0, 1]
If z > 0.5, perform mutation.
If z ≤ 0.5, skip to next j.
ENDFOR

ENDFOR

Leader of the Population
At each generation, the member having the lowest cost function value among all of the 

designs is defined as the “leader” of the population. If several members have the same lowest 
cost, only one of them is chosen as the leader. The leader is replaced if another member with 
lower cost appears. In this way, it is safeguarded from extinction (as a result of reproduction, 
crossover, or mutation). In addition, the leader is guaranteed a higher probability of selection 

fK+
fK+

fK+

fK+
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for reproduction. One benefit of using a leader is that the best-cost (penalty) function value of 
the population can never increase from one iteration to another, and some of the best design 
variable values (V–strings or genes) will be able to always survive.

Stopping Criteria
If the improvement for the best-cost (penalty) function value is less than ε9 for the last I 

consecutive iterations, or if the number of iterations exceeds a specified value, then the algo-
rithm terminates.

Genetic Algorithm
Based on the ideas presented here, a sample GA is stated.

Step 1: Define a schema to represent different design points. Randomly generate Np genetic 
strings (members of the population) according to the schema, where Np is the population 
size. Or use the seed designs to generate the initial population. For constrained problems, 
only the feasible strings are accepted when the penalty function approach is not used. Set 
the iteration counter K = 0. Define a fitness function for the problem, as in Eq. (17.5).
Step 2: Calculate the fitness values for all the designs in the population. Set K = K + 1, and 
the counter for the number of crossovers Ic = 1.
Step 3: Reproduction. Select designs from the current population according to the roulette 
wheel selection process described earlier for the mating pool (next generation) from 
which members for crossover and mutation are selected.
Step 4: Crossover. Select two designs from the mating pool. Randomly choose two sites 
on the genetic strings and swap strings of 0s and 1s between the two chosen sites. Set 
Ic = Ic + 1.
Step 5: Mutation. Choose a fraction (Pm) of the members from the mating pool and switch 
a 0 to 1 or vice versa at a randomly selected site on each chosen string. If, for the past Ig 
consecutive generations, the member with the lowest cost remains the same, the mutation 
fraction Pm is doubled. Ig is an integer defined by the user.
Step 6: If the member with the lowest cost remains the same for the past two consecutive 
generations, then increase Imax. If Ic < Imax, go to step 4. Otherwise, continue.
Step 7: Stopping criterion. If after the mutation fraction Pm is doubled, the best value of the 
fitness is not updated for the past Ig consecutive generations, then stop. Otherwise, go to 
step 2.

Immigration
It may be useful to introduce completely new designs into the population in an effort to 

increase diversity. This is called immigration, which may be done at a few iterations during 
the solution process when progress toward the solution point is slow.

Multiple Runs for a Problem
It is seen that the GAs make decisions at several places based on random number genera-

tion. Therefore, when the same problem is run at different times, it may give different final 
designs. It is suggested that the problem be run a few times to ensure that the best possible 
solution has been obtained.



748	 17.  Nature-Inspired Search Methods

III.  Advanced and Modern Topics on Optimum Design

17.1.3  Genetic Algorithm for Sequencing-Type Problems

There are many applications in engineering where the sequence of operations needs to 
be determined. To introduce the type of problems being treated, let us consider the design 
of a metal plate that is to have 10 bolts at the locations shown in Fig. 17.4. The bolts are to be 
inserted into predrilled holes by a computer-controlled robotic arm. The objective is to mini-
mize the movement of the robot arm while it passes over and inserts a bolt into each hole. 
This class of problems is generally known as traveling salesman problem, which is defined as: 
given a list of N cities and a means to calculate the traveling distance between the two cities, 
we must plan a salesman’s route that passes through each city once (with the option of return-
ing to the starting point) while minimizing the total distance.

For such problems, a feasible design is a string of numbers (a sequence of the cities to be 
visited) that do not repeat themselves (eg, “1 3 4 2” is feasible and “3 1 3 4” is not). Typical 
operators used in GAs, such as crossover and mutation, are not applicable to these types 
of problems since they usually create infeasible designs with repeated numbers. Therefore, 
other operators need to be used to solve such problems. We will describe some such operators 
in the following paragraphs.

Permutation type 1: Let n1 be a fraction for selection of the mating pool members for 
carrying out Type 1 permutation. Choose Nn1 members from the mating pool at random, 
and reverse the sequence between two randomly selected sites on each chosen string. For 
example, a chosen member with a string of “345216” and two randomly selected sites of 
“4” and “1,” is changed to “312546.”
Permutation type 2: Let n2 be a fraction for selection of the mating pool members for 
carrying out the Type 2 permutation. Choose Nn2 members from the mating pool at 
random, and exchange the numbers of two randomly selected sites on each chosen string. 
For example, a chosen member with a string of “345216” and two randomly selected 
sites of “4” and “1,” is changed to “315246.”
Permutation type 3: Let n3 be a fraction for selection of the mating pool members for 
carrying out the Type 3 permutation. Choose Nn3 members from the mating pool at 
random, and exchange the numbers of one randomly selected site and the site next to it 

34_521_6
31_254_6

34_521_6
31_524_6

FIGURE 17.4  Bolt insertion sequence determination at 10 locations. Source: Huang, Hsieh and Arora, 1997.
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on each chosen string. For example, a chosen member with a string of “345216” and a 
randomly selected site of “4”, is changed to “354216”.

Relocation
Let nr be a fraction for selection of the mating pool members for carrying out relocation. 

Choose Nnr members from the mating pool at random, remove the number of a randomly 
selected site, and insert it in front of another randomly selected site on each chosen string. For 
example, a chosen member with a string of “345216” and two randomly selected sites of “4” 
and “1”, is changed to “352416.”

A computer program based on the previously mentioned operators is developed and used 
to solve the bolt insertion sequence problem in Example 17.1.

EXAMPLE 17.1 BOLT INSERTION SEQUENCE 
DETERMINATION AT 10 LOCATIONS

Solve the problem shown in Fig. 17.4 using the GA to minimize the total distance traveled by the 
robotic arm.

Solution
The problem is solved by using the GA explained in the foregoing (Huang, Hsieh and Arora, 

1997). The population size Np is set to 150, and Ig (the number of consecutive iterations for which 
the best cost function did not improve by at least ε9) is set to 10. No seed designs are used for the 
problem. The optimum bolting sequence is not unique to the problem. With hole 1 as the starting 
point, the optimum sequence is determined as (1, 5, 4, 10, 7, 8, 9, 3, 6, 2) and the cost function value 
is 74.63 in. The number of function evaluations is 1445, which is much smaller than the total number 
of possibilities (10! = 3,628,800).

Another case solved in Huang, Hsieh and Arora (1997) concerns determining the bolting sequence 
for 16 locations. The optimum sequence is not unique for this problem either. The solution is obtained 
in 3358 function evaluations compared with the total number of possibilities, 16!  2.092 × 1013.

EXAMPLE 17.2 A-PILLAR SUBASSEMBLY WELDING SEQUENCE
This problem concerns the A-pillar subassembly welding sequence determination for a passenger 

vehicle (Huang, Hsieh and Arora 1997). There are 14 welding locations. The objective is to de-
termine the best welding sequence that minimizes the deformation at some critical points of the 
structure. Cases where one and two welding guns are used are also considered. This is equivalent to 
having two salesmen traveling between N cities for the traveling salesman problem. The optimum 
sequences are obtained with 3341 and 3048 function evaluations for the two cases, which are much 
smaller than those for the full enumeration.

17.1.4  Applications of GA

Numerous applications of GAs for different classes of problems have been presented in 
the literature. There are specialty conferences focusing on developments in genetic and other  

34_5_216
35_4_216

34_521_6
3524_1_6
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evolutionary algorithms and their applications. The literature in this area is substantial. There-
fore, a survey of all the applications is not attempted here. For mechanical and structural de-
sign, some of the applications are covered in Arora (2002), Pezeshk and Camp (2002), Arora 
and Huang (1996), and Chen and Rajan (2000). Applications of the GAs for optimum design 
of electric transmission line structures are given in Kocer and Arora (1996, 1997, 1999, 2002).

17.2  DIFFERENTIAL EVOLUTION ALGORITHM

The differential evolution algorithm (DEA) works with a population of designs. At each 
iteration, called a generation, a new design is generated using some current designs and cer-
tain random operations. If the new design is better than a preselected parent design, then it 
replaces that design in the population; otherwise, the old design is retained and the process is 
repeated. In this section, the steps of a basic DEA are described. The material is derived from 
the article by Das and Suganthan (2011).

Compared to GAs, DEAs are easier to implement on the computer. Unlike GAs, they do 
not require binary number coding and encoding, as seen later (although GAs have been im-
plemented with real number coding as well). Therefore, they are quite popular for numerous 
practical applications. There are four steps in executing the basic DEA:

Step 1: Generation of the initial population of designs.
Step 2: Mutation with difference of vectors to generate a so-called donor design vector.
Step 3: Crossover/recombination to generate a so-called trial design vector.
Step 4: Selection, that is, acceptance or rejection of the trial design vector using the fitness 
function, which is usually the cost function.

Details of these steps are described in the following subsections. The notation and termi-
nology listed in Table 17.1 are used.

17.2.1  Generation of Initial Population for DEA

A first step in DEA is to generate an initial population of Np design points; Np is usually 
selected as a large number, say, between 5n and 10n. Each design point/vector is also called 
a chromosome. Initial designs can be generated by any procedure that tries to cover the entire 
design space in a uniformly distributed random manner. If some designs for the system are 
known, they can be included in the initial population. One way to generate the initial set 
of designs is to use the lower and upper limits on the design variables and uniformly dis-
tributed random numbers. For example, the ith member (design) of the population may be 
generated as follows:

x x r x x j n; 1 toj
i

jL ij jU jL
,0 ( )= + − =( )

	 (17.7)

where rij is a uniformly distributed random number between 0 and 1 that is generated for 
each component of the design point. Each member of the population is a potential solution/
optimum point.

xji,0=xjL+rijxjU−xjL;   j=1 to n
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17.2.2  Generation of a Donor Design for DEA

In this subsection, we describe the idea of a donor design and its generation. A donor design 
is generated using mutation of a selected design with the difference of two other distinct 
designs in the population. Biologically, mutation means a change in the gene (a component 
of the design vector) characteristics of a chromosome (the complete design vector). The donor 
design point is created by changing a design point of the current population. This change is 
accomplished by combining the design vector with the difference of two other vectors of the 
population, all selected randomly. The design vector thus generated is called the donor de-
sign/vector. In the context of donor design, then, mutation implies changing all components 
of a design vector.

To generate the donor design vector, we randomly select three distinct design points from 
the current population in the generation k: ( )x r k,1 , ( )x r k,2 , and ( )x r k,3 , where the superscripts r1, 
r2, and r3 refer to three different designs. In addition, we select a fourth point x(p,k), called the 
parent/target design point; its use in the crossover operation is explained later (the superscript 
p refers to the parent design). We then form a difference vector using two design points, say r2 

and r3, as ( )−( ) ( )x xr k r k, ,2 3 . This difference vector is scaled and added to the third vector to form 

the donor design vector V(p,k):

( )= + × −( ) ( ) ( ) ( )FV x x xp k r k r k r k, , , ,1 2 3

	 (17.8)

where F is a scale factor, typically selected between 0.4 and 1. Note that any procedure 
can be used to randomly select the foregoing four members of the current population; one  
example is the roulette wheel procedure described earlier in Section 17.1.2.

xr1,kxr2,kxr3,k

xr2,k−xr3,k

Vp,k=xr1,k+F×xr2,k−xr3,k

TABLE 17.1  Notation and Terminology for the DEA

Notation Terminology

Cr Crossover rate; an algorithm parameter

F Scale factor, usually in the interval [0.4, 1.0]; an algorithm parameter

k kth generation of the iterative process

kmax Limit on the number of generations

n Number of design variables

Np Number of design points in the population; population size

rij Random number uniformly distributed between 0 and 1 for the ith design and its jth component

xj jth component of the design variable vector x

U(p,k) Trial design vector at the kth generation/iteration associated with the parent design p

V(p,k) Donor design vector at the kth generation/iteration associated with the parent design p

x(i,k) ith design point of the population at the kth generation/iteration

x(p,k) Parent design (also called the target design) of the population at the kth generation/iteration

xL Vector containing the lower limits on the design variables

xU Vector containing the upper limits on the design variables
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17.2.3  Crossover Operation to Generate the Trial Design in DEA

A crossover operation is performed after generating the donor design through mutation. 
In it, the donor design vector V(p,k) exchanges some of its components with the parent design 
vector to form the trial design vector xj

(p,k). The crossover operation is described in the follow-
ing equation:

=
≤ =





=( )

( )

( )U
V r Cr j j

x
j n

, if or

, otherwise
; 1 toj

p k j
p k

pj r

j
p k

,
.

,

	

(17.9)

where rpj is a uniformly distributed random number between 0 and 1 and jr is a randomly 
generated index between 1 and n that ensures that U(p,k) receives at least one component from 
V(p,k).

The crossover operation in Eq. (17.9) says that when the random number rpj for each com-
ponent of the design vector does not exceed the Cr value, or if j  =  jr, set the trial design 
component Uj

(p,k) to the donor design component Vj
(p,k); otherwise, replace it with the parent 

design component xj
(p,k). With this approach, the number of components inherited from the 

donor design vector has a (nearly) binomial distribution. Therefore, this operation sometimes 
is called binomial crossover.

17.2.4  Acceptance/Rejection of the Trial Design in DEA

The next step of the algorithm is to check if the trial design U(p,k) is better than the parent 
design x(p,k); if it is, it replaces the parent design in the population to keep the population size 
constant (as a variation, both vectors may be retained sometimes increasing the size of the 
population by one every time). Usually called the selection step, this is described in the follow-
ing equation:

( ) ( )=
≤





( )

( ) ( ) ( )

( )
+ f f

x
U U x

x

, if

, otherwise

p k
p k p k p k

p k

, 1
, , ,

,

	

(17.10)

Accordingly, if the cost function value for the trial design point does not exceed that for the 
parent design, it replaces the parent design point in the next generation; otherwise, the parent 
design is retained. Thus the population either gets better or remains the same in fitness sta-
tus, but it never deteriorates. Note that in Eq. (17.10) the parent design is replaced by the trial 
design even if both yield the same value for the cost function. This allows the design vectors 
to move over the flat fitness landscape.

17.2.5  Differential Evolution Algorithm

The basic DEA is quite straightforward to implement. It requires specification of only three 
parameters: Np, F, and Cr. A flow diagram describing the basic steps of the algorithm is shown 
in Fig. 17.5.

Ujp,k=Vjp.k,if rpj≤Cr or j=jrxjp,
k,otherwise;  j=1 to n

xp,k+1=Up,k,if  fUp,k≤fxp,k
xp,k,otherwise
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The termination criteria for the algorithm are defined as follows:

1.	 A specified limit kmax on the number of generations is reached.
2.	 The best fitness/cost function value of the population does not change appreciably for 

several generations.
3.	 A prespecified value for the cost function is reached.

Because of its simplicity, the DEA has been quite popular in many application fields since 
its inception in the mid-1990s. It was inspired by the Nelder and Mead (1965) direct search 
method, which also uses the difference of vectors, as described in chapter: More on Numeri-
cal Methods for Unconstrained Optimum Design. Numerous variations of the algorithm 
have been studied and evaluated. It has been used to solve continuous variable, mixed–dis-
crete–continuous variable, and multi-objective optimization problems, and it has also been 
evaluated against many other nature-inspired algorithms. A detailed review is beyond the 
scope of the present text. An excellent recent survey paper by Das and Suganthan (2011) and 
numerous references cited there should be consulted.

EXAMPLE 17.3 APPLICATION OF DEA
Minimize

= − + −xf x x( ) ( 1) ( 2)1
2

2
2

	 (a)

subject to:

− ≤ ≤ − ≤ ≤x x10 10, 10 101 2	 (b)

Solution
For the example problem, the DEA parameters are set to be within their recommended ranges 

as follows:

n	= 2 since there are only two design variables in this problem.
Np	= 10 since the problem contains only 2 design variables, 5 × 2 = 10, Np is set to 10.

kmax	= 10,000 Iterations.
Cr	= 0.8
F	= 0.6

Step 1: Generation of an Initial Population. The initial population is generated using Eq. (17.7). 
Table 17.2 shows the initial population:

f(x)=(x1−1)2+(x2−2)2

−10≤x1≤10,−10≤x2≤10

FIGURE 17.5  Main steps of the DEA. 
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Step 2: Generation of Donor Design. As described earlier the generation of the donor design re-
quires randomly selecting three distinct design points: ( )x r k,1 , ( )x r k,2  and ( )x r k,3 , in addition to a 
fourth design point which is the parent/target design x(p,k). For the first iteration the four randomly 
selected design points are as follows:

( )
( )
( )
( )

= −
= −
= −
= −

x

x

x

x

5.423, 3.962
9.40, 4.380

0.848, 7.648
3.717, 1.600

r

r

r

p

( ,1)

( ,1)

( ,1)

( ,1)

1

2

3

	

(c)

	 The donor following design is generated according to Eq. (17.8) as:

( )= −V 0.725, 3.254p( ,1)
	 (d)

Step 3: Crossover Operation to Generate the Trial Design. The cross over operation is accomplished 
as described in Eq. (17.9). In the first iteration, the randomly distributed numbers rp1 and rp2 were 
0.13 and 0.56, which are both less than the Cr, which means both components of the trial design 
should come from the donor design.

( )= = −U V 0.725, 3.254p p( ,1) ( ,1)
	 (e)

Step 4: Acceptance/ Rejection of the Trial Design. The trial design is accepted and replaces the parent 
design in the next iteration if it has a better (smaller) cost function value than that for the parent de-
sign. In the first iteration the cost function value for the trial design is ( ) =f U 27.686p( ,1)  and for the 
parent design ( ) =f x 20.342p( ,1) , which means that the parent design is retained in the next iteration.

The previous steps are repeated until the maximum number of iterations kmax is reached. After 
10,000 iterations the trial design point (0.97, 1.96) was reached with a cost function value of 0.00222 
which is close to the true solution of (1, 2) with a cost function value of 0.0.

xr1,kxr2,kxr3,k

x(r1,1)=−5.423  3.962x(r2,1)=9.
40  −4.380x(r3,1)=−0.848  7.6

48x(p,1)=3.717  −1.600

V(p,1)=0.725  −3.254

U(p,1)=V(p,1)=0.725−3.254

FU(p,1)=27.686
Fx(p,1)=20.342

TABLE 17.2  Initial Population for Example 17.3

xi number x1 x2

1 3.717 −1.600

2 9.400 −4.380

3 9.048 −8.659

4 −2.935 −2.920

5 −5.423 3.962

6 −4.442 2.470

7 −0.848 7.648

8 −8.394 −5.238

9 2.678 −2.884

10 7.059 −1.567
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17.3  ANT COLONY OPTIMIZATION

Ant colony optimization (ACO), another nature-inspired approach, emulates the food-
searching behavior of ants. It was developed by Dorigo (1992) to search for an optimal path 
for a problem represented by a graph based on the behavior of ants seeking the shortest path 
between their colony and a food source. ACO falls into the class of metaheuristics and swarm 
intelligence methods. It can be viewed as a stochastic technique for solving computational 
problems that can be reduced to finding optimal paths through graphs.

Ants are social insects that live in colonies. From the colony, they go out to search for food 
and, surprisingly, find the shortest path from the colony to the food source. In this section, the 
process that ants use is described and translated into a computational algorithm for design 
optimization. The algorithm was developed originally for discrete variable combinatorial 
optimization problems, although it has been applied to continuous variable and other prob-
lems as well. Some of the material in this section is derived from Blum (2005) and associated 
references.

ACO uses the following terminology:

Pheromone: The word is derived from the Greek words pherin (to transport) and hormone 
(to stimulate). It refers to a secreted or excreted chemical factor that triggers a social 
response in members of the same species. Pheromones are capable of acting outside 
the body of the secreting individual in order to impact the behavior of the receiving 
individual. This is also called a chemical messenger.
Pheromone trail: Ants deposit pheromones wherever they go. This is called the 
pheromone trail. Other ants can smell the pheromones and are likely to follow an 
existing trail.
Pheromone density: When ants travel on the same path again and again, they continuously 
deposit pheromones on it. In this way the amount of pheromones increases and is called 
the pheromone density. The ants are likely to follow paths having higher pheromone 
densities.
Pheromone evaporation: Pheromones have the property of evaporation over time. 
Therefore, if a path is not being traveled by the ants, the pheromones evaporate, and the 
path disappears over time.

17.3.1  Ant Behavior

A first step in developing the ACO algorithm is to understand the behavior of ants, which 
is described in this subsection. Initially ants move from their nest randomly to search for 
food. Upon finding it, they return to their colony following the path they took to it while lay-
ing down pheromone trails. If other ants find such a path, they are likely to follow it instead 
of moving randomly. The path is thus reinforced, since ants deposit more pheromone on it. 
However, the pheromone evaporates over time; the longer the path, the more time there is 
available for it to evaporate. For a shorter path, pheromone reinforcement is quicker as more 
and more ants travel this route. Therefore, the pheromone density is higher on shorter paths 
than on the longer ones. Pheromone provides a positive feedback mechanism for ants, so 
eventually all the ants follow the shortest path.
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The basic idea of an ant colony algorithm is to emulate this behavior with “virtual ants,” 
which means that we need to model the pheromone deposit, measure its density, and model 
its evaporation. The following notation and terminology are used in this section:

Q	 = positive constant; an algorithm parameter
ρ	 = pheromone evaporation rate, ρ ∈ (0, 1]; an algorithm parameter
Na	= number of ants
τi	 = pheromone value for the ith path

A Simple Model/Algorithm
To transcribe the ants’ food-searching behavior into a computational algorithm, we con-

sider a simplified model consisting of two paths from the ant colony to the food source and 
six ants, as shown in Fig. 17.6a. This is a highly idealized model, introduced to explain the 
transcription of ant behavior into a computational algorithm. The model can be represented 
in a graph G = (N, L), where N consists of two nodes (nc, representing the ant colony, and nf, 
representing the food source; in general a graph has many nodes as seen later), and L consists 
of two links, L1 and L2, between nc and nf.

Let L1 have a length of d1, and L2 a length of d2, with d1 > d2, implying that L2 is a shorter 
path between nc and nf. Fig. 17.6 is a graph that shows various stages of ant movement, which 
are explained as follows:

1.	 Six ants start from their colony in search for food. Randomly, three ants (shown as 
solid circles) take the shorter route and three (shown as open circles) take the longer 
route.

2.	 The three ants that took the shorter route have reached their destination, while the ants 
on the longer route are still traveling. Initially, the pheromone concentration is the same 
for the two routes, as shown by the dashed lines.

FIGURE 17.6  A simple set up showing shortest path finding capability of ants. (a) Movement of ants from 
colony to food source. (b) Ants taking the shorter route have reached the food source. (c) Ants taking the longer route 
have reached the food source while ants that took the shorter route are already returning to their colony.
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3.	 The ants that took the shorter route are on their return journey to the colony while the 
ants taking the longer route are just arriving at their destination. Pheromone concentra-
tion on the shorter route is higher, as shown by the heavier dashed line.

The ants deposit pheromone while traveling on a route. The pheromone trails are modeled 
by introducing a virtual pheromone value τi for each of the two routes, i = 1, 2 (initially both 
values may be set as one). Such a value indicates the strength of the pheromone trail on the 
corresponding route.

Each ant behaves as follows: Starting from the node nc (ie, the colony), the ant chooses be-
tween route L1 and route L2 to reach nf with the probability:

τ
τ τ

=
+

=p i, 1, 2i
i

1 2	
(17.11)

If τ2 >  τ1, the probability of choosing L2 is higher, and vice versa. The selection of a 
path by an ant is based on some selection scheme that uses probabilities from Eq. (17.11) 
and a random number, such as the roulette wheel selection procedure described earlier in  
Section 17.1.2. While returning from the node nf to the node nc, the ant uses the same route it 
chose to reach nf. It deposits additional virtual pheromone on the route to increase its density 
(this is also called pheromone reinforcement) as follows:

τ τ← +
Q
di i

i	
(17.12)

where the positive constant Q is a parameter of the model. Equation (17.12) models the higher 
amount of virtual pheromone deposit for a shorter path and a smaller amount for a longer 
path.

In the iterative process, all ants start from the node nc at the beginning of each iteration. 
Each ant moves from that node nc to node nf depositing pheromone on the chosen route. 
However, with time the pheromone is subject to evaporation. This evaporation process in the 
virtual model is simulated as follows:

τ ρ τ( )← −1i i	 (17.13)

where ρ ∈ (0, 1] is a parameter of the model that regulates evaporation. After reaching the 
food source, the ants return to their colony, reinforcing the chosen path by depositing more 
pheromone on it.

17.3.2  ACO Algorithm for the Traveling Salesman Problem

The procedure described in the previous subsection to simulate the food-searching behav-
ior of ants cannot be used directly for combinatorial optimization problems. The reason is that 
we assume the solution to the problem to be known and the pheromone values to be associ-
ated with the solution, as in Eq. (17.12). In general this is not the case because we are trying to 
find the optimum solution and the associated path with the minimum distance. Therefore, for 
combinatorial optimization problems, the pheromone values are associated with the solution 
components. Solution components are the units from which the entire solution to the problem 

pi=τiτ1+τ2,  i=1, 2

τi←τi+Qdi

τi←1−ρτi
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can be constructed. This will become clearer later, when we describe the ACO algorithm for 
combinatorial optimization problems.

In this subsection, we describe an ant colony algorithm for discrete variable, or traveling 
salesman (TS), problems. The TS problem is a classical combinatorial optimization problem. In it 
a traveling salesman is required to visit a specified number of cities (called a tour). The goal 
is to visit a city only once while minimizing the total distance traveled. Many practical prob-
lems can be modeled as the TS problem; another example is the welding sequence problem 
described earlier in Example 17.2.

The following assumptions are made in deriving the algorithm:

1.	 While a real ant can take a return path to the colony that is different from the original 
path depending on the pheromone values, a virtual ant takes the return path that is the 
same as the original path.

2.	 The virtual ant always finds a feasible solution and deposits pheromone only on its way 
back to the nest.

3.	 While real ants evaluate a solution based on the length of the path from their nest to the 
food source, virtual ants evaluate their solution based on a cost function value.

To describe the ACO algorithm for the TS problem, we consider a simple problem of touring 
four cities by the traveling salesman. The situation is depicted in Fig. 17.7, where the cities are 
represented as the nodes c1 through c4 of the graph, with distances between the cities known. 
From each city, there are links to other cities; that is, the salesman can travel to any other city, 
but travel to the already visited cities (ie, backtracking) is not allowed. Thus, a feasible solution 
to the problem consists of a sequence of cities visited on a tour—for example, c1c3c2c4c1. The 
distance traveled on a tour is the cost function f (x), which depends on the links used.

The definition of the task for the virtual ant changes from “finding a path from the 
nest to the food source” to “finding a feasible solution to the TS problem.”

The TS tour must start from a city that can be randomly selected. We will call it c1; the 
remaining cities are numbered randomly. To complete a four-city tour, four links need to be 
selected. The following notation and terminology are used in this subsection:

Qa	= positive constant; an algorithm parameter
ρ	 = pheromone evaporation rate, ρ ∈ (0, 1]; an algorithm parameter
n	 = number of design variables; four for the example

FIGURE 17.7  Traveling salesman problem for four cities. (a) Start of tour at c1; feasible links from the current 
city are shown by dashed lines; current city is displayed with darker shading. (b) The link already traveled is shown 
with a thicker line; city already visited is displayed with lighter shading. (c) A feasible solution is shown.
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Na	= number of virtual ants used in the algorithm
τij	 = pheromone value for the link ij
xj	 = �jth component of the design variable vector x; represents the link selected from the 

jth city
xij	 = link between the ith city and the jth city; also represents the distance between them
Di	= the list of integers corresponding to the cities that can be visited from the ith city

For the example in Fig. 17.7, x12, x13 and x14 are the links from city c1 to cities c2, c3 and c4, 
respectively; D1 = {2, 3, 4} for city c1, with the associated feasible links given as {x12, x13, x14}. 
The design variable vector is given as x = [x1 x2 x3 x4]T. A feasible solution to the problem is 
given as x = [x12 x24 x43 x31]T.

Now let us begin the tour. From each city, selection of the next city to visit by the virtual ant is 
based on certain probabilities. For the ACO algorithm, the probabilities are calculated using the 
pheromone values τij for each of the links from the current city; initially all τij can be selected as 1 
for all links. Also, the number of virtual ants Na is selected as reasonable depending on the num-
ber of design variables (say 5n to 10n). Individual ants can start randomly from any city. Their 
task is to construct a feasible solution (ie, a feasible tour) for the TS problem, one component at 
a time; that is, from each city visited, a link to the next feasible city is determined in a sequence.

Each ant constructs a feasible solution (tour) for the problem, starting from a randomly 
selected city and moving from one city to another one that has not been visited. At each step, 
the traveled link is added to the solution under construction by a specific ant. In this way the 
ACO algorithm constructs a solution one component at a time: For example, x1 and then x2, 
and so on. Different ants pursue feasible solutions concurrently, although different ants may 
find the same one. When no unvisited city is left for a specific ant, that ant moves to the start-
ing city to complete the tour. This solution process implies that an ant has memory M to store 
already visited cities. Using this memory, we can construct an index set Di of feasible cities to 
visit from the current city i.

The ACO algorithm constructs a feasible solution, one component (ie, one design 
variable) at a time.

Fig. 17.7a shows the starting city for a virtual ant as c1; the starting city is identified by 
darker shading. The feasible links from the city are shown with dashed lines: D1 = {2, 3, 4}, 
and the associated link list is {x12, x13, x14}. The probability of taking a feasible route from the 
ith city is calculated as

∑
τ

τ( )= ∈
∈

p j D; for allij
ij

k D ik
i

i	
(17.14)

where Di is the list of feasible cities that can be visited from city i. For Fig. 17.7a, the probabili-
ties for the cities that can be visited from city c1 are calculated as

τ
τ τ τ

=
+ +

=p j; 2, 3, 4j
j

1
1

12 13 14	
(17.15)

Once these probabilities are calculated, a selection process is used for the route and the city 
to visit next. The roulette wheel selection process described earlier in Section 17.1.2, or any 

pij=τij∑τik;   for all j∈Di

p1j=τ1jτ12+τ13+τ14;   j=2, 3, 4
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other procedure, can be used for this. That process requires calculation of a random number 
between 0 and 1. Based on it, let the next city to visit be c2. Thus the link x12 is used here and 
the design variable x1 is set as x12. This is shown by a darker line in Fig. 17.7(b). From c2, city c3 
or c4 can be visited. This is shown by the dashed lines in Fig. 17.7b. The cities that have already 
been visited are shown by lighter shading. Therefore, D2 = {3, 4} and the associated link list is 
{x23, x24}. The probabilities of visiting cities c3 and c4 from city c2 are given as:

τ
τ τ

=
+

=p j; 3, 4j
j

2
2

23 24	
(17.16)

Using the foregoing procedure, the virtual ant completes the tour as follows:

→ → → →c c c c c1 2 3 4 1	 (17.17)

This gives the design variable values as:

=  x x x xx
T

12 23 34 41	 (17.18)

Using this design, the cost function f (x), which is the total distance traveled on this tour, can 
be calculated.

Once all virtual ants have constructed their solution, pheromone evaporation (ie, a reduc-
tion in the pheromone density for each link) is performed as follows:

τ ρ τ( )← − i j1 for all andij ij	 (17.19)

Now the virtual ants start their return journey, depositing pheromone on the path that 
was used to reach the destination. This is equivalent to increasing the pheromone level for 
the links belonging to each ant’s solution. For the kth ant, pheromone deposit is performed 
as follows:

τ τ ( )← + ( )
Q

f
i j k

x
for all , belonging to th ant’s solutionij ij k

	
(17.20)

where Q is a positive constant and f (x(k)) is the cost function value for the kth ant’s solution 
x(k). The process of pheromone deposit in Eq. (17.20) is repeated for the solution of each of the 
Na ants. Note that a tour (solution) that has a smaller cost function value deposits a larger 
pheromone value. Also, a link that is traveled in multiple solutions receives a pheromone 
deposit multiple times.

The foregoing process represents one iteration of the ACO algorithm. It is repeated several 
times until a stopping criterion is satisfied—that is, all ants follow the same route or the limit 
on the number of iterations or on CPU time is reached.

17.3.3  ACO Algorithm for Design Optimization

Problem Definition
In this subsection, we discuss the ACO algorithm for the following unconstrained discrete 

variable design optimization problem:

p2j=τ2jτ23+τ24;   j=3, 4

c1→c2→c3→c4→c1

x=x12 x23 x34 x41T

τij←1−ρτij   for all  i and j

τij←τij+Qfxk for all i,  j belong-
ing to kth ant's solution
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Minimize

( )f x	 (17.21)

( )∈ = =x D D d d d i n; , , , , 1 toi i i i i iq1 2 i…	 (17.22)

where Di is the set of discrete values and qi is the number of discrete values allowed for 
the ith design variable. This type of design problem is encountered quite frequently in 
practical applications, as was discussed in chapter: Discrete Variable Optimum Design 
Concepts and Methods. For example, the thickness of members must be selected from 
an available set, structural members must be selected from the members available in the 
catalog, concrete reinforcing bars must be selected from the available bars on the market, 
and so forth.

The problem described in Eqs. (17.21) and (17.22) is quite similar to the TS problem 
described and discussed in the previous subsection. One major difference is that the set of 
available values for a design variable is predefined, whereas for the TS problem it must be 
determined once a city is reached (ie, once a component of the design variable vector has 
been determined). The procedure described in the previous subsection can be adapted to 
solve this discrete variable optimization problem.

EXAMPLE 17.4 DESCRIPTION OF ACO WITH AN EXAMPLE
To describe the solution algorithm, we consider a simpler problem having three design variables, 

with each variable having four allowable discrete values. Therefore, n = 3, and qi = 4, i = 1 to 4 in Eqs. 
(17.21) and (17.22). The problem can be displayed in a multilayered graph as shown in Fig. 17.8. The 
graph shows the starting node 00 as the nest and the destination node as the food source. The start-
ing point is called Layer 0. Layer 1 represents the allowable values for the design variable x1 in the 
set D1; each allowable value is represented as a node, such as node d12. There are links from the nest 
to each of these nodes. Level 2 represents the allowable values for the design variable x2 as nodes. 
For example, from d13 there are links to d21, d22, d23, and d24. Similarly, from d11 there are links to d21, 
d22, d23, and d24, and so on (note that all these links are not shown in Fig. 17.8).

The ACO algorithm proceeds as follows: An ant starts from the nest and chooses a link to travel 
to a node at Layer 1 based on probabilities such as the link to node d13; that is, design variable x1 is 
assigned the value d13 From this node, the probabilities are calculated again for all links to the next 
layer on the graph, and the ant moves to, say, node d22. This procedure is repeated for the next layer, 
and the ant moves to node d34. Since there are no further layers, this ant has reached its destination. 
Its feasible solution is obtained as x = (d13, d22, d34), with the cost function value as f (x). The route for 
this ant is shown by the darker lines in Fig. 17.8.

Once all the ants have found feasible solutions, pheromone evaporation is performed for all of 
the links using Eq. (17.19) or one similar to it. Then each ant traces its path back to the nest, deposit-
ing pheromone using Eq. (17.20) or one similar to it on each link that it previously traveled. This 
is equivalent to updating (increasing) the pheromone values for the links traveled by the ants. The 
entire process is then repeated until a stopping criterion is satisfied.

fx

xi∈Di;   Di=di1,  di2,  ... ,  diqi,-
   i=1 to n
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Finding Feasible Solutions
The foregoing procedure can be generalized to the case of n design variables (an n-layered 

graph), each having qi discrete values. The following notation is used:

τ ij
(rs) = pheromone value for the link from node rs to node ij; note that since the procedure 

moves from one layer to the next, i = r + 1 (eg, τ 34
(22) between nodes d22 and d34 in Fig. 17.8). 

Thus, the superscript r represents the layer number (design variable number), the 
superscript s represents the allowable value number for the design variable number r, 
subscript i represents the next layer (next design variable), and subscript j represents the 
allowable design variable number for the ith design variable.
p ij

(rs) = probability of selection of the link from node rs to node ij.

To find a feasible solution for a virtual ant k, the following steps are suggested.

STEP 1. SELECTION OF AN INITIAL LINK

Ant k starts from the nest (ie, node 00 of layer 0). Calculate probabilities for the links from 
node 00 to all nodes for layer 1 (design variable x1) as follows:

∑
τ

τ
= =( )

( )

( )
=

p j q; 1 toj
j

r
q

r
1
00 1

00

1 1
00 11

	
(17.23)

p1j00=τ1j00∑τ1r00;  j=1 to q1

FIGURE 17.8  A multilayered graphical representation of a discrete variable problem with 3 design variables 
each one having 4 allowable values; the links chosen by the ant are shown using the darker lines. (Note that all 
possible links are not shown.)
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Using these probabilities and a selection process, choose a link to a node at layer 1 and go 
to that node. Let this node be k1; the design variable x1 is thus assigned the value dkl.

STEP 2. SELECTION OF A LINK FROM LAYER R

Let ant k be at node rs. Calculate probabilities of the links from node rs to all nodes at the 
next layer:

∑
τ

τ
= =( )

( )

( )
=

p j q; 1 toij
rs ij

rs

l
q

il
rs i

1
1

	
(17.24)

Note that i = r + 1. Using these probabilities and a selection procedure, select a link to the 
next layer and the corresponding node for ant k to travel. Repeat this step until the nth layer 
is reached, at which point ant k has reached its destination and a feasible solution has been 
obtained.

STEP 3. OBTAINING FEASIBLE SOLUTIONS FOR ALL ANTS

Repeat steps 1 and 2 for each virtual ant to obtain all Na feasible solutions. Let the solutions 
and the corresponding cost function values be represented as:

( ) =( ) ( )f k Nx x, ; 1 tok k
a	 (17.25)

Pheromone Evaporation
Once all of the ants have reached their destination (all of them have found solutions), 

pheromone evaporation (ie, reduction in the pheromone level) is performed for all links as 
follows:

τ ρ τ( )← −( ) ( ) r s i j1 for all , , andij
rs

ij
rs

	 (17.26)

Pheromone Deposit
After pheromone evaporation, the ants start their journey back to their nest, which means 

that they will deposit pheromone on the return trail. This involves increasing the pheromone 
density of the links that they have traveled. For the kth ant, the pheromone deposit is per-
formed as follows:

τ τ ( )← + ( )
( ) ( ) Q

f
r s i j k

x
for all , , , belonging to th ant’s solutionij

rs
ij
rs

k

	
(17.27)

The operation in Eq. (17.27) is performed for all solutions obtained by the ants. It is seen 
that the solutions that have a smaller cost function value receive more pheromone deposit. 
Also, the links that are traveled multiple times receive more reinforcement of pheromone. 
A larger value of the pheromone for a link gives a larger probability value from Eq. (17.23), 

pijrs=τijrs∑τilrs;  j=1 to qi

xk,  fxk;   k=1 to Na

τijrs←1−ρτijrs  for all r,  s,  i and j

τijrs←τijrs+Qfxk for all r, s, i, j be-
longing to kth ant's solution
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which favors it selection for travel by the virtual ants in subsequent iterations of the ACO 
algorithm.

We see that the ACO algorithm is quite simple to implement, requiring specification of only 
three parameters, Na, ρ, and Q. Na can be given a reasonable value of say, 5n to 10n; ρ ∈ [0, 1], a 
value of say, 0.4 to 0.8; Q may be selected as a typical value for the cost function f (x).

17.4  PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO), another nature-inspired method, mimics the social 
behavior of bird flocking or fish schooling. It falls into the class of metaheuristics and swarm 
intelligence methods. It is also a population-based stochastic optimization technique, intro-
duced by Kennedy and Eberhart (1995). PSO shares many similarities with evolutionary 
computation techniques such as GA and DE. Just like those approaches, PSO starts with a 
randomly generated set of solutions called the initial population. An optimum solution is 
then searched by updating generations.

An attractive feature of PSO is that it has fewer algorithmic parameters to specify com-
pared to GAs. It does not use any of the GAs’ evolutionary operators such as crossover and 
mutation. Also, unlike GAs, the algorithm does not require binary number encoding or de-
coding and thus is easier to implement into a computer program. PSO has been successfully 
applied to many classes of problems, such as mechanical and structural optimization and 
multi-objective optimization, artificial neural network training, and fuzzy system control.

In this section, we present the basic ideas of PSO and a simple PSO algorithm. Many 
variations on the method are available in the literature, and research on the subject con-
tinues to develop better algorithms and expand the range of their application (Kennedy 
et al., 2001).

17.4.1  Swarm Behavior and Terminology

The PSO computational algorithm tries to emulate the social behavior of a swarm of ani-
mals, such as a flock of birds or a school of fish (moving in search for food). In a swarm, an 
individual behaves according to its limited intelligence as well as to the intelligence of the 
group. Each individual observes the behavior of its neighbors and adjusts its own behavior 
accordingly. If an individual member discovers a good path to food, other members follow 
this path no matter where they are situated in the swarm.

PSO uses the following terminology:

Particle: This term is used to identify an individual in the swarm (eg, a bird in the flock 
or a fish in the school). Agent is also used in some circles. Each particle has a location in 
the swarm. In the optimization algorithm, each particle location represents a design point 
that is a potential solution to the problem.
Particle position: This term refers to the coordinates of the particle. In the optimization 
algorithm, it refers to a design point (a vector of design variables).
Particle velocity: The term refers to the rate at which the particles are moving in space. In 
the optimization algorithm, it refers to the design change.
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Swarm leader: This is the particle having the best position. For the optimization algorithm, 
the term refers to a design point having the smallest value for the cost function.

17.4.2  Particle Swarm Optimization Algorithm

The PSO translates the social behavior of the swarm described previously into a compu-
tational algorithm. The notation shown in Table 17.3 is used in the subsequent step-by-step 
algorithm.

Each particle in the swarm keeps track of its own current position and its best position 
(solution) achieved during the running of the algorithm. This implies that each point stores 
not only its current value but also its best value achieved thus far. The best position for the 
ith particle (design point) is denoted x P

(i,k). Another “best” value that is tracked by the particle 
swarm optimizer is the best position for the entire swarm, denoted x G

(k). The PSO algorithm 
consists of changing, at each time step (iteration), the velocity of each particle toward its own 
best position as well as the swarm’s best position (also sometimes referred to as accelerating 
the particle toward the best known position).

The step-by-step PCO algorithm is stated as follows.

Step 0: Initialization. Select Np, c1, c2, and kmax as the maximum number of iterations. Set the 
initial velocity of the particle v(i,0) to 0. Set the iteration counter at k = 1.
Step 1: Initial generation. Using a random procedure, generate Np particles x(i,0). The procedure 
described in Eq. (17.7) can be used to generate these points within their allowable ranges. 
Evaluate the cost function for each of these points f  (x(i,0)). Determine the best solution 
among all particles as xG

(k)—that is, a point having the smallest cost function value.

TABLE 17.3  Notation and Terminology for the Particle Swarm Optimization Algorithm

Notation Terminology

c1 Algorithm parameter (ie, cognitive parameter); taken between 0 and 4, usually set to 2

c2 Algorithm parameter (ie, social parameter); taken between 0 and 4, usually set to 2

r1, r2 Random numbers between 0 and 1

k Iteration counter

kmax Limit on the number of iterations

n Number of design variables

Np Number of particles (design points) in the swarm; swarm size (usually 5n to 10n)

xj jth component of the design variable vector x

v(i,k) Velocity of the ith particle (design point) of the swarm at the kth generation/iteration

x(i,k) Location of the ith particle (design point) of the swarm at the kth generation/iteration

x P
(i,k) Best position of the ith particle based on its travel history at the kth generation/iteration

x G
(k) Best solution for the swarm at the kth generation; considered the leader of the swarm

xL Vector containing lower limits on the design variables

xU Vector containing upper limits on the design variables
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Step 2: Calculate velocities. Calculate the velocity of each particle at the k + 1 iteration as:

( ) ( )= + − + − =( ) ( ) ( ) ( ) ( ) ( )+ c r c r i Nv v x x x x ; 1 toi k i k
P
i k i k

G
k i k

p
, 1 ,

1 1
, ,

2 2
,

	
(17.28)

	 Update the positions of the particles as:

= + =( ) ( ) ( )+ + i Nx x v ; 1 toi k i k i k
p

, 1 , , 1
	 (17.29)

	 Check and enforce bounds on the particle positions:

≤ ≤( )+x x xL
i k

U
, 1

	 (17.30)

Step 3: Update the best solution. Calculate the cost function at all new points f (x(i,k+1)). For 
each particle, perform the following check:

( )( ) ≤ =

= =

( ) ( ) ( ) ( )

( ) ( )

+ + +

+

f f

i N

x x x x

x x

If , then ;

otherwise for each 1 to

i k
P
i k

P
i k i k

P
i k

P
i k

p

, 1 , , 1 , 1

, 1 ,

	

(17.31)

( ) ( )≤ = =( ) ( )+ +f f i Nx x x xIf , then , 1 toP
i k

G G P
i k

p
, 1 , 1

	
(17.32)

Step 4: Stopping criterion. Check for convergence of the iterative process. If a stopping 
criterion is satisfied (ie, k = kmax or if all of the particles have converged to the best swarm 
solution), stop. Otherwise, set k = k + 1 and go to step 2.

EXERCISES FOR CHAPTER 17*

Section 17.1 Genetic Algorithm

Solve the following problems using a GA.

17.1	 Example 15.1 with the available discrete values for the variables as x1 ∈ {0, 1, 2, 3}, 
and x2 ∈ {0, 1, 2, 3, 4, 5, 6}. Compare the solution with that obtained with the branch 
and bound method.

17.2	 Exercise 3.34 using the outside diameter d0 and the inside diameter di as design 
variables. The outside diameter and thickness must be selected from the following 
available sets:

{ } { }∈ ∈d t0.020, 0.022, 0.024, ... , 0.48, 0.50 m; 5, 7, 9, ... , 23, 25 mm0

	 Check your solution using the graphical method of chapter: Graphical Solution 
Method and Basic Optimization Concepts. Compare continuous and discrete 
solutions. Study the effect of reducing the number of elements in the available 
discrete sets.

vi,k+1=vi,k+c1r1xPi,k−xi,k+c2r2

xGk−xi,k;  i=1 to Np

xi,k+1=xi,k+vi,k+1;  i=1 to Np

xL≤xi,k+1≤xU

If fxi,k+1≤fxPi,k,  then xPi,k+1=xi
,k+1;otherwise xPi,k+1=xPi,k for 

each i=1 to Np
If fxPi,k+1≤fxG,   then  xG=xPi

,k+1,  i=1 to Np

d0∈0.020, 0.022, 0.024, ... , 0.48, 0.50
m;   t∈5, 7, 9, ... , 23, 25mm
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17.3	 Formulate the minimum mass tubular column problem described in Section 2.7 
using the following data: P = 100 kN, length, l = 5 m, Young’s modulus, E = 210 GPa, 
allowable stress, σ a = 250 MPa, mass density, ρ = 7850 kg/m3, R ≤ 0.4 m, t ≤ 0.05 m, 
and R, t ≥ 0. The design variables must be selected from the following sets:

{ } { }∈ ∈R t0.01, 0.012, 0.014, ... , 0.38, 0.40 m; 4, 6, 8, ... , 48, 50 mm

	 Check your solution using the graphical method of chapter: Graphical Solution 
Method and Basic Optimization Concepts. Compare continuous and discrete solutions. 
Study the effect of reducing the number of elements in the available discrete sets.

17.4	 Consider the plate girder design problem described and formulated in Section 6.8. 
The design variables for the problem must be selected from the following sets:

{ } { }∈ ∈h b t t, , 0.30, 0.31, 0.32, ... , 2.49, 2.50 m; , 10, 12, 14, ... , 98, 100 mmw f

	 Compare the continuous and discrete solutions. Study the effect of reducing the 
number of elements in the available discrete sets.

17.5	 Consider the plate girder design problem described and formulated in 
Section 6.8. The design variables for the problem must be selected from the 
following sets:

{ } { }∈ ∈h b t t, , 0.30, 0.32, 0.34, ... , 2.48, 2.50 m; , 10, 14, 16, ... , 96, 100 mmw f

	 Compare the continuous and discrete solutions. Study the effect of reducing the 
number of elements in the available discrete sets.

17.6	 Solve problems of Exercises 17.4 and 17.5. Compare the two solutions, commenting 
on the effect of the size of the discreteness of variables on the optimum solution. Also, 
compare the continuous and discrete solutions.

17.7	 Formulate the spring design problem described in Section 2.9 and solved in 
Section 6.7. Assume that the wire diameters are available in increments of 0.01 in., the 
coils can be fabricated in increments of 1/16  in., and the number of coils must be an 
integer. Compare the continuous and discrete solutions. Study the effect of reducing 
the number of elements in the available discrete sets.

17.8	 Formulate the spring design problem described in Section 2.9 and solved in 
Section 6.7. Assume that the wire diameters are available in increments of 0.015 in., 
the coils can be fabricated in increments of 1/8 in., and the number of coils must 
be an integer. Compare the continuous and discrete solutions. Study the effect of 
reducing the number of elements in the available discrete sets.

17.9	 Solve problems of Exercises 17.7 and 17.8. Compare the two solutions, commenting 
on the effect of the size of the discreteness of variables on the optimum solution. Also, 
compare the continuous and discrete solutions.

17.10	 Formulate the problem of optimum design of prestressed concrete transmission poles 
described in Kocer and Arora (1996a). Compare your solution to that given in the 
reference.

17.11	 Formulate the problem of optimum design of steel transmission poles described in 
Kocer and Arora (1996b). Solve the problem as a continuous variable optimization 
problem.

R∈0.01, 0.012, 0.014, ... , 0.38, 0.40
m;   t∈4, 6, 8, ... , 48, 50mm

h,b,∈0.30, 0.31, 0.32, ... , 2.49, 2.50m
;    tw, tf∈10, 12, 14, ... , 98, 100mm

h,b,∈0.30, 0.32, 0.34, ... , 2.48, 2.50m
;    tw, tf∈10, 14, 16, ... , 96, 100mm

1/16
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17.12	 Formulate the problem of optimum design of steel transmission poles described in 
Kocer and Arora (1996b). Assume that the diameters can vary in increments of 0.5 in. 
and the thicknesses can vary in increments of 0.05 in. Compare your solution to that 
given in the reference.

17.13	 Formulate the problem of optimum design of steel transmission poles using standard 
sections described in Kocer and Arora (1997). Compare your solution to the solution 
given in the reference.

17.14	 Formulate and solve three-bar truss of Exercise 3.50 as a discrete variable problem 
where the cross-sectional areas must be selected from the following discrete set:

{ }∈A 50, 100, 150, ... , 4950, 5000 mmi
2

	 Check your solution using the graphical method of chapter: Graphical Solution 
Method and Basic Optimization Concepts. Compare continuous and discrete 
solutions. Study the effect of reducing the number of elements in the available 
discrete sets.

17.15	 Solve Example 17.1 of bolt insertion sequence at 10 locations. Compare your solution 
to the one given in the example.

17.16	 Solve the 16-bolt insertion sequence determination problem described in Huang, 
Hsieh and Arora (1997). Compare your solution to the one given in the reference.

17.17	 The material for the spring in Exercise 17.7 must be selected from one of three 
possible materials given in Table E17.17 (refer to Section 15.8 for more discussion of 
the problem) (Huang and Arora, 1997). Obtain a solution to the problem.

17.18	 The material for the spring in Exercise 17.8 must be selected from one of three 
possible materials given in Table E17.17 (refer to Section 15.8 for more discussion of 
the problem) (Huang and Arora, 1997). Obtain a solution to the problem.

Sections 17.2–17.4

17.19	 Implement the DE algorithm into a computer program. Solve the Example 17.1 of bolt 
insertion sequence determination using your program. Compare performance of the 
DE and GA algorithms.

17.20	 Implement the ACO algorithm into a computer program. Solve the Example 17.1 of 
bolt insertion sequence determination using your program. Compare performance of 
the ACO and GA algorithms.

Ai∈50, 100, 150, ... , 4950, 5000mm2

TABLE E17.17  Material Data for the Spring Design Problem

Material Type G (lb/in.2) ρ (lb s2/in.4) τa (lb/in.2) Up

1 11.5 × 106 7.38342 × 10−4 80,000 1.0

2 12.6 × 106 8.51211 × 10−4 86,000 1.1

3 13.7 × 106 9.71362 × 10−4 87,000 1.5

G = shear modulus; ρ = mass density; τa = shear stress; Up = relative unit price.
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17.21	 Implement the PSO algorithm into a computer program. Solve the Example 17.1 of 
bolt insertion sequence determination using your program. Compare performance of 
the PSO and GA algorithms.
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