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2
Optimum Design Problem 

Formulation

Upon completion of this chapter, you will be able to:

•	 Translate	a	descriptive	statement	of	the	
design	problem	into	a	mathematical	
statement for optimization

•	 Identify	and	define	the	problem’s	design	
variables

•	 Identify	and	define	an	optimization	criterion	
for the problem

•	 Identify	and	define	the	design	problem’s	
constraints

•	 Transcribe	the	problem	formulation	into	a	
standard	model	for	design	optimization

It	is	generally	accepted	that	the	proper definition and formulation of a problem take more than 
50%	of	the	total	effort	needed	to	solve	it.	Therefore,	it	is	critical	to	follow	well-defined	proce-
dures	for	formulating	design	optimization	problems.	In	this	chapter,	we	describe	the	process	
of	transforming	the	design	of	a	selected	system	and/or	subsystem	into	an	optimum	design	
problem.	Methods	for	solving	the	problem	will	be	discussed	in	subsequent	chapters;	here	we	
focus	on	properly	formulating	the	problem	as	an	optimization	problem.

Several simple and moderately complex applications are discussed in this chapter 
to illustrate the problem formulation process. More advanced applications are dis-
cussed in Chapters 6 and 7 and 14–19.

The	importance of properly formulating	a	design	optimization	problem	must	be	stressed	be-
cause	the	optimum	solution	will	be	only	as	good	as	the	formulation.	For	example,	if	we	for-
get	to	include	a	critical	constraint	in	the	formulation,	the	optimum	solution	will	most	likely	
violate	it.	Also,	if	we	have	too	many	constraints,	or	if	they	are	inconsistent,	there	may	be	no	
solution	for	the	problem.	However,	once	the	problem	is	properly	formulated,	good	software	
is	usually	available	to	solve	it.

It	is	important	to	note	that	the	process	of	developing	a	proper	formulation	for	optimum	de-
sign	of	practical	problems	is	iterative	in	itself.	Several	iterations	usually	are	needed	to		revise	
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the	 formulation	before	an	 acceptable	one	 is	finalized.	This	 iterative	process	 is	 further	dis-
cussed	in	chapter:	optimum	Design:	numerical	Solution	process	and	excel	Solver.

For	most	design	optimization	problems,	we	will	use	the	following	five-step	procedure	to	
formulate the problem:

Step	1:	project/problem	description
Step	2:	Data	and	information	collection
Step	3:	Definition	of	design	variables
Step	4:	optimization	criterion
Step	5:	Formulation	of	constraints

Formulation of an optimum design problem implies translating a descriptive state-
ment of the problem into a well-defined mathematical statement.

2.1 THE PROBLEM FORMULATION PROCESS

We	will	describe	the	tasks	to	be	performed	in	each	of	the	foregoing	five	steps	to	develop	
a	mathematical	formulation	for	the	design	optimization	problem.	These	steps	are	illustrated	
with	some	examples	in	this	section	and	in	later	sections.

2.1.1 Step 1: Project/Problem Description

Are the Project Goals Clear?
The	formulation	process	begins	by	developing	a	descriptive	statement	for	the	project/

problem,	 usually	 by	 the	 project’s	 owner/sponsor.	 The	 statement	 describes	 the	 overall	
objectives	of	the	project	and	the	requirements	to	be	met.	This	is	also	called	the	statement of 
work.

EXAMPLE 2.1 DESIGN OF A CANTILEVER BEAM, PROBLEM 
DESCRIPTION

cantilever	beams	are	used	in	many	practical	applications	in	civil,	mechanical,	and	aerospace	en-
gineering.	To	illustrate	the	step	of	problem	description,	we	consider	the	design	of	a	hollow	square-
cross-section	cantilever beam	to	support	a	load	of	20	kn	at	its	end.	The	beam,	made	of	steel,	is	2	m	
long,	as	shown	in	Fig.	2.1.	The	failure	conditions	for	the	beam	are	as	follows:	(1)	the	material	should	
not	fail	under	the	action	of	the	load,	and	(2)	the	deflection	of	the	free	end	should	be	no	more	than	
1	cm.	The	width-to-thickness	ratio	for	the	beam	should	be	no	more	than	8	to	avoid	local	buckling	
of	the	walls.	A	minimum-mass	beam	is	desired.	The	width	and	thickness	of	the	beam	must	be	within	
the	following	limits:

≤ ≤60 width 300 mm (a)

≤ ≤3 thickness 15 mm (b)

60 ≤ width ≤ 3,00,300 mm

3 ≤ thickness ≤ 15 mm
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2.1.2 Step 2: Data and Information Collection

Is all the Information Available to Solve the Problem?
To	develop	a	mathematical	formulation	for	the	problem,	we	need	to	gather	information	

on	material	properties,	performance	requirements,	resource	limits,	cost	of	raw	materials,	and	
so	forth.	In	addition,	most	problems	require	the	capability	to	analyze trial designs.	Therefore,	
analysis procedures	and	analysis tools	must	be	identified	at	this	stage.	For	example,	the	finite-
element	method	is	commonly	used	for	analysis	of	structures,	so	the	software	tool	available	
for	such	an	analysis	needs	to	be	identified.	In	many	cases,	the	project	statement	is	vague,	
and	assumptions	about	modeling	of	the	problem	need	to	be	made	in	order	to	formulate	and	
solve	it.

EXAMPLE 2.2 DATA AND INFORMATION COLLECTION 
FOR CANTILEVER BEAM

The	information	needed	for	the	cantilever beam design problem	of	example	2.1	includes	expressions	
for	bending	and	shear	stresses,	and	the	expression	for	the	deflection	of	the	free	end.	The	notation	
and	data	for	this	purpose	are	defined	in	Table	2.1.

The	following	are	useful	expressions	for	the	beam:	
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=V P, N (g)

A=w2
−(w−2t)2=4t(w−t) mm2

I=112w×w3
−112(w−2t)×(w−2t

)3=112w4
−112(w−2t)4 mm4

Q=12w2
×w4−12(w−2t)2

×(w−2
t)4=18w3

−18(w−2t)3mm3

M=PL N/mm

V=P, N

FIGURE 2.1 Cantilever beam of a hollow square cross-section.
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2.1.3 Step 3: Definition of Design Variables

What are these Variables?
HOW DO I IDENTIFY THEM?

The	next	step	in	the	formulation	process	is	to	identify	a	set	of	variables	that	describe	the	
system,	 called	 the	 design variables.	 In	 general,	 these	 are	 referred	 to	 as	 optimization variables 
or simply variables	that	are	regarded	as	 free	because	we	should	be	able	to	assign	any	value	
to	 them.	Different	values	 for	 the	variables	produce	different	designs.	The	design	variables	
should	be	independent	of	each	other	as	far	as	possible.	If	they	are	dependent,	their	values	
cannot	be	specified	independently	because	there	are	constraints	between	them.	The	number	
of	independent	design	variables	gives	the	design degrees of freedom	for	the	problem.

σ=Mw2l N/mm2

π=VQ2It N/mm2

q=PL33EI mm

TABLE 2.1 notation and Data for cantilever beam

Notation Data

A cross-sectional	area,	mm2

E Modulus	of	elasticity	of	steel,	21	×	104	n/mm2

G Shear	modulus	of	steel,	8	×	104	n/mm2

I Moment	of	inertia	of	the	cross-section,	mm4

L Length	of	the	member,	2000	mm

M Bending	moment,	n/mm

P Load	at	the	free	end,	20,000	n

Q Moment	about	the	neutral	axis	of	the	area	above	the	neutral	axis,	mm3

q Vertical	deflection	of	the	free	end,	mm

qa Allowable	vertical	deflection	of	the	free	end,	10	mm

V Shear	force,	n

w Width	(depth)	of	the	section,	mm

t Wall thickness, mm

σ Bending	stress,	n/mm2

σ a Allowable	bending	stress,	165	n/mm2

τ Shear	stress,	n/mm2

τa Allowable	shear	stress,	90	n/mm2
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For	some	problems,	different	sets	of	variables	can	be	identified	to	describe	the	same	sys-
tem.	problem	formulation	will	depend	on	the	selected	set.	We	will	present	some	examples	
later	in	this	chapter	to	elaborate	on	this	point.

once	 the	 design	 variables	 are	 given	 numerical	 values,	 we	 have	 a	 design of the system.	
Whether	this	design	satisfies all requirements	is	another	question.	We	will	introduce	a	number	
of	concepts	to	investigate	such	questions	in	later	chapters.

If	proper	design	variables	are	not	selected	for	a	problem,	the	formulation	will	be	either	
incorrect	or	not	possible.	At	the	initial	stage	of	problem	formulation,	all	options	for	specifica-
tion	of	design	variables	should	be	investigated.	Sometimes	it	may	be	desirable	to	designate	
more	design	variables	than	apparent	design	degrees	of	freedom.	This	gives	added	flexibility	
to	problem	formulation.	Later,	it	is	possible	to	assign	a	fixed	numerical	value	to	any	variable	
and	thus	eliminate	it	from	the	formulation.

At	 times	 it	 is	difficult	 to	clearly	 identify	a	problem’s	design	variables.	 In	such	a	case,	a	
complete	list	of	all	variables	may	be	prepared.	Then,	by	considering	each	variable	individu-
ally,	we	can	determine	whether	or	not	it	can	be	treated	as	an	optimization variable.	If	it	is	a	valid	
design	variable,	the	designer	should	be	able	to	specify	a	numerical	value	for	it	to	select	a	trial	
design.

We	will	use	the	term	“design	variables”	to	indicate	all	optimization	variables	for	the	opti-
mization	problem	and	will	represent	them	in	the	vector	x.	To	summarize,	the	following	con-
siderations	should	be	given	in	identifying	design	variables	for	a	problem:

•	 Generally,	the	design	variables	should	be	independent	of	each	other.	If	they	are	
not,	 there	 must	 be	 some	 equality	 constraints	 between	 them	 (explained	 later	 in	
several examples).

•	 A	minimum	number	of	design	variables	is	required	to	properly	formulate	a	design	
optimization problem.

•	 As	 many	 independent	 parameters	 as	 possible	 should	 be	 designated	 as	 design	
variables	at	the	problem	formulation	phase.	Later	on,	some	of	these	variables	can	
be assigned fixed numerical values.

•	 A	numerical	value	should	be	given	to	each	identified	design	variable	to	determine	
if a trial design of the system is specified.

EXAMPLE 2.3 DESIGN VARIABLES FOR CANTILEVER BEAM
only	dimensions	of	 the	cross-section	are	 identified	as	design	variables	 for	 the	cantilever beam 

design problem	of	example	2.1;	all	other	parameters	are	specified:

w	=	outside	width	(depth)	of	the	section,	mm
t = wall thickness, mm

note	that	the	design	variables	are	defined	precisely	including	the	units	to	be	used	for	them.
It	is	also	noted	here	that	an	alternate set of design variables	can	be	selected:	wo	=	outer	width	of	the	

section,	and	wi	=	inner	width	of	the	section.	The	problem	can	be	formulated	using	these	design	vari-
ables.	However,	note	that	all	the	expressions	given	in	eqs.	(c)–(j)	will	have	to	be	re-derived	in	terms	
of wo	and	wi.	Thus	the	two	formulations	will	look	quite	different	from	each	other	for	the	same	design	
problem.	However,	these	two	formulations	should	yield	same	final	solution.



24 2. OPtimum Design PrOblem FOrmulatiOn

I.	 THe	BASIc	concepTS

note	also	that	the	wall	thickness	t	can	also	be	specified	as	a	design	variable	in	addition	to	wo	and	
wi.	In	terms	of	these	variables,	the	problem	formulation	will	look	quite	different	from	the	previous	
two	formulations.	However,	in	this	case	an	additional	constraint	 = −t w w0.5( )o i 	must	be	imposed	
in	the	formulation;	otherwise	the	formulation	will	not	be	proper	and	will	not	yield	a	meaningful	
solution	for	the	problem.

To	demonstrate	calculation	of	various	analysis	quantities,	let	us	select	a	trial	design	as	w	=	60	mm	
and	t	=	10	mm	and	calculate	the	quantities	defined	in	eqs.	(c)–(j):
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2.1.4 Step 4: Optimization Criterion

How Do I Know that My Design is the Best?
There	can	be	many	 feasible	designs	 for	a	 system,	and	some	are	better	 than	others.	The	

question	is	how	do	we	quantify	this	statement	and	designate	a	design	as	better	than	another.	
For	this,	we	must	have	a	criterion	that	associates	a	number	with	each	design.	This	way,	the	
merit	of	a	given	design	is	specified.	The	criterion	must	be	a	scalar	function	whose	numeri-
cal	value	can	be	obtained	once	a	design	is	specified;	that	is,	it	must	be	a	function of the design 
variable vector x.	Such	a	criterion	is	usually	called	an	objective function	for	the	optimum	design	
problem,	 and	 it	 needs	 to	 be	 maximized or minimized	 depending	 on	 problem	 requirements. 
A	criterion	that	is	to	be	minimized	is	usually	called	a	cost function	in	engineering	literature,	
which	 is	 the	 term	used	throughout	 this	 text.	 It	 is	emphasized	that	a	valid objective function 
must be influenced directly or indirectly by the variables of the design problem;	otherwise,	it	is	not	a	
meaningful	objective	function.

The	selection	of	a	proper	objective	 function	 is	an	 important	decision	 in	 the	design	pro-
cess.	Some	common	objective	functions	are	cost	(to	be	minimized),	profit	(to	be	maximized),	

t=0.5(wo−wi)

A=4t(w
−t)=4(10)(60−10)=2,000 mm2

I=112w4
−112(w−2t)4=112(60)4

−

112(60−2×10)4=866,667 mm4

Q=18w3
−18(w−2t)3=18(60)3

−18
(60−2×10)3=19,000 mm3

M=PL=20,000 × 2,000=4×107 N/mm

V=P=20,000 N

σ=Mw2I=4×107(60)2×866,667=1,385 N/
mm2

τ=VQ2
It=20,000×19,0002×866,667×10=21.93 N/

mm2
q=PL33EI=20,000×(2,000)33×21×104

×866,667=262.73 mm
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weight	(to	be	minimized),	energy	expenditure	(to	be	minimized),	and	ride	quality	of	a	vehicle	
(to	be	maximized).	In	many	situations,	an	obvious	objective	function	can	be	identified.	For	
example,	we	always	want	to	minimize	the	cost	of	manufacturing	goods	or	maximize	return	
on	investment.	In	some	situations,	two	or	more	objective	functions	may	be	identified.	For	ex-
ample,	we	may	want	to	minimize	the	weight	of	a	structure	and	at	the	same	time	minimize	the	
deflection	or	stress	at	a	certain	point.	These	are	called	multiobjective design optimization prob-
lems	and	are	discussed	in	chapter:	Multi-objective	optimum	Design	concepts	and	Methods.

For	some	design	problems,	it	is	not	obvious	what	the	objective	function	should	be	or	how	
it	should	be	expressed	in	terms	of	the	design	variables.	Some	insight	and	experience	may	be	
needed	to	identify	a	proper	objective	function	for	a	particular	design	problem.	For	example,	
consider	 the	 optimization	 of	 a	 passenger	 car.	 What	 are	 the	 design	 variables?	 What	 is	 the	
objective	function,	and	what	is	its	functional	form	in	terms	of	the	design	variables?	This	is	
a	practical	design	problem	that	 is	quite	complex.	Usually,	 such	problems	are	divided	 into	
several	smaller	subproblems	and	each	one	is	formulated	as	an	optimum	design	problem.	For	
example,	design	of	a	passenger	car	can	be	divided	into	a	number	of	optimization	subprob-
lems	involving	the	trunk	lid,	doors,	side	panels,	roof,	seats,	suspension	system,	transmission	
system,	chassis,	hood,	power	plant,	bumpers,	and	so	on.	each	subproblem	is	now	manage-
able	and	can	be	formulated	as	an	optimum	design	problem.

EXAMPLE 2.4 OPTIMIZATION CRITERION FOR CANTILEVER BEAM
For	the	design problem in Example 2.1,	the	objective	is	to	design	a	minimum-mass	cantilever	beam.	

Since	the	mass	is	proportional	to	the	cross-sectional	area	of	the	beam,	the	objective	function	for	the	
problem	is	taken	as	the	cross-sectional	area	which	is	to	be	minimized:

= = −f w t A t w t( , ) 4 ( ), mm2
	 (s)

At	the	trial	design	w	=	60	mm	and	t	=	10	mm,	the	cost	function	is	evaluated	as

= − = × − =f w t t w t( , ) 4 ( ) 4 10(60 10) 2,000 mm2

2.1.5 Step 5: Formulation of Constraints

What Restrictions Do I have on My Design?
All	 restrictions	placed	on	 the	design	are	 collectively	 called	 constraints.	The	final	 step	 in	

the	formulation	process	is	to	identify	all	constraints	and	develop	expressions	for	them.	Most	
realistic	 systems	must	be	designed	and	 fabricated	with	 the	given	resources	 and	must	meet	
performance requirements.	For	example,	structural	members	should	not	fail	under	normal	op-
erating	loads.	The	vibration	frequencies	of	a	structure	must	be	different	from	the	operating	
frequency	of	the	machine	it	supports;	otherwise,	resonance	can	occur	and	cause	catastrophic	
failure.	Members	must	fit	into	the	available	space,	and	so	on.

These	constraints,	as	well	as	others,	must	depend	on	the	design	variables,	since	only	then	
do	their	values	change	with	different	trial	designs;	that	is,	a	meaningful	constraint	must	be	a	

f(w,t)=A=4t(w−t)  mm2

f(w,t)=4t(w−t)=4×10(60−10)=2
,000   mm2
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function	of	at	least	one	design	variable.	Several	concepts	and	terms	related	to	constraints	are	
explained	next.

Linear and Nonlinear Constraints
Many	constraint	functions	have	only	first-order	terms	in	design	variables.	These	are	called	

linear constraints.	Linear-programming problems	have	only	linear	constraints	and	objective	func-
tions.	More	general	problems	have	nonlinear	objective	function	and/or	constraint	functions.	
These	are	called	nonlinear-programming problems.	Methods	to	treat	both	linear	and	nonlinear	
constraints	and	objective	functions	are	presented	in	this	text.

Feasible Design
The	design	of	a	system	is	a	set	of	numerical	values	assigned	to	the	design	variables	(ie,	

a	particular	design	variable	vector	x).	even	 if	 this	design	 is	absurd	 (eg,	negative	radius)	
or	inadequate	in	terms	of	its	function,	it	can	still	be	called	a	design.	clearly,	some	designs	
are	useful	and	others	are	not.	A	design	meeting	all	requirements	is	called	a	feasible design 
(acceptable or workable).	An	infeasible design	(unacceptable)	does	not	meet	one	or	more	of	the	
requirements.

Equality and Inequality Constraints
Design	 problems	 may	 have	 equality	 as	 well	 as	 inequality	 constraints.	 The	 problem	 de-

scription	should	be	studied	carefully	to	determine	which	requirements	need	to	be	formulated	
as	 equalities	 and	 which	 ones	 as	 inequalities.	 For	 example,	 a	 machine	 component	 may	 be	
required	to	move	precisely	by	∆	to	perform	the	desired	operation,	so	we	must	treat	this	as	
an	equality	constraint.	A	feasible	design	must	satisfy	precisely	all	equality	constraints.	Also,	
most	 design	 problems	 have	 inequality	 constraints,	 sometimes	 called	 unilateral or one-sided 
constraints.	note	that	the	feasible region	with	respect	to	an	inequality	constraint	is	much	larger	
than	that	with	respect	to	the	same	constraint	expressed	as	equality.

To	illustrate	the	difference	between	equality	and	inequality	constraints,	we	consider	a	con-
straint	written	in	both	equality	and	inequality	forms.	Fig.	2.2a	shows	the	equality	constraint	
x1 = x2.	Feasible	designs	with	respect	to	the	constraint	must	lie	on	the	straight	line	A–B.	How-
ever,	if	the	constraint	is	written	as	an	inequality	x1 ≤ x2,	the	feasible	region	is	much	larger,	as	
shown in Fig.	2.2b.	Any	point	on	the	line	A–B	or	above	it	gives	a	feasible	design.	Therefore,	it	
is	important	to	properly	identify	equality	and	inequality	constraints;	otherwise	a	meaningful	
solution	may	not	be	obtained	for	the	problem.

EXAMPLE 2.5 CONSTRAINTS FOR CANTILEVER BEAM
Using	various	expressions	given	 in	eqs.	 (c)–(j),	we	 formulate	 the	constraints	 for	 the	cantilever 

beam design problem	from	example	2.1	as	follows:

Bending stress constraint: σ ≤ σ a

σ≤
PLw

I2
a

 
(t)

PLw2I≤σa
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Shear stress constraint: τ ≤ τa

τ≤
PQ

It2
a

 
(u)

Deflection constraint: q ≤ qa

≤
PL
EI

q
3

a

3

 
(v)

Width–thickness restriction: ≤
w
t

8

≤w t8 (w)

pQ2It≤τa

PL33EI≤qa

wt≤8

w≤8t

FIGURE 2.2 Shown here is the distinction between equality and inequality constraints.	(a)	Feasible	region	for	
constraint x1 = x2	(line	A	−	B);	(b)	feasible	region	for	constraint	x1 ≤ x2	(line	A	−	B	and	the	region	above	it).
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Dimension restrictions:

≤ ≤w w60 , mm; 300, mm	 (x)

≤ ≤t t3 , mm; 15, mm	 (y)

Formulation for optimum design of a cantilever beam.	Thus	the	optimization	problem	is	to	find	w	and	t to 
minimize	the	cost	function	of	eq.	(s)	subject	to	the	eight	inequality	constraints	of	eqs.	(t)–(y).	note	that	the	
constraints	of	eqs.	(t)–(v)	are	nonlinear	functions	and	others	are	linear	functions	of	the	design	variables	
(the	width-thickness	ratio	constraint	in	eq.	(w)	has	been	transformed	to	the	linear	form).	There	are	eight	
inequality	constraints	and	no	equality	constraints	for	this	problem.	note	that	each	constraint	depends	on	
at	least	one	design	variable.	Substituting	various	expressions,	constraints	in	eqs.	(t)–(v)	can	be	expressed	
explicitly	in	terms	of	the	design	variables,	if	desired.	or,	we	can	keep	them	in	terms	of	the	intermediate	
variables	I	and	Q	and	treat	them	as	such	in	numerical	calculations.	Later	in	chapter:	optimum	Design:	
numerical	Solution	process	and	excel	Solver,	an	example	of	design	of	a	plate	girder	is	described	where	
some	intermediate	variables	are	explicitly	treated	as	dependent	variables	in	the	formulation.

Using	the	quantities	calculated	in	eqs.	(k)–(r),	let	us	check	the	status	of	the	constraints	for	the	
cantilever	beam	design	problem	at	the	trial	design	point	w	=	60	mm	and	t	=	10	mm:

Bending stress constraint: σ  ≤ σ a ;	σ	=	1385	n/mm2, σ a 	=	165	n/mm2;	∴	violated
Shear stress constraint: τ ≤ τ a ;	τ	=	21.93	n/mm2, τ a 	=	90	n/mm2;	∴	satisfied
Deflection constraint: q ≤ qa 	;	q	=	262.73	mm,	qa 	=	10	mm;	∴	violated

Width–thickness restriction: ≤
w
t

8 ;	 = =
w
t

60
10

6 ;	∴	satisfied

In	addition,	 the	width	w	 is	at	 its	allowed	minimum	value	and	the	thickness	t is within its al-
lowed	values	as	given	in	eqs.	(x)	and	(y).	This	trial	design	violates	bending	stress	and	deflection	
constraints	and	therefore	it	is	not	a	feasible	design	for	the	problem.

2.2 DESIGN OF A CAN

Step 1: Project/problem description.	 The	 purpose	 of	 this	 project	 is	 to	 design	 a	 can,	 shown	
in Fig.	2.3,	 to	hold	at least	400	mL	of	 liquid	(1	mL	=	1	cm3),	as	well	as	 to	meet	other	design	
requirements.	The	cans	will	be	produced	in	the	billions,	so	it	is	desirable	to	minimize	their	
manufacturing	costs.	Since	cost	can	be	directly	related	to	the	surface	area	of	the	sheet	metal	

60≤w   mm;   w≤  300 mm

3≤t   mm;   t≤15 mm

wt≤8wt=6010=6

FIGURE 2.3 A	can.
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used,	it	is	reasonable	to	minimize	the	amount	of	sheet	metal	required.	Fabrication,	handling,	
aesthetics,	and	shipping	considerations	impose	the	following	restrictions	on	the	size	of	the	
can:	The	diameter	should	be	no	more	than	8	cm	and	no	less	than	3.5	cm,	whereas	the	height	
should	be	no	more	than	18	cm	and	no	less	than	8	cm.

Step 2: Data and information collection.	Data	for	the	problem	are	given	in	the	project	statement.
Step 3: Definition of design variable.	The	two	design	variables	are	defined	as

D	=	diameter	of	the	can,	cm
H	=	height	of	the	can,	cm

Step 4: Optimization criterion.	The	design	objective	is	to	minimize	the	total	surface	area	S 
of	the	sheet	metal	for	the	three	parts	of	the	cylindrical	can:	the	surface	area	of	the	cylinder	
(circumference	×	height)	and	 the	surface	area	of	 the	 two	ends.	Therefore,	 the	optimization	
criterion, or cost function	(the	total	area	of	sheet	metal),	is	given	as

π π
= + 





S DH D2
4

, cm2 2

 
(a)

Step 5: Formulation of constraints.	The	first	constraint	is	that	the	can	must	hold	at least	400	cm3 
of	fluid,	which	is	written	as

π
≥D H

4
400, cm2 3

 
(b)

If	it	had	been	stated	that	“the	can	must	hold	400	mL	of	fluid,”	then	the	preceding	volume	
constraint	would	be	an	equality.	The	other	constraints	on	the	size	of	the	can	are

≤ ≤
≤ ≤

D
H

3.5 8, cm
8 18, cm 

(c)

The	explicit	constraints	on	design	variables	in	eq.	(c)	have	many	different	names	in	the	
literature, such as side constraints, technological constraints, simple bounds, sizing constraints,	and	
upper and lower limits on the design variables.	note	that	for	the	present	problem	there	are	really	
four	constraints	in	eq.	(c).	Thus,	the	problem	has	two	design	variables	and	a	total	of	five	in-
equality	constraints.	note	also	that	the	cost	function	and	the	first	constraint	are	nonlinear	in	
variables;	the	remaining	constraints	are	linear.

Mathematical formulation.	Thus	the	optimization	problem	for	design	of	a	tank	is	to	deter-
mine	the	design	variables	D	and	H	to	minimize	the	cost	function	in	eq.	(a)	subject	to	the	five	
inequalities	in	eqs.	(b)	and	(c).

2.3 INSULATED SPHERICAL TANK DESIGN

Step 1: Project/problem description.	The	goal	of	this	project	is	to	choose	an	insulation	thick-
ness t	to	minimize	the	life-cycle	cooling	cost	for	a	spherical	tank.	The	cooling	costs	include	
installing	and	running	the	refrigeration	equipment,	and	installing	the	insulation.	Assume	a	
10-year	life,	a	10%	annual	interest	rate,	and	no	salvage	value.	The	tank	has	already	been	de-
signed	having	r	(m)	as	its	radius.

S=πDH+2π4D2 cm2

π4D2H≥400,  cm3

3.5≤D≤8   cm8≤H≤18 cm
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Step 2: Data and information collection.	To	formulate	this	design	optimization	problem,	we	
need	some	data	and	analysis	expressions.	To	calculate	the	volume	of	the	insulation	material,	
we	require	the	surface	area	of	the	spherical	tank,	which	is	given	as

π=A r4 , m2 2
 (a)

To	calculate	the	capacity	of	the	refrigeration	equipment	and	the	cost	of	its	operation,	we	
need	to	calculate	the	annual	heat	gain	G	(Watt-hours),	which	is	given	as

= ∆
G

T A
c t

(365)(24)( )
, Wh

1 
(b)

where ∆T	is	the	average	difference	between	the	internal	and	external	temperatures	in	Kelvin,	
c1	is	the	thermal	resistivity	per	unit	thickness	in	Kelvin-meter	per	Watt,	and	t is the insula-
tion	thickness	in	meters.	∆T	can	be	estimated	from	the	historical	data	for	temperatures	in	the	
region	 in	which	the	 tank	 is	 to	be	used.	Let	c2	=	the	 insulation	cost	per	cubic	meter	 ($/m3),	
c3	=	the	cost	of	 the	refrigeration	equipment	per	Watt-hour	of	capacity	($/Wh),	and	c4 = the 
annual	cost	of	running	the	refrigeration	equipment	per	Watt-hour	($/Wh).

Step 3: Definition of design variables.	only	one	design	variable	is	identified	for	this	problem:

t	=	insulation	thickness,	m.

Step 4: Optimization criterion.	The	goal	is	to	minimize	the	life-cycle	cooling	cost	of	refrigera-
tion	for	the	spherical	tank	over	10	years.	The	life-cycle	cost	has	three	components:	insulation,	
refrigeration	equipment,	and	operations	 for	10	years.	once	 the	annual	operations	cost	has	
been	converted	to	the	present	cost,	the	total	cost	is	given	as

= + +Cost c At c G c G uspwf[ (0.1, 10)]2 3 4 (c)

where uspwf	(0.1,	10)	=	6.14457	is	the	uniform	series	present	worth	factor,	calculated	using	the	
equation

= − − −uspwf i n
i

i( , )
1

[1 (1 ) ]n

 
(d)

where i	is	the	rate	of	return	per	dollar	per	period	and	n	is	the	number	of	periods.	note	that	
to	calculate	the	volume	of	the	insulation	as	At,	it	is	assumed	that	the	insulation	thickness	is	
much	smaller	than	the	radius	of	the	spherical	tank;	that	is,	t ≪ r.

Step 5: Formulation of constraints.	Although	 no	 constraints	 are	 indicated	 in	 the	 problem	
statement,	it	is	important	to	require	that	the	insulation	thickness	be	nonnegative	(ie,	t ≥	0).	
Although	this	may	appear	obvious,	it	is	important	to	include	the	constraint	explicitly	in	the	
mathematical	formulation	of	the	problem.	Without	its	explicit	inclusion,	the	mathematics	of	
optimization	may	assign	negative	values	to	thickness,	which	is,	of	course,	meaningless.	note	
also that in reality t	cannot	be	zero	because	it	appears	in	the	denominator	of	the	expression	
for G.	Therefore,	the	constraint	should	really	be	expressed	as	t >	0.	However,	strict inequalities 
cannot	be	treated	mathematically	or	numerically	in	the	solution	process	because	they	give	an	
open	feasible	set.	We	must	allow	the	possibility	of	satisfying	inequalities	as	equalities;	that	
is, we must allow the possibility that t	=	0	in	the	solution	process.	Therefore,	a	more	realistic	
constraint is t ≥ tmin, where tmin	is	the	smallest	insulation	thickness	available	on	the	market.

A=4πr2   m2

G=(365)(24)(∆T)Ac1tWh

Cost=c2At+c3G+c4G[uspwf(0.1,
10)]

uspw(i,n)=1i[1−(1−i)−n]
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EXAMPLE 2.6 FORMULATION OF THE SPHERICAL TANK PROBLEM 
WITH INTERMEDIATE VARIABLES

A	summary	of	the	problem	formulation	for	the	design	optimization	of	insulation	for	a	spherical	
tank	with	intermediate	variables	is	as	follows:

Specified data: r, ∆T, c1, c2, c3, c4, tmin

Design variable: t, m
Intermediate variables: A,	m;	G,	Watt-hours

π=

=
∆

A r

G
T A

c t

4
(365)(24)( )

2

1 

(e)

Cost function:	Minimize	the	life-cycle	cooling	cost	of	refrigeration	of	the	spherical	tank,

= + +Cost c At c G c G6.14457 , $2 3 4		 (f)

Constraint:

≥t tmin	 (g)

note	that	A	and	G	are	also	treated	as	design	variables	in	this	formulation.	However,	A must be 
assigned	a	fixed	numerical	value	since	r	has	already	been	determined,	and	the	expression	for	G in 
eq.	(e)	must	be	treated	as	an	equality	constraint.

Mathematical formulation.	 Thus	 the	 optimization	 problem	 for	 design	 of	 an	 insulated	 spherical	
tank	is	to	determine	the	design	variables	t	and	G	to	minimize	the	cost	function	of	eq.	(f)	subject	to	
the	equality	constraint	in	eq.	(e)	and	the	inequality	constraint	on	thickness	in	eq.	(g).

EXAMPLE 2.7 FORMULATION OF THE SPHERICAL TANK PROBLEM 
WITH THE DESIGN VARIABLE ONLY

Following	is	a	summary	of	the	problem	formulation	for	the	design	optimization	of	insulation	for	
a	spherical	tank	in	terms	of	the	design	variable	only:

Specified data: r, ∆T, c1, c2, c3, c4, tmin

Design variable: t, m
Cost function:	Minimize	the	life-cycle	cooling	cost	of	refrigeration	of	the	spherical	tank,

π

π

= + =

=
+

∆

Cost at
b
t

a c r

b
c c

c
T r

, 4 ,

( 6.14457 )
(365)(24)( )(4 )

2
2

3 4

1

2

 

(h)

A=4πr2G=(365)(24)(∆T)Ac1t

Cost=c2At+c3G+6.14457c4G

t≥tmin

Cost=at+bt,  a=4c2πr2,b=(c3+6.14457c4)c1(-
365)(24)(∆T)(4πr2)
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Constraint:

≥t tmin (i)

Mathematical formulation.	 Thus	 the	 optimization	 problem	 for	 design	 of	 an	 insulated	 spherical	
tank	 is	 to	determine	 the	design	variable	 t	 to	minimize	 the	cost	 function	of	eq.	 (h)	subject	 to	 the	
minimum	thickness	constraint	in	eq.	(i).

2.4 SAWMILL OPERATION

Step 1: Project/problem description.	A	company	owns	two	sawmills	and	two	forests.	Table	2.2 
shows	the	capacity	of	each	of	the	mills	(logs/day)	and	the	distances	between	the	forests	and	
the	mills	(km).	each	forest	can	yield	up	to	200	logs/day	for	the	duration	of	the	project,	and	
the	cost	to	transport	the	logs	is	estimated	at	$10/km/log.	At	least	300	logs	are	needed	daily.	
The	goal	is	to	minimize	the	total	daily	cost	of	transporting	the	logs	and	meet	the	constraints	
on	the	demand	and	the	capacity	of	the	mills.

Step 2: Data and information collection.	Data	are	given	in	Table	2.2	and	in	the	problem	statement.
Step 3: Definition of design variables.	The	design	problem	is	to	determine	how	many	logs	to	

ship	from	Forest	i	to	Mill	j, as shown in Fig.	2.4.	Therefore,	the	design	variables	are	identified	
and	defined	as	follows:

x1	=	number	of	logs	shipped	from	Forest	1	to	Mill	A
x2 =	number	of	logs	shipped	from	Forest	2	to	Mill	A
x3 =	number	of	logs	shipped	from	Forest	1	to	Mill	B
x4 =	number	of	logs	shipped	from	Forest	2	to	Mill	B

t≥tmin

TABLE 2.2 Data for sawmills

Mill Distance from Forest 1 Distance from Forest 2 Mill capacity per day

A 24.0	km 20.5	km 240	logs

B 17.2	km 18.0	km 300	logs

FIGURE 2.4 Sawmill operation.
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note	 that	 if	 we	 assign	 numerical	 values	 to	 these	 variables,	 an	 operational	 plan	 for	 the	
project	is	specified	and	the	cost	of	daily	log	transportation	can	be	calculated;	that	is,	they	are	
independent	design	variables.	The	selected	design	may	or	may	not	satisfy	all	the	constraints.

Step 4: Optimization criterion.	The	design	objective	is	to	minimize	the	daily	cost	of	transport-
ing	the	logs	to	the	mills.	The	cost	of	transportation,	which	depends	on	the	distance	between	
the	forests	and	the	mills	given	in	Table	2.2, is

= + + +
= + + +

Cost x x x x
x x x x

24(10) 20.5(10) 17.2(10) 18(10)
240.0 205.0 172.0 180.0

1 2 3 4

1 2 3 4 
(a)

Step 5: Formulation of constraints.	The	constraints	for	the	problem	are	based	on	mill	capacity	
and	forest	yield:

+ ≤
+ ≤
+ ≤
+ ≤

x x

x x

x x

x x

240 (Mill A Capacity)
300 (Mill B Capacity)
200 (Forest 1 yield)
200 (Forest 2 yield)

1 2

3 4

1 3

2 4 

(b)

The	constraint	on	the	number	of	logs	needed	for	each	day	is	expressed	as

+ + + ≥x x x x 300 (demand for logs)1 2 3 4 (c)

For	a	realistic	problem	formulation,	all	design	variables	must	be	non-negative;	that	is,

≥ =x i0; 1 to 4i (d)

Mathematical formulation.	The	problem	has	four	design	variables,	five	inequality	constraints,	
and	four	nonnegativity	constraints	on	the	design	variables.	The	optimization	problem	is	to	
determine	the	design	variables	x1–x4	to	minimize	the	cost	function	in	eq.	(a)	subject	to	the	con-
straints	in	eqs.	(b)–(d).	note	that	all	problem	functions	are	linear	in	design	variables,	so	this	
is a linear programming problem.	note	also	that	for	a	meaningful	solution,	all	design	variables	
must	have	integer	values.	Such	problems	are	called	integer-programming problems	and	require	
special	 solution	 methods.	 Some	 such	 methods	 are	 discussed	 in	 chapter:	 Discrete	 Variable	
optimum	Design	concepts	and	Methods.

It	is	also	noted	that	the	problem	of	sawmill	operation	falls	into	a	class	known	as	transporta-
tion problems.	For	such	problems,	we	would	like	to	ship	items	from	several	distribution	cen-
ters	to	several	retail	stores	to	meet	their	demand	at	a	minimum	cost	of	transportation.	Special	
methods	have	been	developed	to	solve	this	class	of	problems.

2.5 DESIGN OF A TWO-BAR BRACKET

Step 1: Project/problem description.	The	objective	of	this	project	is	to	design	a	two-bar	bracket	
(shown	in	Fig.	2.5)	to	support	a	load	W	without	structural	failure.	The	load	is	applied	at	an	
angle	u,	which	is	between	0	and	90°,	h	is	the	height,	and	s	is	the	bracket’s	base	width.	The	
bracket	will	be	produced	in	large	quantities.	It	has	also	been	determined	that	 its	total	cost	

Cost=24(10)x1+20.5(10)x2+
17.2(10)x3+18(10)x4 =240.0x-

1+205.0x2+172.0x3+180.0x4

x1+x2≤240 (Mill A C
apacity)x3+x4≤300 

(Mill B Capacity)x1+x3≤200 (For-
est 1 yield)x2+x4≤200 (For-

est 2 yield)
x1+x2+x3+x4≥300  (de-

mand for logs)

x1≥0;  i=1to 4
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(material,	fabrication,	maintenance,	and	so	on)	is	directly	related	to	the	size	of	the	two	bars.	
Thus,	the	design	objective	is	to	minimize	the	total	mass	of	the	bracket	while	satisfying	perfor-
mance,	fabrication,	and	space	limitations.

Step 2: Data and information collection.	First,	the	load	W	and	its	angle	of	application	u	need	to	
be	specified.	Since	the	bracket	may	be	used	in	several	applications,	it	may	not	be	possible	to	
specify	just	one	angle	for	W.	It	is	possible	to	formulate	the	design	optimization	problem	such	
that	a	range	is	specified	for	angle	u	(ie,	load	W	may	be	applied	at	any	angle	within	that	speci-
fied	range).	In	this	case,	the	formulation	will	be	slightly	more	complex	because	performance	
requirements	will	need	to	be	satisfied	for	each	angle	of	application.	However,	in	the	present	
formulation,	it	is	assumed	that	angle	u	is	specified.

Second,	the	material	to	be	used	for	the	bars	must	be	specified	because	the	material	proper-
ties	are	needed	to	formulate	the	optimization	criterion	and	performance	requirements.	Wheth-
er	the	two	bars	are	to	be	fabricated	using	the	same	material	also	needs	to	be	determined.	In	
the	present	formulation,	it	is	assumed	that	they	are,	although	it	may	be	prudent	to	assume	
otherwise	for	some	advanced	applications.	In	addition,	we	need	to	determine	the	fabrication	
and	space	limitations	for	the	bracket	(eg,	on	the	size	of	the	bars,	height,	and	base	width).

In	formulating	the	design	problem,	we	also	need	to	define	structural performance more pre-
cisely.	Forces	F1	and	F2	carried	by	bars	1	and	2,	respectively,	can	be	used	to	define	failure	con-
ditions	for	the	bars.	To	compute	these	forces,	we	use	the	principle	of	static equilibrium.	Using	
the free-body diagram	for	node	1	(shown	in	Fig.	2.5b),	equilibrium	of	forces	in	the	horizontal	
and	vertical	directions	gives

α α θ
α α θ

− + =
− − =

F F W

F F W

sin sin cos
cos cos sin

1 2

1 2 
(a)

From	the	geometry	of	Fig.	2.5, sin a	=	0.5	s/l	and	cos	a = h/l, where l	is	the	length	of	mem-

bers	given	as = +l h s(0.5 )2 .	note	that	F1	and	F2	are	shown	as	tensile	forces	in	the	free-body 

−F1sina+F2sina=W  cosu−F1cosa
−F2cosa=W  sinu

l=h2+(0.5s)2

FIGURE 2.5 Two-bar bracket.	(a)	Structure	and	(b)	free-body	diagram	for	node	1.
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	diagram.	The	solution	to	eq.	(a)	will	determine	the	magnitude	and	direction	of	the	forces.	In	
addition,	the	tensile force will be taken as positive.	Thus,	the	bar	will	be	in	compression	if	the	
force	carried	by	it	has	negative	value.	By	solving	the	two	equations	simultaneously	for	the	
unknowns F1	and	F2, we obtain

θ θ

θ θ

= − +





= − −





F Wl
h s

F Wl
h s

0.5
sin 2 cos

0.5
sin 2 cos

1

2

 

(b)

To	avoid	bar	failure	due	to	overstressing,	we	need	to	calculate	bar	stress.	If	we	know	
the	 force	 carried	 by	 a	 bar,	 then	 the	 stress	 σ	 can	 be	 calculated	 as	 the	 force	 divided	 by	
the	 bar’s	 cross-sectional	 area	 (stress	=	force/area).	 The	 SI	 unit	 for	 stress	 is	 newton/	
meter2	(n/m2),	also	called	pascal	(pa),	whereas	the	US–British	unit	is	pound/in2	(written	
as	psi).	The	expression	for	the	cross-sectional	area	depends	on	the	cross-sectional	shape	
used	for	the	bars	and	selected	design	variables.	Therefore,	a	structural	shape	for	the	bars	
and	associated	design	variables	must	be	selected.	This	is	illustrated	later	in	the	formula-
tion	process.

In	addition	to	analysis	equations,	we	need	to	define	the	properties	of	the	selected	material.	
Several	formulations	for	optimum	design	of	the	bracket	are	possible	depending	on	the	ap-
plication’s	requirements.	To	illustrate,	a	material	with	known	properties	is	assumed	for	the	
bracket.	However,	the	structure	can	be	optimized	using	other	materials	along	with	their	as-
sociated	fabrication	costs.	Solutions	can	then	be	compared	to	select	the	best	possible	material	
for	the	structure.

For	 the	 selected	material,	 let	ρ	 be	 the	mass	density	and	σ a >	0	be	 the	allowable	design	
stress.	As	a	performance	requirement,	it	is	assumed	that	if	the	stress	exceeds	this	allowable	
value,	the	bar	is	considered	to	have	failed.	The	allowable stress	is	defined	as	the	material	failure	
stress	(a	property	of	the	material)	divided	by	a	factor	of	safety	greater	than	one.	In	addition,	
it	is	assumed	that	the	allowable	stress	is	calculated	in	such	a	way	that	the	buckling	failure	of	
a	bar	in	compression	is	avoided.

Step 3: Definition of design variables.	Several	sets	of	design	variables	may	be	identified	for	
the	two-bar	structure.	The	height	h	and	span	s	can	be	treated	as	design	variables	in	the	initial	
formulation.	Later,	they	may	be	assigned	numerical	values,	if	desired,	to	eliminate	them	from	
the	formulation.	other	design	variables	will	depend	on	the	cross-sectional	shape	of	bars	1	and	
2.	Several	cross-sectional	shapes	are	possible,	as	shown	in	Fig.	2.6,	where	design	variables	for	
each	shape	are	also	identified.

note	that	for	many	cross-sectional	shapes,	different	design	variables	can	be	selected.	For	
example,	in	the	case	of	the	circular	tube	in	Fig.	2.6a,	the	outer	diameter	do	and	the	ratio	be-
tween	the	inner	and	outer	diameters	r = di/do	may	be	selected	as	the	design	variables.	or	do 
and	di	may	be	selected.	However,	it	is	not	desirable	to	designate	do, di,	and	r	as	the	design	vari-
ables	because	they	are	not	independent	of	each	other.	If	they	are	selected,	then	a	relationship	
between	them	must	be	specified	as	an	equality	constraint.	Similar	remarks	can	be	made	for	
the	design	variables	associated	with	other	cross-sections,	also	shown	in	Fig.	2.6.

As	an	example	of	problem	formulation,	consider	the	design	of	a	bracket	with	hollow	circu-
lar tubes as members, as shown in Fig.	2.6a.	The	inner	and	outer	diameters	di	and	do	and	wall	

F1=−0.5Wlsinuh+2 cosusF2=−0.
5Wlsinuh−2 cosus
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thickness t	may	be	identified	as	the	design	variables,	although	they	are	not	all	independent	
of	each	other.	For	example,	we	cannot	specify	di	=	10,	do =	12,	and	t =	2	because	it	violates	the	
physical	condition	t =	0.5(do − di).	Therefore,	if	we	formulate	the	problem	with	di, do,	and	t as 
design	variables,	we	must	also	impose	the	constraint	t =	0.5(do − di).	To	illustrate	a	formula-
tion	of	the	problem,	let	the	design	variables	be	defined	as

x1	=	height	h of the bracket
x2 = span s of the bracket
x3 =	outer	diameter	of	bar	1
x4 =	inner	diameter	of	bar	1
x5 =	outer	diameter	of	bar	2
x6 =	inner	diameter	of	bar	2

FIGURE 2.6 Bar cross-sectional shapes.	(a)	circular	tube;	(b)	solid	circular;	(c)	rectangular	tube;	(d)	solid	rectan-
gular;	(e)	I-section;	(f)	channel	section.
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In	terms	of	these	variables,	the	cross-sectional	areas	A1	and	A2	of	bars	1	and	2	are	given	as

π π
= − = −A x x A x x

4
( );

4
( )1 3

2
4
2

2 5
2

6
2

 
(c)

once	the	problem	is	formulated	in	terms	of	the	six	selected	design	variables,	it	is	always	
possible	to	modify	it	to	meet	more	specialized	needs.	For	example,	the	height	x1 may be as-
signed	a	fixed	numerical	value,	thus	eliminating	it	from	the	problem	formulation.	In	addition,	
complete	symmetry	of	the	structure	may	be	required	to	make	its	fabrication	easier;	that	is,	it	
may	be	necessary	for	the	two	bars	to	have	the	same	cross-section,	size,	and	material.	In	such	
a case, we set x3 = x5	and	x4 = x6	in	all	expressions	of	the	problem	formulation.	Such	modifica-
tions	are	left	as	exercises.

Step 4: Optimization criterion.	The	structure’s	mass	is	identified	as	the	objective	function	in	
the	problem	statement.	Since	it	is	to	be	minimized,	it	is	called	the	cost function	for	the	problem.	
An	expression	for	the	mass	is	determined	by	the	cross-sectional	shape	of	the	bars	and	associ-
ated	design	variables.	For	the	hollow	circular	tubes	and	selected	design	variables,	the	total	
mass	of	the	structure	is	calculated	as	(density	×	material	volume):

ρ ρ π
= + = +



 − + −Mass l A A x x x x x x[ ( )] (0.5 )
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(d)

note	that	if	the	outer	diameter	and	the	ratio	between	the	inner	and	outer	diameters	are	se-
lected	as	design	variables,	the	form	of	the	mass	function	changes.	Thus,	the	final form	depends	
on	the	design	variables	selected	for	the	problem.

Step 5: Formulation of constraints.	It	is	important	to	include	all	constraints	in	the	problem	
formulation	because	the	final	solution	depends	on	them.	For	the	two-bar	structure,	the	con-
straints	are	on	the	stress	in	the	bars	and	on	the	design	variables	themselves.	These	constraints	
will	be	formulated	for	hollow	circular	tubes	using	the	previously	defined	design	variables.	
They	can	be	similarly	formulated	for	other	sets	of	design	variables	and	cross-sectional	shapes.

To	avoid	overstressing	a	bar,	the	calculated	stress	σ	 (tensile	or	compressive)	must	not	ex-
ceed	the	material	allowable	stress	σ a >	0.	The	stresses	σ 1	and	σ 2	in	the	two	bars	are	calculated	
as	force/area:

σ

σ

=

=

F
A

(stress in bar 1)

F
A

(stress in bar 2)

1
1

1

2
2

2 

(e)

note	 that	 to	 treat	 positive	 and	 negative	 stresses	 (tension	 and	 compression),	 we	 must	
use	the	absolute	value	of	the	calculated	stress	in	writing	the	constraints	(eg,	|σ|≤ σ a).	The	
	absolute-value	constraints	can	be	treated	by	different	approaches	in	optimization	methods.	
Here	 we	 split	 each	 absolute-value	 constraint	 into	 two	 constraints.	 For	 example,	 the	 stress	
constraint	for	bar	1	is	written	as	the	following	two	constraints:

σ σ
σ σ

≤
− ≤

(tensile stress in bar 1)
(compressive stress in bar 1)

a

a

1

1 
(f)

A1=π4(x32−x42);  A2=π4(x52−x62)

Mass=ρ[l(A1+A2)]=ρx12+(0.5x2)2

π4(x32−x42−x52−x62)

σ1=F1A1(stress in bar 1)σ2=F2A2(s
tress in bar 2)

σ1≤ σa(tensi-
le  stress in bar 1)σ1≤ σa(com-

pressive  stress in bar 1)
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With	this	approach,	the	second	constraint	is	satisfied	automatically	if	bar	1	is	in	tension,	
and	the	first	constraint	is	automatically	satisfied	if	bar	1	is	in	compression.	Similarly,	the	stress	
constraint	for	bar	2	is	written	as

σ σ
σ σ

≤
− ≤

(tensile stress in bar 2)
(compressive stress in bar 2)

a

a

2

2	 (g)

Finally,	to	impose	fabrication	and	space	limitations,	constraints	on	the	design	variables	are	
imposed	as

≤ ≤ =x x x i; 1 to 6iL i iU	 (h)

where xiL	and	xiU	are	the	minimum	and	maximum	allowed	values	for	the	ith	design	variable.	
Their	numerical	values	must	be	specified	before	the	problem	can	be	solved.

note	that	the	expression	for	bar	stress	changes	if	different	design	variables	are	chosen	for	
circular	tubes,	or	if	a	different	cross-sectional	shape	is	chosen	for	the	bars.	For	example,	inner	
and	outer	radii,	mean	radius	and	wall	thickness,	or	outside	diameter	and	the	ratio	of	inside	
to	outside	diameter	as	design	variables	will	all	produce	different	expressions	for	the	cross-
sectional	areas	and	stresses.	These results show that the choice of design variables greatly influences 
the problem formulation.

note	also	that	we	had	to	first	analyze	the	structure	(calculate	its	response	to	given	inputs)	
to	write	the	constraints	properly.	It	was	only	after	we	had	calculated	the	forces	in	the	bars	
that	we	were	able	to	write	the	constraints.	This	is	an	important	step	in	any	engineering	design	
problem formulation: We must be able to analyze the system before we can formulate the design 
optimization problem.

In	the	following	examples,	we	summarize	two	formulations	of	the	problem.	The	first	uses	
several	intermediate	variables,	which	is	useful	when	the	problem	is	transcribed	into	a	com-
puter	program.	Because	this	formulation	involves	simpler	expressions	of	various	quantities,	
it	is	easier	to	write	and	debug	a	computer	program.	In	the	second	formulation,	all	interme-
diate	variables	are	eliminated	to	obtain	the	formulation	exclusively	in	terms	of	design	vari-
ables.	This	formulation	has	slightly	more	complex	expressions.	It	is	important	to	note	that	the	
second	formulation	may	not	be	possible	for	all	applications	because	some	problem	functions	
may	only	be	implicit	functions	of	the	design	variables.	one	such	formulation	is	presented	in	
chapter:	practical	Applications	of	optimization.

EXAMPLE 2.8 FORMULATION OF THE TWO-BAR BRACKET PROBLEM 
WITH INTERMEDIATE VARIABLES

A	summary	of	the	problem	formulation	for	optimum	design	of	the	two-bar	bracket	using	inter-
mediate	variables	is	as	follows:

Specified data: W, u, σ a  > 0, xiL	and	xiU, i	=	1	to	6
Design variables: x1, x2, x3, x4, x5, x6

Intermediate variables:
Bar cross-sectional areas:

σ2≤σa(tensi-
le  stress in bar 2)σ2≤σa(compr-

essive  stress in bar 2)

xiL≤xi≤xiLI; i=1 to 6
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Bar stresses:
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Cost function:	Minimize	the	total	mass	of	the	bars,

ρ= +Mass l A A( )1 2 (e)

Constraints:
Bar stress:

σ σ σ σ σ σ σ σ− ≤ ≤ − ≤ ≤; ; ;a a a a1 1 2 2 (f)

Design variable limits:

≤ ≤ =x x x i; 1 to 6iL i iU (g)

Mathematical formulation.	Thus	when	the	intermediate	variables	are	also	treated	as	design	vari-
ables,	the	optimization	problem	becomes:	determine	the	design	variables	A1, A2, l, F1, F2, σ 1, σ 2,	and	
x1–x6	to	minimize	the	cost	function	in	eq.	(e)	subject	to	7	equality	constraints	in	eqs.	(a)–(d)	and	16	
inequality	constraints	in	eqs.	(f)	and	(g).

EXAMPLE 2.9 FORMULATION OF THE TWO-BAR BRACKET WITH 
DESIGN VARIABLES ONLY

A	summary	of	the	problem	formulation	for	optimum	design	of	the	two-bar	bracket	in	terms	of	design	
variables	only	is	obtained	by	eliminating	the	intermediate	variables	from	all	the	expressions	as	follows:

Specified data: W, u, σ a  > 0, xiL	and	xiU, i	=	1	to	6
Design variables: x1, x2, x3, x4, x5, x6

A1=π4(x32−x32); A2=π4(x52−x62)

l=x12+(0.5x2)2

F1=−0.5Wlsinux1+2 cosux2F2=−
0.5Wlsinux1−2 cosux2

σ1=F1A1; σ=F2A2

Mass=ρl(A1+A2)

−σ1≤σa;  σ1≤σa;  −σ2≤

σa;  σ2≤σa

xiL≤xi≤xiLI;i=1 to 6
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Cost function:	Minimize	total	mass	of	the	bars,

πρ
= + − + −Mass x x x x x x
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Constraints:
Bar stress:
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Design variable limits:

≤ ≤ =x x x i; 1 to 6iL i iU (f)

Mathematical formulation.	 Thus	 the	 optimization	 problem	 is	 to	 determine	 the	 design	 variables	
x1–x6	to	minimize	the	cost	function	in	eq.	(a)	subject	to	16	inequality	constraints	in	eqs.	(b)–(f).

It is important to note that the intermediate variables can be treated as design variables 
in the formulation of the optimization problem. Usually this results in a simpler set of 
equations in the formulation but at the cost of additional equality constraints.

2.6 DESIGN OF A CABINET

Step 1: Project/problem description.	A	cabinet	is	assembled	from	components	c1,	c2,	and	c3.	
each	cabinet	requires	8	c1,	5	c2,	and	15	c3	components.	The	assembly	of	c1	requires	either	5	
bolts	or	5	rivets,	whereas	c2	requires	6	bolts	or	6	rivets,	and	c3	requires	3	bolts	or	3	rivets.	The	
cost	of	installing	a	bolt,	including	the	cost	of	the	bolt	itself,	is	$0.70	for	c1,	$1.00	for	c2,	and	
$0.60	for	c3.	Similarly,	riveting	costs	are	$0.60	for	c1,	$0.80	for	c2,	and	$1.00	for	c3.	Bolting	and	
riveting	capacities	per	day	are	6000	and	8000,	respectively.	To	minimize	the	cost	for	the	100	
cabinets	that	must	be	assembled	each	day,	we	wish	to	determine	the	number	of	components	
to	be	bolted	and	riveted	(after	Siddall,	1972).

Step 2: Data and information collection.	All	data	for	the	problem	are	given	in	the	project	statement.
This	problem	can	be	formulated	in	several	different	ways	depending	on	the	assumptions	

made	and	the	definition	of	the	design	variables.	Three	formulations	are	presented,	and	for	
each	one,	the	design	variables	are	identified	and	expressions	for	the	cost	and	constraint	func-
tions	are	derived;	that	is,	steps	3–5	are	presented.

Mass=πρ4x12+(0.5x2)2(x32−x42
+x52−x62)

2Wx12+(0.5x2)2π(x32−x42) sin
ux1+2 cosux2≤σa

−2Wx12+(0.5x2)2π(x32−x42) sin
ux1+2 cosux2≤σa

2Wx12+(0.5x2)2π(x52−x62) sin
ux1+2 cosux2≤σa

−2Wx12+(0.5x2)2π(x52−x62) sin
ux1+2 cosux2≤σa

xiL≤xi≤xilI;  i=1 to 6
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2.6.1 Formulation 1 for Cabinet Design

Step 3: Definition of design variables.	In	the	first	formulation,	the	following	design	variables	
are	identified	for	100	cabinets:

x1	=	number	of	c1	to	be	bolted	for	all	100	cabinets
x2	=	number	of	c1	to	be	riveted	for	all	100	cabinets
x3	=	number	of	c2	to	be	bolted	for	all	100	cabinets
x4	=	number	of	c2	to	be	riveted	for	all	100	cabinets
x5	=	number	of	c3	to	be	bolted	for	all	100	cabinets
x6	=	number	of	c3	to	be	riveted	for	all	100	cabinets

Step 4: Optimization criterion.	The	design	objective	is	to	minimize	the	total	cost	of	cabinet	fab-
rication,	which	is	obtained	from	the	specified	costs	for	bolting	and	riveting	each	component:

= + + + + +
= + + + + +

Cost x x x x x x
x x x x x x

0.70(5) 0.60(5) 1.00(6) 0.80(6) 0.60 1.00(3)
3.5 3.0 6.0 4.8 1.8 3.0

1 2 3 4 5 6

1 2 3 4 5 6 
(a)

Step 5: Formulation of constraints.	The	constraints	for	the	problem	consist	of	riveting	and	
bolting	capacities	and	the	number	of	cabinets	fabricated	each	day.	Since	100	cabinets	must	
be	fabricated,	the	required	numbers	of	c1,	c2,	and	c3	are	given	in	the	following	constraints:

× + = ×x xNumber of C used must be 8 100 : 8 1001 1 2

× + = ×x xNumber of C used must be 5 100 : 5 1002 3 4 (b)

× + = ×x xNumber of C used must be 15 100 : 15 1003 5 6

Bolting	and	riveting	capacities	must	not	be	exceeded.	Thus,

+ + ≤x x xBolting capacity: 5 6 3 60001 3 5

+ + ≤x x xRiveting capacity: 5 6 3 80002 4 6 (c)

Finally,	all	design	variables	must	be	nonnegative	for	a	meaningful	solution:

≥ =x i0; 1 to 6i (d)

Mathematical formulation.	Thus,	the	optimization	problem	is	to	determine	six	design	variables	
x1 to x6	subject	to	three	equality	constraints,	and	eight	inequality	constraints	in	eqs.	(b)–(d).

2.6.2 Formulation 2 for Cabinet Design

Step 3: Definition of design variables.	If	we	relax	the	constraint	that	each	component	must	be	
bolted	or	riveted,	then	the	following	design	variables	can	be	defined:

x1	=	total	number	of	bolts	required	for	all	c1

x2	=	total	number	of	bolts	required	for	all	c2

x3	=	total	number	of	bolts	required	for	all	c3

Cost=0.70(5)x1+0.60(5)x2+1.00(
6)x3+0.80(6)x4+0.60x5+1.00(3)x6 
=3.5x1+3.0x2+6.0x3+4.8x4+1.8x5

+3.0x6

Number of C1 used must be 8×100: x1+x2=8×100

Number of C2 used must be 5×100: x3+x4=5×100

Number of C3 used must be 15×100:x5+x6=15×100

Bolt-
ing capacity:5x1+6x3+3x5≤6000

Rivet-
ing capacity:5x2+6x4+3x6≤8000

xi≥0; i=1 to 6
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x4	=	total	number	of	rivets	required	for	all	c1

x5	=	total	number	of	rivets	required	for	all	c2

x6	=	total	number	of	rivets	required	for	all	c3

Step 4: Optimization criterion.	The	objective	is	still	to	minimize	the	total	cost	of	fabricating	
100	cabinets,	given	as

= + + + + +Cost x x x x x x0.70 1.00 0.60 0.60 0.80 1.00 , $1 2 3 4 5 6	 (e)

Step 5: Formulation of constraints.	Since	100	cabinets	must	be	built	every	day,	it	will	be	nec-
essary	to	have	800	c1,	500	c2,	and	1500	c3	components.	The	total	number	of	bolts	and	rivets	
needed	for	all	c1,	c2,	and	c3	components	is	indicated	by	the	following	equality	constraints:

+ = ×x xBolts and rivets needed for C : 5 8001 1 4

+ = ×x xBolts and rivets needed for C : 6 5002 2 5	 (f)

+ = ×x xBolts and rivets needed for C : 3 15003 3 6

Bolting	and	riveting	capacities	must	not	be	exceeded.	Thus,

+ + ≤x x xBolting capacity: 60001 2 3

+ + ≤x x xRiveting capacity: 80004 5 6	 (g)

Finally,	all	design	variables	must	be	non-negative:

≥ =x i0; 1 to 6i	 (h)

Mathematical formulation.	Thus,	the	optimization	problem	is	to	determine	six	design	vari-
ables x1–x6	subject	to	three	equality	constraints	and	eight	inequality	constraints	in	eqs.	(g)	and	
(h).	After	an	optimum	solution	has	been	obtained,	we	can	decide	how	many	components	to	
bolt	and	how	many	to	rivet.

2.6.3 Formulation 3 for Cabinet Design

Step 3: Definition of design variables.	Another	formulation	of	the	problem	is	possible	if	we	
require	that	all	cabinets	be	identical.	The	following	design	variables	can	be	identified:

x1	=	number	of	c1	to	be	bolted	on	one	cabinet
x2 =	number	of	c1	to	be	riveted	on	one	cabinet
x3 =	number	of	c2	to	be	bolted	on	one	cabinet
x4 =	number	of	c2	to	be	riveted	on	one	cabinet
x5 =	number	of	c3	to	be	bolted	on	one	cabinet
x6 =	number	of	c3	to	be	riveted	on	one	cabinet

Step 4: Optimization criterion.	With	these	design	variables,	the	cost	of	fabricating	100	cabi-
nets	each	day	is	given	as

= + + + + +
= + + + + +

Cost x x x x x x
x x x x x x

100[0.70(5) 0.60(5) 1.00(6) 0.80(6) 0.60 1.00(3) ]
350 300 600 480 180 300

1 2 3 4 5 6

1 2 3 4 5 6 
(i)

Cost=0.70x1+1.00x2+0.60x3+0.60x
4+0.80x5+1.00x6, $

Bolts and rivets needed for C1:x1

+x4=5×800
Bolts and rivets need-

ed for C2: x2+x5=6×500
Bolts and rivets need-

ed for C3: x3+x6=3×1500

Bolting capacity: x1+x2+x3≤6000

Riveting capacity:x4+x5+x6≤8000

xi≥0; i=1 to 6

Cost=100[0.70](5)x1+0.60(5)x2+1
.00(6)x3+0.80(6)x4+0.60x5+1.00(3
)x6 =350x1+300x2+600x3+480x4+1

80x5+300x6
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Step 5: Formulation of constraints.	Since	each	cabinet	needs	8	c1,	5	c2,	and	15	c3 components, 
the	following	equality	constraints	can	be	identified:

+ =
+ =
+ =

x x

x x

x x

8 (number of C needed)
5 (number of C needed)
15 (number of C needed)

1 2 1

3 4 2

5 6 3 

(j)

constraints	on	the	capacity	to	rivet	and	bolt	are	expressed	as	the	following	inequalities:

+ + ≤
+ + ≤

x x x
x x x

(5 6 3 )100 6000 (bolting capacity)
(5 6 3 )100 8000 (riveting capacity)

1 3 5

2 4 6 
(k)

Finally,	all	design	variables	must	be	non-negative:

≥ =x i; 1 to 6i (l)

Mathematical formulation.	Thus,	the	optimization	problem	is	to	determine	six	design	variables	
x1–x6	subject	to	three	equality	constraints,	and	eight	inequality	constraints	in	eqs.	(j)	and	(l).

The	following	points	are	noted	for	the	three	formulations:

1. Because	cost	and	constraint	functions	are	linear in all three formulations, they are linear 
programming	problems.	It	is	conceivable	that	each	formulation	will	yield	a	different	op-
timum	solution.	After	solving	the	problems,	the	designer	can	select	the	best	strategy	for	
fabricating	cabinets.

2. All	formulations	have	three equality constraints,	each	involving	two	design	variables.	
Using	these	constraints,	we	can	eliminate	three	variables	from	the	problem	and	thus	
reduce	its	dimension.	This	is	desirable	from	a	computational	standpoint	because	the	
number	of	variables	and	constraints	is	reduced.	However,	because	the	elimination	of	
variables	is	not	possible	for	many	complex	problems,	we	must	develop	and	use	methods	
to	treat	both	equality	and	inequality	constraints.

3. For	a	meaningful	solution	for	these	formulations,	all	design	variables	must	have	integer	
values.	These	are	called	integer programming problems.	Some	numerical	methods	to	
treat	this	class	of	problem	are	discussed	in	chapter:	Discrete	Variable	optimum	Design	
concepts	and	Methods.

2.7 MINIMUM-WEIGHT TUBULAR COLUMN DESIGN

Step 1: Project/problem description.	Straight	columns	are	used	as	structural	elements	in	civil,	
mechanical,	aerospace,	agricultural,	and	automotive	structures.	Many	such	applications	can	
be	observed	in	daily	life,	for	example,	a	street	light	pole,	a	traffic	light	post,	a	flagpole,	a	water	
tower	support,	a	highway	signpost,	a	power	transmission	pole.	It	is	important	to	optimize	
the	design	of	a	straight	column	since	it	may	be	mass-produced.	The	objective	of	this	project	is	
to	design	a	minimum-mass	tubular	column	of	length	l	supporting	a	load	P	without	buckling	
or	overstressing.	The	column	is	fixed	at	the	base	and	free	at	the	top,	as	shown	in	Fig.	2.7.	This	
type	of	structure	is	called	a	cantilever	column.

x1+x2=8(number of C1 n
eeded)x3+x4=5(numbe

r of C2 needed)x5+x6=15(number of C3 need-
ed)

(5x1+6x3+3x5)100≤6000(b
olting capacity)(5x2+6x4+3

x6)100≤8000(riveting capacity)

xi≥; i=1 to 6
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Step 2: Data and information collection.	The	buckling	load	(also	called	the	critical	load)	for	a	
cantilever	column	is	given	as

π
=P

EI
l4

cr

2

2 
(a)

The	buckling	load	formula	for	a	column	with	other	support	conditions	is	different	from	
this	formula	(crandall	et	al.,	2012).	Here,	I	is	the	moment	of	inertia	for	the	cross-section	of	the	
column	and	E	is	the	material	property,	called	the	modulus	of	elasticity	(Young’s	modulus).	
note	that	the	buckling	load	depends	on	the	design	of	the	column	(ie,	the	moment	of	inertia	I).	
It	imposes	a	limit	on	the	applied	load;	that	is,	the	column	fails	if	the	applied	load	exceeds	the	
buckling	load.	The	material	stress	σ	for	the	column	is	defined	as	P/A, where A	is	the	cross-
sectional	area	of	the	column.	The	material	allowable	stress	under	the	axial	load	is	σ a,	and	the	
material	mass	density	is	ρ	(mass	per	unit	volume).

A	cross-section	of	the	tubular	column	is	shown	in	Fig.	2.7.	Many	formulations	for	the	de-
sign	 problem	 are	 possible	 depending	 on	 how	 the	 design	 variables	 are	 defined.	 Two	 such	
formulations	are	described	here.

2.7.1 Formulation 1 for Column Design

Step 3: Definition of design variables.	For	the	first	formulation,	the	following	design	variables	
are	defined:

R	=	mean	radius	of	the	column
t = wall thickness

Assuming	that	the	column	wall	is	thin	(R ≫ t),	the	material	cross-sectional	area	and	mo-
ment of inertia are

π π= =A Rt I R t2 ; 3
 (b)

Pcr=π2EI4l2

A=2πRt;  I=πR3t

FIGURE 2.7	 (a)	Tubular	column;	(b)	formulation	1	design	variables;	(c)	formulation	2	design	variables.
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Step 4: Optimization criterion.	The	total	mass	of	the	column	to	be	minimized	is	given	as

ρ ρ π= =Mass lA l Rt( ) 2 (c)

Step 5: Formulation of constraints.	 The	 first	 constraint	 is	 that	 the	 stress	 (P/A)	 should	 not	
exceed	the	material	allowable	stress	σ a	to	avoid	material	failure.	This	is	expressed	as	the	in-
equality	σ ≤ σ a.	Replacing	σ with P/A	and	then	substituting	for	A, we obtain

π
σ≤

P
Rt2

a
 

(d)

The	column	should	not	buckle	under	the	applied	load	P,	which	implies	that	the	applied	
load	should	not	exceed	the	buckling	load	(ie,	P≤Pcr).	Using	the	given	expression	for	the	buck-
ling	load	in	eq.	(a)	and	substituting	for	I, we obtain

π
≤P

ER t
l4

3 3

2 
(e)

Finally,	the	design	variables	R	and	t	must	be	within	the	specified	minimum	(Rmin	and	tmin)	
and	maximum	values	(Rmax	and	tmax):

≤ ≤ ≤ ≤R R R t t t;min max min max (f)

Mathematical formulation.	Thus	the	optimization	problem	is	to	determine	the	design	variables	
R	and	t	to	minimize	the	cost	function	in	eq.	(c)	subject	to	six	inequality	constraints	in	eqs.	(d)–(f).

2.7.2 Formulation 2 for Column Design

Step 3: Definition of design variables.	Another	formulation	of	the	design	problem	is	possible	
if	the	following	design	variables	are	defined:

Ro	=	outer	radius	of	the	column
Ri	=	inner	radius	of	the	column

In	terms	of	these	design	variables,	the	cross-sectional	area	A	and	the	moment	of	inertia	I are

π π
= − = −A R R I R R( );

4
( )o i o i

2 2 4 4

 
(g)

Step 4: Optimization criterion.	Minimize	the	total	mass	of	the	column:

ρ πρ= = −Mass lA l R R( ) ( )o i
2 2

 (h)

Step 5: Formulation of the constraints.	The	material	crushing	constraint	is	(P/A≤σ a):

π
σ

−
≤

P
R R( )o i

2 2 a
 

(i)

Using	the	expression	for	I,	the	buckling	load	constraint	is	(P≤Pcr):

π
≤ −P

E
l

R R
16

( )o i

3

3
4 4

 
(j)

Mass=ρ(lA)=2ρlπRt

P2πRt≤σa

P≤π3ER3t4l2

Rmin≤R≤Rmax;  tmin≤t≤tmax

A=π(Ro2−R12);  I=π4(Ro4−Ri4)

Mass=ρ(lA)=πρl(Ro2−Ri2)

Pπ(Ro2−R12)≤σa

p≤π3E16l3(Ro4−Ri4)
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Finally,	the	design	variables	Ro	and	Ri	must	be	within	specified	minimum	(Ro min	and	Ri min)	
and	maximum	(Ro max	and	Ri	max)	limits:

≤ ≤ ≤ ≤R R R R R R;o o o i i imin max min max (k)

When	 this	 problem	 is	 solved	 using	 a	 numerical	 method,	 a	 constraint	Ro > Ri must also 
be	imposed.	otherwise,	some	methods	may	take	the	design	to	the	point	where	Ro < Ri.	This	
situation	is	not	physically	possible	and	must	be	explicitly	excluded	to	numerically	solve	the	
design	problem.

In	 addition	 to	 the	 foregoing	 constraints,	 local	 buckling	 of	 the	 column	 wall	 needs	 to	 be	
considered	 for	 both	 formulations.	 Local	 buckling	 can	 occur	 if	 the	 wall	 thickness	 becomes	
too	small.	This	can	be	avoided	if	the	ratio	of	mean	radius	to	wall	thickness	is	required	to	be	
smaller	than	a	limiting	value,	that	is,

+
−

≤ ≤
R R
R R

k
R
t

k
( )
2( )

oro i

o i 
(l)

where R	is	the	mean	radius,	and	k	is	a	specified	value	that	depends	on	Young’s	modulus	and	
the	yield	stress	of	the	material.	For	steel	with	e	=	29,000	ksi	and	a	yield	stress	of	50	ksi,	k is 
given	as	32	(AISc,	2011).

Mathematical formulation.	Thus	the	optimization	problem	is	to	determine	the	design	vari-
ables Ro	and	Ri	to	minimize	the	cost	function	in	eq.	(h)	subject	to	seven	inequality	constraints	
in	eqs.	(i)–(l).

2.8 MINIMUM-COST CYLINDRICAL TANK DESIGN

Step 1: Project/problem description.	Design	a	minimum-cost	cylindrical	tank	closed	at	both	
ends	to	contain	a	fixed	volume	of	fluid	V.	The	cost	is	found	to	depend	directly	on	the	area	of	
sheet	metal	used.

Step 2: Data and information collection. Let c	be	the	dollar	cost	per	unit	area	of	the	sheet	metal.	
other	data	are	given	in	the	project	statement.

Step 3: Definition of design variables.	The	design	variables	for	the	problem	are	identified	as

R	=	radius	of	the	tank
H	=	height	of	the	tank

Step 4: Optimization criterion.	 The	 cost	 function	 for	 the	 problem	 is	 the	 dollar	 cost	 of	 the	
sheet	metal	for	the	tank.	Total	surface	area	of	the	sheet	metal	consisting	of	the	end	plates	and	
cylinder	is	given	as

π π= +A R RH2 22 (a)

Therefore,	the	cost	function	for	the	problem	is	given	as

π π= +f c R RH(2 2 )2
 (b)

Step 5: Formulation of constraints.	The	volume	of	the	tank	(πR2H)	is	required	to	be	V.	Therefore,

π =R H V2 (c)

Ro   min   ≤   Ro   ≤   Ro   max; Ri   min   
≤   Ri   ≤   Ri   max

(Ro+Ri)2(Ro−Ri)≤k  or  Rt≤k

A=2πR2+2πRH

f=c(2πR2+2πRH)

πR2H=V
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Also,	both	of	the	design	variables	R	and	H	must	be	within	some	minimum	and	maximum	
values:

≤ ≤ ≤ ≤R R R H H H;min max min max (d)

Mathematical formulation.	The	optimization	problem	is	to	determine	R	and	H to minimize the 
cost	function	in	eq.	(b)	subject	to	one	equality	constraint	in	eq.	(c)	and	four	inequalities	in	eq.	
(d).	This	problem	is	quite	similar	to	the	can	problem	discussed	in	Section	2.2.	The	only	differ-
ence	is	in	the	volume	constraint.	There	the	constraint	is	an	inequality	and	here	it	is	an	equality.

2.9 DESIGN OF COIL SPRINGS

Step 1: Project/problem description.	coil	springs	are	used	in	numerous	practical	applications.	
Detailed	methods	for	analyzing	and	designing	such	mechanical	components	have	been	de-
veloped	 over	 the	 years	 (eg,	 Spotts,	1953;	 Wahl,	1963;	 Haug	 and	Arora,	1979;	 Budynas	 and	
nisbett,	2014).	The	purpose	of	 this	project	 is	 to	design	a	minimum-mass	spring	(shown	in	
Fig.	2.8)	to	carry	a	given	axial	load	(called	a	tension–compression	spring)	without	material	
failure	and	while	satisfying	two	performance	requirements:	the	spring	must	deflect	by	at	least	
∆	(in.)	and	the	frequency	of	surge	waves	must	not	be	less	than	w0	(Hz).

Step 2: Data and information collection.	To	formulate	the	problem	of	designing	a	coil	spring,	
see	the	notation	and	data	defined	in	Table	2.3.

The	wire	twists	when	the	spring	is	subjected	to	a	tensile	or	a	compressive	load.	Therefore,	
shear	stress	needs	to	be	calculated	so	that	a	constraint	on	it	can	be	included	in	the	formula-
tion.	In	addition,	surge	wave	frequency	needs	to	be	calculated.	These	and	other	design	equa-
tions	for	the	spring	are	given	as

Load deflection equation:

δ=P K (a)

Spring constant, K:

=K
d G
D N8

4

3 
(b)

Shear stress, τ:

τ
π

=
kPD
d

8
3 

(c)

Rmin≤R≤Rmax;  Hmin≤H≤Hmax

p=Kd

K=d4G8D3N

τ=8kPDπd3

FIGURE 2.8 A	coil	spring.
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Wahl stress concentration factor, k:

=
−
−

+k
D d
D d

d
D

(4 )
4( )

0.615

 
(d)

Frequency of surge waves, w :

ω
π ρ

=
d
ND

G
2 22

 
(e)

The	expression	for	the	Wahl	stress	concentration	factor	k	in	eq.	(d)	has	been	determined	
experimentally	to	account	for	unusually	high	stresses	at	certain	points	on	the	spring.	These	
analysis	equations	are	used	to	define	the	constraints.

Step 3: Definition of design variables.	The	three	design	variables	for	the	problem	are	defined	as

d	=	wire	diameter,	in
D	=	mean	coil	diameter,	in
N	=	number	of	active	coils,	integer

Step 4: Optimization criterion.	The	problem	is	to	minimize the mass	of	the	spring,	given	as	
volume	×	mass	density:

π π ρ π ρ= + = +Mass d N Q D N Q Dd
4

[( ) ]
1
4

( )2 2 2

 
(f)

Step 5: Formulation of constraints

k=(4D−d)4(D−d)+0.615dD

w=d2πND2G2ρ

Mass=π4d2[(N+Q)πD]ρ=14(N+
Q)π2Dd2ρ

TABLE 2.3 information to Design a coil spring

Notation Data

Deflection	along	the	axis	of	spring d,	in.

Mean	coil	diameter D,	in.

Wire	diameter d,	in.

number	of	active	coils N

Gravitational	constant g =	386	in./s2

Frequency	of	surge	waves w,	Hz

Weight	density	of	spring	material g	=	0.285	lb/in3

Shear	modulus G	=	(1.15	×	107)	lb/in2

Mass	density	of	material	(ρ = g/g) ρ	=	(7.38342	×	10−4)	lb-s2/in4

Allowable	shear	stress τa	=	80,000	lb/in2

number	of	inactive	coils Q =	2

Applied	load P =	10	lb

Minimum	spring	deflection ∆	=	0.5	in.

Lower	limit	on	surge	wave	frequency w0	=	100	Hz

Limit	on	outer	diameter	of	coil Do	=	1.5	in.
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Deflection constraint.	 It	 is	often	a	requirement	that	deflection	under	a	load	P be at least ∆.	
Therefore,	the	constraint	is	that	the	calculated	deflection	d	must	be	greater	than	or	equal	to	a	
specified	limit	∆.	Such	a	constraint	is	common	to	spring	design.	The	function	of	the	spring	in	
many	applications	is	to	provide	a	modest	restoring	force	as	parts	undergo	large	displacement	
in	carrying	out	kinematic	functions.	Mathematically,	this	performance	requirement	(d ≥ ∆)	is	
stated	in	an	inequality	form,	using	eq.	(a),	as

≥ ∆
P
K 

(g)

Shear-stress constraint.	To	prevent	material	overstressing,	shear stress in the wire must be no 
greater	than	τ a,	which	is	expressed	in	mathematical	form	as

τ τ≤ a (h)

Constraint on the frequency of surge waves.	We	also	wish	to	avoid	resonance	in	dynamic	ap-
plications	by	making	the	frequency of surge waves	(along	the	spring)	as	great	as	possible.	For	
the	present	problem,	we	require	the	frequency	of	surge	waves	for	the	spring	to	be	at	least	w0 
(Hz).	The	constraint	is	expressed	in	mathematical	form	as

ω ω≥ 0 (i)

Diameter constraint.	The	outer diameter	of	the	spring	should	not	be	greater	than	D0, so

+ ≤D d D0 (j)

Explicit bounds on design variables.	To	avoid	fabrication	and	other	practical	difficulties,	we	
put minimum and maximum size limits	 on	 the	 wire	 diameter,	 coil	 diameter,	 and	 number	 of	
turns:

≤ ≤
≤ ≤
≤ ≤

d d d
D D D
N N N

min max

min max

min max 

(k)

Mathematical formulation.	Thus,	the	purpose	of	the	minimum-mass	spring	design	prob-
lem	is	 to	select	 the	design	variables	d, D,	and	N	 to	minimize	 the	mass	of	eq.	 (f),	while	
satisfying	the	ten	inequality	constraints	of	eqs.	(g)–(k).	If	the	intermediate	variables	are	
eliminated,	the	problem	formulation	can	be	summarized	in	terms	of	the	design	variables	
only.

EXAMPLE 2.10 FORMULATION OF THE SPRING DESIGN PROBLEM 
WITH DESIGN VARIABLES ONLY

A	summary	of	the	problem	formulation	for	the	optimum	design	of	coil	springs	is	as	follows:

Specified data: Q, P, ρ, g, τa, G, ∆, w0, D0, dmin, dmax, Dmin, Dmax, Nmin, Nmax

Design variables: d, D, N
Cost function:	Minimize	the	mass	of	the	spring	given	in	eq.	(f).

PK≥∆

τ≤τa

w≥w0

D+d≤D0

dmin≤d≤dmaxDmin≤D≤Dmax
Nmin≤N≤Nmax
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Constraints:
Deflection limit:

≥ ∆
PD N
d G

8 3

4 
(l)

Shear stress:

π
τ−

−
+









 ≤

PD
d

D d
D d

d
D

8 (4 )
4( )

0.615
a3

 
(m)

Frequency of surge waves:

π ρ
ω≥

d
ND

G
2 22 0

 
(n)

Diameter constraint:	Given	in	eq.	(j).
Design variable bounds:	Given	in	eq.	(k).

Mathematical formulation.	Thus	the	optimization	problem	is	to	determine	the	design	variables	d, 
D	and	N	to	minimize	the	cost	function	in	eq.	(f)	subject	to	the	constraints	in	eq.	(j),	(k)	and	(l)–(n).	
The	problem	is	solved	optimum	solution	using	a	numerical	optimization	method	in	chapter:	More	
on	numerical	Methods	for	constrained	optimum	Design.

2.10 MINIMUM-WEIGHT DESIGN OF A SYMMETRIC  
THREE-BAR TRUSS

Step 1: Project/problem description.	As	an	example	of	a	slightly	more	complex	design	prob-
lem,	consider	the	three-bar	structure	shown	in	Fig.	2.9	(Schmit,	1960;	Haug	and	Arora,	1979).	
This	is	a	statically	indeterminate	structure	for	which	the	member	forces	cannot	be	calculated	
solely	from	equilibrium	equations.	The	structure	is	to	be	designed	for	minimum	volume	(or,	
equivalently,	minimum	mass)	to	support	a	force	P.	It	must	satisfy	various	performance	and	
technological	constraints,	such	as	member	crushing,	member	buckling,	failure	by	excessive	
deflection	of	node	4,	and	failure	by	resonance	when	the	natural	frequency	of	the	structure	is	
below	a	given	threshold.

Step 2: Data and information collection.	Geometry	data,	properties	of	the	material	used,	and	
loading	data	are	needed	 to	 solve	 the	problem.	 In	addition,	 since	 the	 structure	 is	 statically	
indeterminate,	the	static	equilibrium	equations	alone	are	not	enough	to	analyze	it.	We	need	
to	use	advanced	analysis	procedures	to	obtain	expressions	for	member	forces,	nodal	displace-
ments,	and	the	natural	frequency	to	formulate	constraints	for	the	problem.	Here	we	will	give	
such	expressions.

Since	the	structure	must	be	symmetric,	members	1	and	3	will	have	the	same	cross-sectional	
area, say A1.	Let	A2	be	the	cross-sectional	area	of	member	2.	Using	analysis	procedures	for	

8PD3Nd4G≥∆

8PDπd3(4D−d)4(D−d)+0.615dD≤τa

d2πND2G2ρ≥w0
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statically	indeterminate	structures,	horizontal	and	vertical	displacements	u	and	v	of	node	4	
are	calculated	as

υ= =
+

υu
lP

A E
lP

A A E
2

;
2

( 2 )
u

1 1 2 
(a)

where E	 is	 the	 modulus	 of	 elasticity	 for	 the	 material,	 Pu	 and	 Pv	 are	 the	 horizontal	 and	
vertical	components	of	the	applied	load	P	given	as	Pu =P cosu	and	Pv =P sinu,	and	l is the 
height	of	 the	 truss	as	 shown	 in	Fig.	2.9.	Using	 the	displacements,	 forces	carried	by	 the	
members	of	the	truss	can	be	calculated.	Then	the	stresses	σ 1, σ 2,	and	σ 3	in	members	1,	2,	
and	3	under	the	applied	load	P	can	be	computed	from	member	forces	as	(stress	=	force/
area;	σ i = Fi/Ai):

σ = +
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note	that	the	member	forces,	and	hence	stresses,	are	dependent	on	the	design	of	the	struc-
ture,	that	is,	the	member	areas.

Many	structures	support	moving	machinery	and	other	dynamic	 loads.	These	structures	
vibrate	 with	 a	 certain	 frequency	 known	 as	 natural frequency.	 This	 is	 an	 intrinsic	 dynamic	

u=2lPuA1E;  υ=2lPυ(A1+2A2)E

σ=12PuA1+pυA1+2A2

σ2=2Pυ(A1+2A2)

σ3=12−PA1+PυA1+2A2

FIGURE 2.9 Three-bar truss.
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	property	of	a	structural	system.	There	can	be	several	modes	of	vibration,	each	having	its	own	
	frequency.	Resonance causes catastrophic failure of the structure, which occurs when any one 
of	its	vibration	frequencies	coincides	with	the	frequency	of	the	operating	machinery	it	sup-
ports,	or	frequency	of	the	applied	loads.

Therefore,	it	is	reasonable	to	demand	that	no	structural	frequency	be	close	to	the	frequency	
of	the	operating	machinery.	The	mode	of	vibration	corresponding	to	the	lowest	natural	fre-
quency	 is	 important	because	 that	mode	 is	excited	first.	 It	 is	 important	 to	make	 the	 lowest	
(fundamental)	natural	frequency	of	the	structure	as	high	as	possible	to	avoid	any	possibility	
of	resonance.	This	also	makes	the	structure	stiffer.	Frequencies	of	a	structure	are	obtained	by	
solving	an	eigenvalue	problem	involving	the	structure’s	stiffness	and	mass	properties.	The	
lowest	eigenvalue		related	to	the	lowest	natural	frequency	of	the	symmetric	three-bar	truss	
is	computed	using	a	consistent-mass	model:

ς
ρ

=
+

EA
l A A

3
(4 2 )

1

2
1 2 

(e)

where ρ	is	the	material	mass	per	unit	volume	(mass	density).	This	completes	the	analysis	of	
the	structure.

Step 3: Definition of design variables.	The	following	design	variables	are	defined	for	the	sym-
metric	three-bar	truss:

Al	=	cross-sectional	area	of	material	for	members	1	and	3
A2	=	cross-sectional	area	of	material	for	member	2

other	design	variables	for	the	problem	are	possible	depending	on	the	cross-sectional	shape	
of members, as shown in Fig.	2.6.

Step 4: Optimization criterion.	The	relative	merit	of	any	design	for	the	problem	is	measured	
in	its	material	weight.	Therefore,	the	total	weight	of	three	members	of	the	truss	serves	as	a	
cost	function	(weight	of	a	member	=	cross-sectional	area	×	length	×	weight	density):

γ= +Volume l A A(2 2 )1 2 (f)

where g		is	the	weight	density	and	l	is	the	height	of	the	truss.
Step 5: Formulation of constraints.	The	truss	structure	is	designed	for	use	in	two	applications.	In	

each	application,	it	supports	different	loads.	These	are	called	loading	conditions	for	the	structure.	
In	the	present	application,	a	symmetric	structure	is	obtained	if	the	following	two	loading	condi-
tions	are	considered.	The	first	load	is	applied	at	an	angle	u	and	the	second	one,	of	same	magni-
tude,	at	an	angle	(π−u),	where	the	angle	u	(0°	≤ u ≤	90°)	is	shown	earlier	in	Fig.	2.9.	If	we	let	mem-
ber	1	be	the	same	as	member	3,	then	the	second	loading	condition	can	be	ignored.	Since	we	are	
designing	a	symmetric	structure,	we	consider	only	one	load	applied	at	an	angle	u	(0°	≤ u ≤	90°).

note	from	eqs.	(b)	and	(c)	that	the	stresses	σ 1	and	σ 2	are	always	positive	(tensile).	If	σ a > 0 
is an allowable stress for the material, then the stress constraints	for	members	1	and	2	are

σ σ σ σ≤ ≤;a a1 2 (g)

However,	from	eq.	(c),	stress	in	member	3	can	be	positive	(tensile)	or	negative	(compres-
sive)	 depending	 on	 the	 load	 angle.	 Therefore,	 both	 possibilities	 need	 to	 be	 considered	 in	

ς=3EA1ρl2(4A1+2A2)

Volume=lg(22A1+A2)

σ1≤σa;  σ2≤σa
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	formulating	the	stress	constraint	for	member	3.	one	way	to	formulate	such	a	constraint	was	
explained	in	Section	2.5	for	the	two-bar	truss.	Another	way	is	as	follows:

σ σ σ σ σ< − ≤ ≤IF ( 0) THEN ELSEa a3 3 3 (h)

Since	the	sign	of	the	stress	does	not	change	with	design,	if	the	member	is	in	compression,	it	
remains	in	compression	throughout	the	optimization	process.	Therefore,	the	constraint	func-
tion	remains	continuous	and	differentiable.

A	similar	procedure	can	be	used	for	stresses	in	bars	1	and	2	if	the	stresses	can	reverse	their	
sign	(eg,	when	the	load	direction	is	reversed).	Horizontal	and	vertical	deflections	of	node	4	
must	be	within	the	specified	limits	∆u	and	∆v,	respectively.	Using	eq.	(a),	 the	deflection con-
straints are

υ≤ ∆ ≤ ∆υu ;u (i)

As	discussed	previously,	the	fundamental natural frequency	of	the	structure	should	be	higher	
than	a	specified	frequency	w0	(Hz).	This	constraint	can	be	written	in	terms	of	the	lowest	ei-
genvalue	for	the	structure.	The	eigenvalue	corresponding	to	a	frequency	of	w0	(Hz)	is	given	
as	(2πw0)2.	The	lowest	eigenvalue		for	the	structure	given	in	eq.	(e)	should	be	higher	than	
(2πw0)2, that is,

ς πω≥ (2 )0
2

 (j)

To	impose	buckling constraints	for	members	under	compression,	an	expression	for	the	mo-
ment	of	inertia	of	the	cross-section	is	needed.	This	expression	cannot	be	obtained	because	the	
cross-sectional	shape	and	dimensions	are	not	specified.	However,	the	moment	of	inertia	I can 
be	related	to	the	cross-sectional	area	of	the	members	as	I = bA2, where A	is	the	cross-sectional	
area	and	b	is	a	nondimensional	constant.	This	relation	follows	if	the	shape	of	the	cross-section	
is	fixed	and	all	of	its	dimensions	are	varied	in	the	same	proportion.

The	axial	force	for	the	ith	member	is	given	as	Fi = Aiσi, where i =	1,	2,	3	with	tensile	force	taken	
as	positive.	Members	of	the	truss	are	considered	columns	with	pin	ends.	Therefore,	the	buckling	
load	for	the	ith	member	is	given	as	π2EI/li

2, where li	is	the	length	of	the	ith	member	(crandall	
et	al.,	2012).	Buckling	constraints	are	expressed	as	− Fi ≤ π2EI/li

2, where i =	1,	2,	3.	The	negative	
sign	for	Fi	is	used	to	make	the	left	side	of	the	constraints	positive	when	the	member	is	in	com-
pression.	Also,	there	is	no	need	to	impose	buckling	constraints	for	members	in	tension.	With	the	
foregoing	formulation,	the	buckling	constraint	for	tensile	members	is	automatically	satisfied.	
Substituting	various	quantities,	buckling	constraints	for	three	members	of	the	truss	are

σ π β σ σ π β σ σ π β σ− ≤ ≤ − ≤ ≤ − ≤ ≤
E A
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E A
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E A
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note	that	the	buckling	load	has	been	divided	by	the	member	area	to	obtain	the	buckling	
stress	in	eq.	(k).	The	buckling	stress	is	required	not	to	exceed	an	allowable	buckling	stress	σ a.	
It	is	additionally	noted	that	with	the	foregoing	formulation,	the	load	P in Fig.	2.9 can be ap-
plied	in	the	positive	or	negative	direction.	When	the	load	is	applied	in	the	opposite	direction,	
the	member	forces	are	also	reversed.	The	foregoing	formulation	for	the	buckling	constraints	
can	treat	both	positive	and	negative	load	in	the	solution	process.

If(σ3<0)  Then −σ3≤

σa  Else  σ3≤σa

u≤∆u;  υ≤∆υ

ς≥(2πw0)2

−σ1≤π2EbA12l2
≤σa;   −σ2≤π2EbA2l

2
≤σa;   −σ3≤π2EbA12l2

≤σa
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Finally,	A1	and	A2	must	both	be	non-negative,	 that	 is,	A1, A2 ≥	0.	Most	practical	design	
problems	require	each	member	to	have	a	certain	minimum	area,	Amin.	Therefore	the	minimum	
area constraints are written as

≥A A A,1 2 min	 (l)

Mathematical formulation.	The	optimum	design	problem,	then,	is	to	find	cross-sectional	ar-
eas A1, A2 ≥ Amin	to	minimize	the	volume	of	eq.	(f)	subject	to	the	constraints	of	eqs.	(g)–(l).	
This	small-scale	problem	has	11	inequality	constraints	and	2	design	variables.	The	problem	
is	solved	for	optimum	solution	using	a	numerical	optimization	method	in	chapter:	practical	
Applications	of	optimization.

2.11 A GENERAL MATHEMATICAL MODEL  
FOR OPTIMUM DESIGN

To	describe	optimization	concepts	and	methods,	we	need	a	general	mathematical	state-
ment	for	the	optimum	design	problem.	Such	a	mathematical	model	is	defined	as	the	mini-
mization	of	a	cost	function	while	satisfying	all	equality	and	inequality	constraints.	The	in-
equality	constraints	in	the	model	are	always	transformed	as	“≤	 types.”	This	will	be	called	
the standard design optimization model	that	is	treated	throughout	this	text.	In	the	optimization	
literature,	this	model	is	also	called	nonlinear programming problem	(nLp).	It	will	be	shown	that	
all	design	problems	can	easily	be	transcribed	into	this	standard	form.

2.11.1 Standard Design Optimization Model

In	previous	sections,	several	design	problems	were	formulated.	All	problems	have	an	op-
timization	criterion	that	can	be	used	to	compare	various	designs	and	to	determine	an	opti-
mum	or	the	best	one.	Most	design	problems	must	also	satisfy	performance	constraints	and	
other	limitations.	Some	design	problems	have	only	inequality	constraints,	others	have	only	
equality	constraints,	and	some	have	both.	We	can	define	a	general	mathematical	model	for	
optimum	design	to	encompass	all	of	these	possibilities.	A	standard	form	of	the	model	is	first	
stated,	and	then	transformation	of	various	problems	into	the	standard	form	is	explained.

Standard Design Optimization Model
Find	an	n-vector	x	=	(x1, x2, …, xn)	of	design	variables	to

Minimize	a	cost	function:

=f f x x xx( ) ( , ..., )n1 2 (2.1)

subject	to	the	p	equality	constraints:

ρ= = =h h x x x jx( ) ( , , ..., ) 0; 1 toj j n1 2 (2.2)

and	the	m	inequality	constraints:

= ≤ =g g x x i mx( ) ( , ..., ) 0; 1 toi i n1 (2.3)

A1,A2≥Amin

f(x)=f(x1,x2...,xn)

hj(x)=hj(x1,x2, ...,xn)=0;  j=1 to ρ

gi(x)=gi(x1, ..., xn)≤0;  i=1 to m
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note	that	the	simple	bounds	on	design	variables,	such	as	xi ≥ 0, or xiL ≤ xi ≤ xiU, where 
xiL	and	xiU	are	the	smallest	and	largest	allowed	values	for	xi,	are	assumed	to	be	included	in	
the	inequalities	of	eq.	(2.3).	In	numerical	methods,	these	constraints	are	treated	explicitly	to	
take	advantage	of	their	simple	form	to	achieve	efficiency.	However,	in	discussing	the	basic	
optimization	concepts,	we	assume	that	the	inequalities	in	eq.	(2.3)	include	these	constraints	
as	well.

2.11.2 Maximization Problem Treatment

The	 general	 design	 model	 treats	 only	 minimization	 problems.	 This	 is	 no	 restriction,	 as	
maximization	 of	 a	 function	 F(x)	 is	 the	 same	 as	 minimization	 of	 a	 transformed	 function	
f(x)	= −F(x).	To	see	this	graphically,	consider	a	plot	of	the	function	of	one	variable	F(x),	shown	
in Fig.	2.10a.	 The	 function	 F(x)	 takes	 its	 maximum	 value	 at	 the	 point	 x*.	 next	 consider	 a	
graph	of	the	function	f(x)	= − F(x),	shown	in	Fig.	2.10b.	It	is	seen	that	f(x)	is	a	reflection	of	F(x)	
about the x-axis.	It	is	also	seen	from	the	graph	that	f(x)	takes	on	a	minimum	value	at	the	same	
point x*	where	the	maximum	of	F(x)	occurs.	Therefore,	minimization	of	f(x)	is	equivalent	to	
	maximization	of	F(x).

FIGURE 2.10 Point maximizing F(x) equals point minimizing −F(x).	(a)	plot	of	F(x);	(b)	plot	of f(x)	=	−F(x).
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2.11.3 Treatment of “Greater Than Type” Constraints

The	standard	design	optimization	model	treats	only	“≤	type”	inequality	constraints.	Many	
design	problems	may	also	have	“≥	type”	inequalities.	Such	constraints	can	be	converted	to	
the	standard	form	without	much	difficulty.	The	“≥	type”	constraint	Gj(x)	≥	0	is	equivalent	to	
the “≤	type”	inequality	gj(x)	=	−Gj(x)	≤	0.	Therefore,	we	can	multiply	any	“≥	type”	constraint	
by −1	to	convert	it	to	a	“≤	type.”

2.11.4 Application to Different Engineering Fields

Design	optimization	problems	from	different	fields	of	engineering	can	be	transcribed	into	
the	standard	model.	However,	the overall process of designing different engineering systems is the 
same.	Analytical	and	numerical	methods	for	analyzing	systems	can	differ.	Formulation	of	the	
design	problem	can	contain	terminology	that	is	specific	to	the	particular	domain	of	applica-
tion.	For	example,	in	the	fields	of	structural,	mechanical,	and	aerospace	engineering,	we	are	
concerned	with	the	integrity	of	the	structure	and	its	components.	The	performance	require-
ments	involve	constraints	on	member	stresses,	strains,	deflections	at	key	points,	frequencies	
of	vibration,	buckling	failure,	and	so	on.	Such	concepts	are	specific	to	each	field,	and	design-
ers	working	in	the	particular	field	understand	their	meaning	and	the	constraints.

other	fields	of	engineering	also	have	their	own	terminology	to	describe	design	optimiza-
tion	problems.	However,	once	the	problems	from	different	fields	have	been	transcribed	into	
mathematical	statements	using	a	standard	notation,	they	have	the	same	mathematical	form.	
They	are	contained	in	the	standard	design	optimization	model	defined	in	eqs.	(2.1) to (2.3).	
For	example,	all	of	the	problems	formulated	earlier	in	this	chapter	can	be	transformed	into	
the	form	of	eqs.	(2.1) to (2.3).	The	optimization	concepts	and	methods	described	in	the	text	
are	quite	general	and	can	be	used	to	solve	problems	from	diverse	fields.	The methods can be de-
veloped without reference to any design application.	This	is	a	key	point	that	must	be	kept	in	mind	
while	studying	the	optimization	concepts	and	methods.

2.11.5 Important Observations about the Standard Model

Several	features	of	the	standard	model	must	be	clearly	understood:

1. Dependence of functions on design variables:	First	of	all,	the	functions	f(x),	hj(x),	and	gi(x)	
must depend,	explicitly	or	implicitly,	on	some	of	the	design variables.	only	then	are	they	
valid	for	the	design	problem.	Functions	that	do	not	depend	on	any	variable	have	no	rela-
tion	to	the	problem	and	can	be	safely	ignored.

2. Number of equality constraints:	The	number	of	independent equality constraints must be less 
than,	or	at	the	most	equal	to,	the	number	of	design	variables	(ie,	p ≤ n).	When	p > n, we 
have	an	overdetermined system	of	equations.	In	that	case,	either	some	equality constraints 
are redundant	(linearly	dependent	on	other	constraints)	or	they	are	inconsistent.	In	the	
former	case,	redundant	constraints	can	be	deleted	and,	if	p < n, the optimum solution 
for	the	problem	is	possible.	In	the	latter	case,	no	solution	for	the	design	problem	is	
possible	and	the	problem	formulation	needs	to	be	closely	reexamined.	When	p = n, no 
optimization	of	the	system	is	necessary	because	the	roots	of	the	equality	constraints	are	
the	only	candidate	points	for	optimum	design.
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3. Number of inequality constraints:	Although	there	is	a	limitation	on	the	number	of	
independent	equality	constraints,	there is no restriction on the number of inequality 
constraints.	However,	the	total	number	of	active	constraints	(satisfied	at	equality)	must,	at	
the	optimum,	be	less	than	or	at	the	most	equal	to	the	number	of	design	variables.

4. Unconstrained problems:	Some	design	problems	may	not	have	any	constraints.	These	are	
called	unconstrained;	those	with	constraints	are	called	constrained.

5. Linear programming problems:	If	all	of	the	functions	f(x),	hj(x),	and	gi(x)	are	linear	in	design	
variables	x,	then	the	problem	is	called	a	linear programming problem.	If	any	of	these	
functions	is	nonlinear,	the	problem	is	called	a	nonlinear programming problem.

6. Scaling of problem functions:	It	is	important	to	note	that	if	the	cost function is scaled by 
multiplying	it	with	a	positive	constant,	the	optimum	design	does	not	change.	However,	
the	optimum	cost	function	value	does	change.	Also,	any	constant	can	be	added	to	
the	cost	function	without	affecting	the	optimum	design.	Similarly,	the	inequality	
constraints can be scaled	by	any	positive	constant	and	the	equalities	by	any	constant.	This	
will	not	affect	the	feasible	region	and	hence	the	optimum	solution.	All	the	foregoing	
transformations,	however,	affect	the	values	of	the	Lagrange multipliers	(defined	in	
chapter:	optimum	Design	concepts:	optimality	conditions).	Also,	performance	of	the	
numerical	algorithms	for	a	solution	to	the	optimization	problem	may	be	affected	by	
these	transformations.

2.11.6 Feasible Set

The	term	feasible set	will	be	used	throughout	the	text.	A feasible set for the design problem is a 
collection of all feasible designs.	The	terms	constraint set	and	feasible design space	are	also	used	to	
represent	the	feasible	set	of	designs.	The	letter	S	is	used	to	represent	the	feasible	set.	Math-
ematically, the set S	is	a	collection	of	design	points	satisfying	all	constraints:

= = = ≤ =S h j p g i mx x x( | ( ) 0, 1 to ; ( ) 0, 1 to )j i (2.4)

The	set of feasible designs	is	sometimes	referred	to	as	the	feasible region, especially for optimi-
zation	problems	with	two	design	variables.	It	is	important	to	note	that	the	feasible region usu-
ally shrinks when more constraints are added to the design model and expands when some constraints 
are deleted.	When	the	feasible	region	shrinks,	the	number	of	possible	designs	that	can	optimize	
the	cost	function	is	reduced;	that	is,	there	are	fewer	feasible	designs.	In	this	event,	the	mini-
mum	value	of	the	cost	function	is	likely	to	increase.	The	effect	is	completely	opposite	when	
some	constraints	are	dropped.	This	observation	is	significant	for	practical	design	problems	
and	should	be	clearly	understood.

2.11.7 Active/Inactive/Violated Constraints

We	will	quite	frequently	refer	to	a	constraint	as	active, tight, inactive, or violated.	We	define	
these	terms	precisely.	An	inequality	constraint	gj(x)	≤	0	is	said	to	be	active	at	a	design	point	
x*	if	it	is	satisfied	at	equality	(ie,	gj(x*)	=	0).	This	is	also	called	a	tight or binding	constraint.	For	
a	feasible	design,	an	inequality	constraint	may	or	may	not	be	active.	However,	all	equality	
constraints	are	active	for	all	feasible	designs.

S=(x|hj
(x)=0, j=1 to ρ; gi(x)≤0, i=1 to m)
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An	inequality	constraint	gj(x)	≤	0	is	said	to	be	inactive	at	a	design	point	x* if it is strictly 
satisfied	(ie,	gj(x*)	<	0).	It	is	said	to	be	violated	at	a	design	point	x*	if	its	value	is	positive	(ie,	
gj(x*)	>	0).	An	equality constraint hi(x)	=	0	is	violated	at	a	design	point	x* if hi(x*)	is	not	identi-
cally	zero.	note	that	by	these	definitions,	an	equality	constraint	is	either	active	or	violated	at	
a	given	design	point.

2.11.8 Discrete and Integer Design Variables

So	far,	we	have	assumed	in	the	standard	model	that	variables	xi	can	have	any	numerical	
value	within	the	feasible	region.	Many	times,	however,	some	variables	are	required	to	have	
discrete	or	integer	values.	Such	variables	appear	quite	often	in	engineering	design	problems.	
We	encountered	problems	in	Sections	2.4,	2.6,	and	2.9	that	have	integer	design	variables.	Before	
describing	how	to	treat	them,	let	us	define	what	we	mean	by	discrete	and	integer	variables.

A	design	variable	is	called	discrete	if	its	value	must	be	selected	from	a	given	finite	set	of	
values.	For	example,	a	plate	thickness	must	be	the	one	that	is	available	commercially:	1/8,	
1/4,	3/8,	1/2,	5/8,	3/4,	1	in,	and	so	on.	Similarly,	structural	members	must	be	selected	from	
a	catalog	to	reduce	fabrication	cost.	Such	variables	must	be	treated	as	discrete	in	the	standard	
formulation.

An	integer variable,	as	the	name	implies,	must	have	an	integer	value;	for	example,	the	num-
ber	of	logs	to	be	shipped,	the	number	of	bolts	used,	the	number	of	coils	in	a	spring,	the	num-
ber	of	items	to	be	shipped,	and	so	on.	problems	with	such	variables	are	called	discrete	and	
integer programming problems.	Depending	on	the	type	of	problem	functions,	the	problems	can	
be	classified	into	five	different	categories.	These	classifications	and	the	methods	to	solve	them	
are	discussed	in	chapter:	Discrete	Variable	optimum	Design	concepts	and	Methods.

In	some	sense,	discrete	and	integer	variables	impose	additional	constraints	on	the	design	
problem.	Therefore,	as	noted	before,	the	optimum	value	of	the	cost	function	is	likely	to	in-
crease	with	these	variables	compared	with	the	same	problem	that	is	solved	with	continuous	
variables.	If	we	treat	all	design	variables	as	continuous,	the	minimum	value	of	the	cost	func-
tion	represents	a	lower	bound	on	the	true	minimum	value	when	discrete	or	integer	variables	
are	 used.	 This	 gives	 some	 idea	 of	 the	 “best”	 optimum	 solution	 if	 all	 design	 variables	 are	
treated	as	continuous.	The	optimum	cost	function	value	is	likely	to	increase	when	discrete	
values	are	assigned	to	variables.	Thus,	the	first	suggested	procedure	is	to	solve	the	problem	
assuming	continuous	design	variables	if	possible.	Then	the	nearest	discrete/integer	values	
are	assigned	to	the	variables	and	the	design	is	checked	for	feasibility.	With	a	few	trials,	the	
best	feasible	design	close	to	the	continuous	optimum	can	be	obtained.

As	a	second	approach	for	solving	such	problems,	an	adaptive numerical optimization proce-
dure	may	be	used.	An	optimum	solution	with	continuous	variables	is	first	obtained	if	pos-
sible.	Then	only	the	variables	that	are	close	to	their	discrete	or	integer	value	are	assigned	that	
value.	They	are	held	fixed	and	the	problem	is	optimized	again.	The	procedure	is	continued	
until	all	variables	have	been	assigned	discrete	or	integer	values.	A	few	further	trials	may	be	
carried	out	to	improve	the	optimum	cost	function	value.	This	procedure	has	been	demon-
strated	by	Arora	and	Tseng	(1988).

The	foregoing	procedures	require	additional	computational	effort	and	do	not	guarantee	a	
true	minimum	solution.	However,	they	are	quite	straightforward	and	do	not	require	any	ad-
ditional	methods	or	software	for	solution	of	discrete/integer	variable	problems.
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2.11.9 Types of Optimization Problems

The	standard	design	optimization	model	can	represent	many	different	problem	types.	We	
saw	that	it	can	be	used	to	represent	linear	programming,	and	unconstrained	and	constrained,	
nonlinear	programming	optimization	problems.	It	is	important	to	understand	other	optimiza-
tion	problems	that	are	encountered	in	practical	applications.	Many	times	these	problems	can	
be	transformed	into	the	standard	model	and	solved	by	the	optimization	methods	presented	
and	discussed	in	this	text.	Here	we	present	an	overview	of	the	types	of	optimization	problems.

Continuous/Discrete-Variable Optimization Problems
When	 the	design	variables	can	have	any	numerical	value	within	 their	allowable	 range,	

the	problem	is	called	a	continuous-variable	optimization	problem.	When	the	problem	has	only	
	discrete/integer	variables,	it	is	called	a	discrete/integer-variable	optimization	problem.	When	
the	problem	has	both	continuous	and	discrete	variables,	 it	 is	called	a	mixed-variable	opti-
mization	problem.	numerical	methods	for	these	types	of	problems	have	been	developed,	as	
discussed	in	later	chapters.

Smooth/Nonsmooth Optimization Problems
When	its	functions	are	continuous	and	differentiable,	the	problem	is	referred	to	as	smooth	

(differentiable).	There	are	numerous	practical	optimization	problems	in	which	the	functions	
can	be	formulated	as	continuous	and	differentiable.	There	are	also	many	practical	applica-
tions	where	the	problem	functions	are	not	differentiable	or	even	discontinuous.	Such	prob-
lems	are	called	nonsmooth	(nondifferentiable).

numerical	methods	to	solve	these	two	classes	of	problems	can	be	different.	Theory	and	
numerical	methods	for	smooth	problems	are	well	developed.	Therefore,	it	is	most	desirable	
to	 formulate	 the	 problem	 with	 continuous	 and	 differentiable	 functions	 as	 far	 as	 possible.	
Sometimes,	a	problem	with	discontinuous	or	nondifferentiable	functions	can	be	transformed	
into	one	that	has	continuous	and	differentiable	functions	so	that	optimization	methods	for	
smooth	problems	can	be	used.	Such	applications	are	discussed	in	chapter:	practical	Applica-
tions	of	optimization.

Problems with Implicit Constraints
Some	constraints	are	quite	simple,	such	as	the	smallest	and	largest	allowable	values	for	

the	design	variables,	whereas	more	complex	ones	may	be	 indirectly	 influenced	by	 the	de-
sign	variables.	For	example,	deflection	at	a	point	in	a	large	structure	depends	on	its	design.	
However,	it	is	impossible	to	express	deflection	as	an	explicit	function	of	the	design	variables	
except	for	very	simple	structures.	These	are	called	implicit constraints.	When	there	are	implicit	
functions	in	the	problem	formulation,	it	is	not	possible	to	formulate	the	problem	functions	ex-
plicitly	in	terms	of	design	variables	alone.	Instead,	we	must	use	some	intermediate variables in 
the	problem	formulation.	We	will	discuss	formulations	having	implicit	functions	in	chapter:	
practical	Applications	of	optimization.

Network Optimization Problems
A	 network	 or	 a	 graph	 consists	 of	 points	 and	 lines	 connecting	 pairs	 of	 points.	 network	

models	are	used	to	represent	many	practical	problems	and	processes	from	different	branches	
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of	 engineering,	 computer	 science,	 operations	 research,	 transportation,	 telecommunication,	
decision	support,	manufacturing,	airline	scheduling,	and	many	other	disciplines.	Depending	
on	 the	 application	 type,	 network	 optimization	 problems	 have	 been	 classified	 as	 transpor-
tation	 problems,	 assignment	 problems,	 shortest-path	 problems,	 maximum-flow	 problems,	
minimum-cost-flow	problems,	and	critical	path	problems.

To	understand	the	concept	of	network	problems,	let	us	describe	the	transportation	prob-
lem	 in	 more	 detail.	 Transportation	 models	 play	 an	 important	 role	 in	 logistics	 and	 supply	
chain	 management	 for	 reducing	 cost	 and	 improving	 service.	 Therefore	 the	 goal	 is	 to	 find	
the	most	effective	way	to	transport	goods.	A	shipper	having	m warehouses with supply si of 
goods	at	the	ith	warehouse	must	ship	goods	to	n	geographically	dispersed	retail	centers,	each	
with	a	customer	demand	dj	that	must	be	met.	The	objective	is	to	determine	the	minimum	cost	
distribution	system,	given	that	the	unit	cost	of	transportation	between	the	ith	warehouse	and	
the jth retail center is cij.

This	problem	can	be	formulated	as	one	of	linear	programming.	Since	such	network	opti-
mization	problems	are	encountered	in	diverse	fields,	special	methods	have	been	developed	
to	solve	them	more	efficiently	and	perhaps	in	real	time.	Many	textbooks	are	available	on	this	
subject.	We	do	not	address	these	problems	in	any	detail,	although	some	of	the	methods	pre-
sented	in	chapters	15–19	can	be	used	to	solve	them.

Dynamic-Response Optimization Problems
Many	practical	systems	are	subjected	to	transient	dynamic	loads.	In	such	cases,	some	of	the	

problem	constraints	are	time-dependent.	each	of	these	constraints	must	be	imposed	for	the	
entire	time	interval	of	interest.	Therefore	each	represents	an	infinite	set	of	constraints	because	
the	constraint	must	be	imposed	at	each	time	point	in	the	given	interval.	The	usual	approach	to	
treating	such	a	constraint	is	to	impose	it	at	a	finite	number	of	time	points	in	the	given	interval.	
This	way	the	problem	is	transformed	into	the	standard	form	and	treated	with	the	methods	
presented	in	this	textbook.

Design Variables as Functions
In	some	applications,	the	design	variables	are	not	parameters	but	functions	of	one,	two,	

or	even	three	variables.	Such	design	variables	arise	in	optimal	control	problems	where	the	
input	needs	to	be	determined	over	the	desired	range	of	time	to	control	the	behavior	of	the	
system.	The	usual	treatment	of	design	functions	is	to	parameterize	them.	In	other	words,	each	
function	is	represented	in	terms	of	some	known	functions,	called	the	basis functions,	and	the	
parameters	multiplying	 them.	The	parameters	are	 then	 treated	as	design	variables.	 In	 this	
way	the	problem	is	transformed	into	the	standard	form	and	the	methods	presented	in	this	
textbook	can	be	used	to	solve	it.

2.12 DEVELOPMENT OF PROBLEM FORMULATION  
FOR PRACTICAL APPLICATIONS

on	the	basis	of	experience,	it	is	noted	that	usually	several	iterations	are	needed	before	an	
acceptable	formulation	for	a	practical	design	optimization	problem	is	obtained.	In	any	case,	
one	has	to	start	with	an	initial	formulation	for	the	problem.	When	a	solution	is	sought	for	
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this	initial	formulation,	several	flaws	may	be	detected	that	need	to	be	rectified	by	trial	and	
error	iterative	process.	For	example,	the	solution	algorithm	may	not	be	able	to	satisfy	all	the	
constraints;	that	is,	there	is	no	feasible	design	for	the	problem.	In	this	case,	one	needs	to	de-
termine	the	offending	constraints	and	redefine	them	so	that	there	are	feasible	designs	for	the	
problem.	This	in	itself	may	require	several	iterations.

In	other	cases,	the	solution	process	can	find	feasible	designs	for	the	problem	but	it	cannot	
converge	to	an	optimum	solution.	In	such	cases,	 the	feasible	set	 is	most	 likely	unbounded	
and	realistic	bounds	need	to	be	defined	for	the	design	variables	of	the	problem.	In	yet	other	
cases,	 the	solution	process	can	converge	to	an	optimum	solution	but	 the	solution	 is	weird	
and	impractical.	In	such	cases,	perhaps	some	practical	performance	requirements	have	not	
been	included	in	the	formulation;	or,	practical	bounds	may	need	to	be	defined	for	the	design	
variables	of	the	problem	and	the	problem	needs	to	be	solved	again.

In	some	cases,	the	entire	formulation	for	the	problem	may	need	to	be	re-examined	if	the	solu-
tion	process	does	not	yield	an	optimum	solution,	or	it	gives	an	unrealistic	solution.	In	these	cases,	
the	design	variables,	the	optimization	criterion,	and	all	the	constraints	may	need	to	be	re-exam-
ined	and	re-formulated.	Sometimes,	additional	objective	functions	may	need	to	be	introduced	
into	the	formulation	to	obtain	practical	solutions.	With	more	than	one	objective	function	in	the	
formulation,	multiobjective	optimization	methods	will	need	to	be	used	to	solve	the	problem.

Thus	 we	 see	 that	 several	 modifications	 of	 the	 initial	 formulation	 may	 be	 needed	 in	 an	
iterative	manner	before	a	proper	formulation	for	a	practical	problem	is	achieved.	each	modi-
fication	 requires	 the	 problem	 to	 be	 solved	 using	 an	 efficient	 numerical	 optimization	 algo-
rithm	and	the	associated	software.	Further	discussion	of	this	important	topic	is	presented	in	
chapter:	optimum	Design:	numerical	Solution	process	and	excel	Solver.

Development of a proper formulation for optimization of a practical design problem 
is an iterative process requiring several trial runs before an acceptable formulation 
is realized.

EXERCISES FOR CHAPTER 2

Transcribe	the	problem	statements	to	mathematical	formulation	for	optimum	design

2.1 A	100	×	100-m	lot	is	available	to	construct	a	multistory	office	building.	At	least	 
20,000	m2	of	total	floor	space	is	needed.	According	to	a	zoning	ordinance,	the	
maximum	height	of	the	building	can	be	only	21	m,	and	the	parking	area	outside	the	
building	must	be	at	least	25%	of	the	total	floor	area.	It	has	been	decided	to	fix	the	
height	of	each	story	at	3.5	m.	The	cost	of	the	building	in	millions	of	dollars	is	estimated	
at	0.6h	+	0.001A, where A	is	the	cross-sectional	area	of	the	building	per	floor	and	h is 
the	height	of	the	building.	Formulate	the	minimum-cost	design	problem.

2.2 A	refinery	has	two	crude	oils:
1. crude	A	costs	$120/barrel	(bbl)	and	20,000	bbl	are	available.
2. crude	B	costs	$150/bbl	and	30,000	bbl	are	available.

 The	company	manufactures	gasoline	and	lube	oil	from	its	crudes.	Yield	and	sale	price	
per	barrel	and	markets	are	shown	in	Table	e2.2.	How	much	crude	oil	should	the	
company	use	to	maximize	its	profit?	Formulate	the	optimum	design	problem.
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2.3 Design	a	beer	mug,	shown	in	Fig.	e2.3,	to	hold	as	much	beer	as	possible.	The	height	
and	radius	of	the	mug	should	be	no	more	than	20	cm.	The	mug	must	be	at	least	5	cm	
in	radius.	The	surface	area	of	the	sides	must	be	no	greater	than	900	cm2	(ignore	the	
bottom	area	of	the	mug	and	mug	handle).	Formulate	the	optimum	design	problem.

2.4 A	company	is	redesigning	its	parallel-flow	heat	exchanger	of	length	l to increase 
its	heat	transfer.	An	end	view	of	the	unit	is	shown	in	Fig.	e2.4.	There	are	certain	
limitations	on	the	design	problem.	The	smallest	available	conducting	tube	has	a	radius	
of	0.5	cm,	and	all	tubes	must	be	of	the	same	size.	Further,	the	total	cross-sectional	area	
of	all	of	the	tubes	cannot	exceed	2000	cm2	to	ensure	adequate	space	inside	the	outer	
shell.	Formulate	the	problem	to	determine	the	number	of	tubes	and	the	radius	of	each	
one	to	maximize	the	surface	area	of	the	tubes	in	the	exchanger.

2.5 proposals	for	a	parking	ramp	have	been	defeated,	so	we	plan	to	build	a	parking	lot	
in	the	downtown	urban	renewal	section.	The	cost	of	land	is	200W	+	100D, where W is 
the	width	along	the	street	and	D	is	the	depth	of	the	lot	in	meters.	The	available	width	
along	the	street	is	100	m,	whereas	the	maximum	depth	available	is	200	m.	We	want	the	
size	of	the	lot	to	be	at	least	10,000	m2.	To	avoid	unsightliness,	the	city	requires	that	the	

TABLE E2.2 Data for refinery Operations

Product

Yield/bbl Sale price  
per	bbl	($) Market	(bbl)Crude	A Crude B

Gasoline 0.6 0.8 200 20,000

Lube oil 0.4 0.2 400 10,000

FIGURE E2.3 Beer mug.

FIGURE E2.4 Cross-section of a heat exchanger.
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longer	dimension	of	any	lot	be	no	more	than	twice	the	shorter	dimension.	Formulate	
the	minimum-cost	design	problem.

2.6 A	manufacturer	sells	products	A	and	B.	profit	from	A	is	$10/kg	and	is	$8/kg	from	B.	
Available	raw	materials	for	the	products	are	100	kg	of	c	and	80	kg	of	D.	To	produce	
1	kg	of	A,	we	need	0.4	kg	of	c	and	0.6	kg	of	D.	To	produce	1	kg	of	B,	we	need	0.5	kg	
of	c	and	0.5	kg	of	D.	The	markets	for	the	products	are	70	kg	for	A	and	110	kg	for	B.	
How	much	of	A	and	B	should	be	produced	to	maximize	profit?	Formulate	the	design	
optimization	problem.

2.7 Design	a	diet	of	bread	and	milk	to	get	at	least	5	units	of	vitamin	A	and	4	units	of	vitamin	
B	daily.	The	amount	of	vitamins	A	and	B	in	1	kg	of	each	food	and	the	cost	per	kilogram	
of	the	food	are	given	in	Table	e2.7.	For	example,	one	kg	of	bread	costs	2$	and	provides	
one	unit	of	vitamin	A	and	3	units	of	vitamin	B.	Formulate	the	design	optimization	
problem	so	that	we	get	at	least	the	basic	requirements	of	vitamins	at	the	minimum	cost.

2.8 enterprising	engineering	students	have	set	up	a	still	in	a	bathtub.	They	can	produce	
225	bottles	of	pure	alcohol	each	week.	They	bottle	two	products	from	alcohol:	(1)	
wine,	at	20	proof,	and	(2)	whiskey,	at	80	proof.	Recall	that	pure	alcohol	is	200	proof.	
They	have	an	unlimited	supply	of	water,	but	can	only	obtain	800	empty	bottles	per	
week	because	of	stiff	competition.	The	weekly	supply	of	sugar	is	enough	for	either	600	
bottles	of	wine	or	1200	bottles	of	whiskey.	They	make	a	$1.00	profit	on	each	bottle	of	
wine	and	a	$2.00	profit	on	each	bottle	of	whiskey.	They	can	sell	whatever	they	produce.	
How	many	bottles	of	wine	and	whiskey	should	they	produce	each	week	to	maximize	
profit?	Formulate	the	design	optimization	problem	(created	by	D.	Levy).

2.9 Design	a	can	closed	at	one	end	using	the	smallest	area	of	sheet	metal	for	a	specified	
interior	volume	of	600	m3.	The	can	is	a	right-circular	cylinder	with	interior	height	h	and	
radius	r.	The	ratio	of	height	to	diameter	must	not	be	less	than	1.0	nor	greater	than	1.5.	
The	height	cannot	be	more	than	20	cm.	Formulate	the	design	optimization	problem.

2.10 Design	a	shipping	container	closed	at	both	ends	with	dimensions	b × b × h to minimize 
the	ratio:	(round-trip	cost	of	shipping	container	only)/(one-way	cost	of	shipping	contents	
only).	Use	the	data	in	Table	e2.10.	Formulate	the	design	optimization	problem.

TABLE E2.7 Data for the Diet Problem

Vitamin 1 kg bread provides 1 kg milk provides

A 1	unit 2	units

B 3	units 2	units

cost/kg,	$ 2 1

TABLE E2.10 Data for shipping container

Mass	of	container/surface	area 80	kg/m2

Maximum	b 10	m

Maximum	h 18	m

one-way	shipping	cost,	full	or	empty $18/kg	gross	mass

Mass	of	contents 150	kg/m3
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2.11 certain	mining	operations	require	an	open-top	rectangular	container	to	transport	
materials.	The	data	for	the	problem	are	as	follows:

 Construction costs:
• Sides:	$50/m2

• Ends:	$60/m2

• Bottom:	$90/m2

 Minimum volume needed:	150	m3

 Formulate	the	problem	of	determining	the	container	dimensions	at	a	minimum	cost.
2.12 Design	a	circular	tank	closed	at	both	ends	to	have	a	volume	of	250	m3.	The	fabrication	

cost	is	proportional	to	the	surface	area	of	the	sheet	metal	and	is	$400/m2.	The	tank	is	to	
be	housed	in	a	shed	with	a	sloping	roof.	Therefore,	height	H	of	the	tank	is	limited	by	
the relation H ≤	(10	− D/2),	where	D	is	the	tank’s	diameter.	Formulate	the	minimum-
cost	design	problem.

2.13 Design	the	steel	framework	shown	in	Fig.	e2.13	at	a	minimum	cost.	The	cost	of	a	
horizontal	member	in	one	direction	is	$20	w	and	in	the	other	direction	it	is	$30	d.	The	
cost	of	a	vertical	column	is	$50	h.	The	frame	must	enclose	a	total	volume	of	at	least	 
600	m3.	Formulate	the	design	optimization	problem.

2.14 Two	electric	generators	are	interconnected	to	provide	total	power	to	meet	the	load.	
each	generator’s	cost	is	a	function	of	the	power	output,	as	shown	in	Fig.	e2.14.	All	
costs	and	power	are	expressed	on	a	per-unit	basis.	The	total	power	needed	is	at	least	60	
units.	Formulate	a	minimum-cost	design	problem	to	determine	the	power	outputs	P1 
and	P2.

2.15 Transportation problem.	A	company	has	m	manufacturing	facilities.	The	facility	at	the	
ith	location	has	capacity	to	produce	bi	units	of	an	item.	The	product	should	be	shipped	
to n	distribution	centers.	The	distribution	center	at	the	jth	location	requires	at	least	aj 
units	of	the	item	to	satisfy	demand.	The	cost	of	shipping	an	item	from	the	ith plant to 
the jth	distribution	center	is	cij.	Formulate	a	minimum-cost	transportation	system	to	
meet	each	of	the	distribution	center’s	demands	without	exceeding	the	capacity	of	any	
manufacturing	facility.

2.16 Design of a two-bar truss.	Design	a	symmetric	two-bar	truss	(both	members	have	the	
same	cross-section),	as	shown	in	Fig.	e2.16,	to	support	a	load	W.	The	truss	consists	of	

FIGURE E2.13 Steel frame.
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two	steel	tubes	pinned	together	at	one	end	and	supported	on	the	ground	at	the	other.	
The	span	of	the	truss	is	fixed	at	s.	Formulate	the	minimum-mass	truss	design	problem	
using	height	and	cross-sectional	dimensions	as	design	variables.	The	design	should	
satisfy	the	following	constraints:
1. Because	of	space	limitations,	the	height	of	the	truss	must	not	exceed	b1	and	must	not	

be less than b2.
2. The	ratio	of	mean	diameter	to	thickness	of	the	tube	must	not	exceed	b3.
3. The	compressive	stress	in	the	tubes	must	not	exceed	the	allowable	stress	σ a	for	steel.
4. The	height,	diameter,	and	thickness	must	be	chosen	to	safeguard	against	member	

buckling.
 Use	the	following	data:	W	=	10	kn;	span	s	=	2	m;	b1	=	5	m;	b2	=	2	m;	b3	=	90;	allowable	

stress σ a	=	250	Mpa;	modulus	of	elasticity	E	=	210	Gpa;	mass	density	ρ	=	7850	kg/m3;	
factor	of	safety	against	buckling	FS	=	2;	0.1	≤ D ≤	2	(m);	and	0.01	≤ t ≤	0.1	(m).

FIGURE E2.14 Graphic	of	a	power	generator.

FIGURE E2.16 Two-bar structure.
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2.17 A	beam	of	rectangular	cross-section	(Fig.	e2.17)	is	subjected	to	a	maximum	bending	
moment of M	and	a	maximum	shear	of	V.	The	allowable	bending	and	shearing	stresses	
are σ a	and	τ a,	respectively.	The	bending	stress	in	the	beam	is	calculated	as

σ =
M

bd
6

2

 and	the	average	shear	stress	in	the	beam	is	calculated	as

τ =
V
bd

3
2

 where d	is	the	depth	and	b	is	the	width	of	the	beam.	It	is	also	desirable	to	have	the	depth	
of	the	beam	not	exceed	twice	its	width.	Formulate	the	design	problem	for	minimum	
cross-sectional	area	using	this	data:	M	=	140	kn	m,	V	=	24	kn,	σ a	=	165	Mpa,	τ a	=	50	Mpa.

2.18 A	vegetable	oil	processor	wishes	to	determine	how	much	shortening,	salad	oil,	and	
margarine	to	produce	to	optimize	the	use	its	current	oil	stock	supply.	At	the	present	
time,	he	has	250,000	kg	of	soybean	oil,	110,000	kg	of	cottonseed	oil,	and	2000	kg	of	
milk-base	substances.	The	milk-base	substances	are	required	only	in	the	production	of	
margarine.	There	are	certain	processing	losses	associated	with	each	product:	10%	for	
shortening,	5%	for	salad	oil,	and	no	loss	for	margarine.	The	producer’s	back	orders	
require	him	to	produce	at	least	100,000	kg	of	shortening,	50,000	kg	of	salad	oil,	and	
10,000	kg	of	margarine.	In	addition,	sales	forecasts	indicate	a	strong	demand	for	all	
products	in	the	near	future.	The	profit	per	kilogram	and	the	base	stock	required	per	
kilogram	of	each	product	are	given	in	Table	e2.18.	Formulate	the	problem	to	maximize	
profit	over	the	next	production-scheduling	period	(created	by	J.	Liittschwager)

σ=6Mbd2

τ=3V2bd

FIGURE E2.17 Cross-section of a rectangular beam.

TABLE E2.18 Data for the Vegetable Oil Processing Problem

Product

Parts per kg of base stock requirements

Profit per kg Soybean Cottonseed Milk base

Shortening 1.00 2 1 0

Salad	oil 0.80 0 1 0

Margarine 0.50 3 1 1
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Section 2.11: A General Mathematical Model for Optimum Design

2.19 Answer true or false:
 1. Design	of	a	system	implies	specification	of	the	design	variable	values.
 2. All	design	problems	have	only	linear	inequality	constraints.
 3. All	design	variables	should	be	independent	of	each	other	as	far	as	possible.
 4. If	there	is	an	equality	constraint	in	the	design	problem,	the	optimum	solution	must	

satisfy	it.
 5. each	optimization	problem	must	have	certain	parameters	called	the	design	variables.
 6. A	feasible	design	may	violate	equality	constraints.
 7. A	feasible	design	may	violate	“≥	type”	constraints.
 8. A	“≤	type”	constraint	expressed	in	the	standard	form	is	active	at	a	design	point	if	it	

has	zero	value	there.
 9. The	constraint	set	for	a	design	problem	consists	of	all	feasible	points.
10. The	number	of	independent	equality	constraints	can	be	larger	than	the	number	of	

design	variables	for	the	problem.
11. The	number	of	“≤	type”	constraints	must	be	less	than	the	number	of	design	

variables	for	a	valid	problem	formulation.
12. The	feasible	region	for	an	equality	constraint	is	a	subset	of	that	for	the	same	

constraint	expressed	as	an	inequality.
13. Maximization	of	f(x)	is	equivalent	to	minimization	of	1/f(x).
14. A	lower	minimum	value	for	the	cost	function	is	obtained	if	more	constraints	are	

added	to	the	problem	formulation.
15. Let fn	be	the	minimum	value	for	the	cost	function	with	n	design	variables	for	a	

problem.	If	the	number	of	design	variables	for	the	same	problem	is	increased	to,	
say, m	=	2n, then fm > fn, where fm	is	the	minimum	value	for	the	cost	function	with	m 
design	variables.

2.20 A	trucking	company	wants	to	purchase	several	new	trucks.	It	has	$2	million	to	
spend.	The	investment	should	yield	a	maximum	of	trucking	capacity	for	each	day	in	
tons ×	kilometers.	Data	for	the	three	available	truck	models	are	given	in	Table	e2.20: 
truck	load	capacity,	average	speed,	crew	required	per	shift,	hours	of	operation	for	three	
shifts,	and	cost	of	each	truck.	There	are	some	limitations	on	the	operations	that	need	to	be	
considered.	The	labor	market	is	such	that	the	company	can	hire	at	most	150	truck	drivers.	
Garage	and	maintenance	facilities	can	handle	at	the	most	25	trucks.	How	many	trucks	of	
each	type	should	the	company	purchase?	Formulate	the	design	optimization	problem.

TABLE E2.20 Data for available trucks

Truck 
model

Truck load 
capacity 
(tonnes)

Average	
truck speed 
(km/h)

Crew required 
per shift

No. of hours of 
operations per 
day	(3	shifts)

Cost of each 
truck	($)

A 10 55 1 18 40,000

B 20 50 2 18 60,000

c 18 50 2 21 70,000
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2.21 A	large	steel	corporation	has	two	iron-ore-reduction	plants.	each	plant	processes	
iron	ore	into	two	different	ingot	stocks,	which	are	shipped	to	any	of	three	fabricating	
plants	where	they	are	made	into	either	of	two	finished	products.	In	total,	there	are	two	
reduction	plants,	two	ingot	stocks,	three	fabricating	plants,	and	two	finished	products.	
For	the	upcoming	season,	the	company	wants	to	minimize	total	tonnage	of	iron	ore	
processed	in	its	reduction	plants,	subject	to	production	and	demand	constraints.	
Formulate	the	design	optimization	problem	and	transcribe	it	into	the	standard	model.
Nomenclature	(values	for	the	constants	are	given	in	Table	e2.21)
a(r, s)	=	tonnage	yield	of	ingot	stock	s	from	1	ton	of	iron	ore	processed	at	reduction	
plant r
b(s, f, p)	=	total	yield	from	1	ton	of	ingot	stock	s	shipped	to	fabricating	plant	f	and	
manufactured	into	product	p
c(r)	=	ore-processing	capacity	in	tonnage	at	reduction	plant	r
k(f)	=	capacity	of	fabricating	plant	f	in	tonnage	for	all	stocks
D(p)	=	tonnage	demand	requirement	for	product	p

 production	and	demand	constraints:
1. The	total	tonnage	of	iron	ore	processed	by	both	reduction	plants	must	equal	the	total	

tonnage	processed	into	ingot	stocks	for	shipment	to	the	fabricating	plants.
2. The	total	tonnage	of	iron	ore	processed	by	each	reduction	plant	cannot	exceed	its	

capacity.
3. The	total	tonnage	of	ingot	stock	manufactured	into	products	at	each	fabricating	plant	

must	equal	the	tonnage	of	ingot	stock	shipped	to	it	by	the	reduction	plants.
4. The	total	tonnage	of	ingot	stock	manufactured	into	products	at	each	fabricating	plant	

cannot	exceed	the	plant’s	available	capacity.
5. The	total	tonnage	of	each	product	must	equal	its	demand.

2.22 Optimization of a water canal.	Design	a	water	canal	having	a	cross-sectional	area	of	
150	m2.	The	lowest	construction	costs	occur	when	the	volume	of	the	excavated	material	
equals	the	amount	of	material	required	for	the	dykes,	that	is,	 =A A1 2 	(see	Fig.	e2.22).	
Formulate	the	problem	to	minimize	the	dugout	material	A1.	Transcribe	the	problem	
into	the	standard	design	optimization	model.

A1=A2

TABLE E2.21 constants for iron Ore Processing Operation

a(1,1)	=	0.39 c(1)	=	1,200,000 k(1)	=	190,000 D(1)	=	330,000

a(1,2)	=	0.46 c(2)	=	1,000,000 k(2)	=	240,000 D(2)	=	125,000

a(2,1)	=	0.44 k(3)	=	290,000

a(2,2)	=	0.48

b(1,1,1)	=	0.79 b(1,1,2)	=	0.84

b(2,1,1)	=	0.68 b(2,1,2)	=	0.81

b(1,2,1)	=	0.73 b(1,2,2)	=	0.85

b(2,2,1)	=	0.67 b(2,2,2)	=	0.77

b(1,3,1)	=	0.74 b(1,3,2)	=	0.72

b(2,3,1)	=	0.62 b(2,3,2)	=	0.78
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2.23 A	cantilever	beam	is	subjected	to	the	point	load	P	(kn),	as	shown	in	Fig.	e2.23.	The	
maximum	bending	moment	in	the	beam	is	PL	(kn·m)	and	the	maximum	shear	is	
P	(kn).	Formulate	the	minimum-mass	design	problem	using	a	hollow	circular	cross-
section.	The	material	should	not	fail	under	bending	or	shear	stress.	The	maximum	
bending	stress	is	calculated	as

σ =
PL
I

Ro
 

(a)

 where I	=	moment	of	inertia	of	the	cross-section.	The	maximum	shearing	stress	is	
calculated	as

τ = + +
P
I

R R R R
3

( )o o i i
2 2

 
(b)

 Transcribe	the	problem	into	the	standard	design	optimization	model	(also	use	Ro ≤ 
40.0	cm,	Ri ≤	40.0	cm).	Use	this	data:	P	=	14	kn;	L	=	10	m;	mass	density	ρ	=	7850	kg/m3;	
allowable	bending	stress	σ b	=	165	Mpa;	allowable	shear	stress	τ a	=	50	Mpa.

2.24 Design	a	hollow	circular	beam-column,	shown	in	Fig.	e2.24,	for	two	conditions:	When	
the	axial	tensile	load	P	=	50	(kn),	the	axial	stress	σ	must	not	exceed	an	allowable	value	
σ a,	and	when	P	=	0,	deflection	d	due	to	self-weight	should	satisfy	the	limit	d ≤	0.001L.	
The	limits	for	dimensions	are:	thickness	t	=	0.10–1.0	cm,	mean	radius	R	=	2.0–20.0	cm,	
and	R/t ≤	20	(AISc,	2011).	Formulate	the	minimum-weight	design	problem	and	
transcribe	it	into	the	standard	form.	Use	the	following	data:	deflection	d = 5wL4/384EI;	
w	=	self-weight	force/length	(n/m);	σ a	=	250	Mpa;	modulus	of	elasticity	E	=	210	Gpa;	

σ=PLIRo

τ=P3I(R02+R0Ri+Ri2)

FIGURE E2.22 Cross-section of a canal. (Created by V. K. Goel.)

FIGURE E2.23 Cantilever beam.
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mass	density	of	beam	material	ρ	=	7800	kg/m3;	axial	stress	under	load	P, σ = P/A;	
gravitational	constant	g	=	9.80	m/s2;	cross-sectional	area	A	=	2πRt	(m2);	moment	of	
inertia	of	beam	cross-section	I = πR3t	(m4).	Use	newton	(n)	and	millimeters	(mm)	as	
units	in	the	formulation.
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