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2
Optimum Design Problem 

Formulation

Upon completion of this chapter, you will be able to:

•	 Translate a descriptive statement of the 
design problem into a mathematical 
statement for optimization

•	 Identify and define the problem’s design 
variables

•	 Identify and define an optimization criterion 
for the problem

•	 Identify and define the design problem’s 
constraints

•	 Transcribe the problem formulation into a 
standard model for design optimization

It is generally accepted that the proper definition and formulation of a problem take more than 
50% of the total effort needed to solve it. Therefore, it is critical to follow well-defined proce-
dures for formulating design optimization problems. In this chapter, we describe the process 
of transforming the design of a selected system and/or subsystem into an optimum design 
problem. Methods for solving the problem will be discussed in subsequent chapters; here we 
focus on properly formulating the problem as an optimization problem.

Several simple and moderately complex applications are discussed in this chapter 
to illustrate the problem formulation process. More advanced applications are dis-
cussed in Chapters 6 and 7 and 14–19.

The importance of properly formulating a design optimization problem must be stressed be-
cause the optimum solution will be only as good as the formulation. For example, if we for-
get to include a critical constraint in the formulation, the optimum solution will most likely 
violate it. Also, if we have too many constraints, or if they are inconsistent, there may be no 
solution for the problem. However, once the problem is properly formulated, good software 
is usually available to solve it.

It is important to note that the process of developing a proper formulation for optimum de-
sign of practical problems is iterative in itself. Several iterations usually are needed to revise 
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the formulation before an acceptable one is finalized. This iterative process is further dis-
cussed in chapter: Optimum Design: Numerical Solution Process and Excel Solver.

For most design optimization problems, we will use the following five-step procedure to 
formulate the problem:

Step 1: Project/problem description
Step 2: Data and information collection
Step 3: Definition of design variables
Step 4: Optimization criterion
Step 5: Formulation of constraints

Formulation of an optimum design problem implies translating a descriptive state-
ment of the problem into a well-defined mathematical statement.

2.1  THE PROBLEM FORMULATION PROCESS

We will describe the tasks to be performed in each of the foregoing five steps to develop 
a mathematical formulation for the design optimization problem. These steps are illustrated 
with some examples in this section and in later sections.

2.1.1  Step 1: Project/Problem Description

Are the Project Goals Clear?
The formulation process begins by developing a descriptive statement for the project/

problem, usually by the project’s owner/sponsor. The statement describes the overall 
objectives of the project and the requirements to be met. This is also called the statement of 
work.

EXAMPLE 2.1 DESIGN OF A CANTILEVER BEAM, PROBLEM 
DESCRIPTION

Cantilever beams are used in many practical applications in civil, mechanical, and aerospace en-
gineering. To illustrate the step of problem description, we consider the design of a hollow square-
cross-section cantilever beam to support a load of 20 kN at its end. The beam, made of steel, is 2 m 
long, as shown in Fig. 2.1. The failure conditions for the beam are as follows: (1) the material should 
not fail under the action of the load, and (2) the deflection of the free end should be no more than 
1 cm. The width-to-thickness ratio for the beam should be no more than 8 to avoid local buckling 
of the walls. A minimum-mass beam is desired. The width and thickness of the beam must be within 
the following limits:

≤ ≤60 width 300 mm	 (a)

≤ ≤3 thickness 15 mm	 (b)

60 ≤ width ≤ 3,00,300 mm

3 ≤ thickness ≤ 15 mm
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2.1.2  Step 2: Data and Information Collection

Is all the Information Available to Solve the Problem?
To develop a mathematical formulation for the problem, we need to gather information 

on material properties, performance requirements, resource limits, cost of raw materials, and 
so forth. In addition, most problems require the capability to analyze trial designs. Therefore, 
analysis procedures and analysis tools must be identified at this stage. For example, the finite-
element method is commonly used for analysis of structures, so the software tool available 
for such an analysis needs to be identified. In many cases, the project statement is vague, 
and assumptions about modeling of the problem need to be made in order to formulate and 
solve it.

EXAMPLE 2.2 DATA AND INFORMATION COLLECTION 
FOR CANTILEVER BEAM

The information needed for the cantilever beam design problem of Example 2.1 includes expressions 
for bending and shear stresses, and the expression for the deflection of the free end. The notation 
and data for this purpose are defined in Table 2.1.

The following are useful expressions for the beam: 
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FIGURE 2.1  Cantilever beam of a hollow square cross-section.
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2.1.3  Step 3: Definition of Design Variables

What are these Variables?
HOW DO I IDENTIFY THEM?

The next step in the formulation process is to identify a set of variables that describe the 
system, called the design variables. In general, these are referred to as optimization variables 
or simply variables that are regarded as free because we should be able to assign any value 
to them. Different values for the variables produce different designs. The design variables 
should be independent of each other as far as possible. If they are dependent, their values 
cannot be specified independently because there are constraints between them. The number 
of independent design variables gives the design degrees of freedom for the problem.

σ=Mw2l N/mm2

π=VQ2It N/mm2

q=PL33EI mm

TABLE 2.1 N otation and Data for Cantilever Beam

Notation Data

A Cross-sectional area, mm2

E Modulus of elasticity of steel, 21 × 104 N/mm2

G Shear modulus of steel, 8 × 104 N/mm2

I Moment of inertia of the cross-section, mm4

L Length of the member, 2000 mm

M Bending moment, N/mm

P Load at the free end, 20,000 N

Q Moment about the neutral axis of the area above the neutral axis, mm3

q Vertical deflection of the free end, mm

qa Allowable vertical deflection of the free end, 10 mm

V Shear force, N

w Width (depth) of the section, mm

t Wall thickness, mm

σ Bending stress, N/mm2

σ a Allowable bending stress, 165 N/mm2

τ Shear stress, N/mm2

τa Allowable shear stress, 90 N/mm2
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For some problems, different sets of variables can be identified to describe the same sys-
tem. Problem formulation will depend on the selected set. We will present some examples 
later in this chapter to elaborate on this point.

Once the design variables are given numerical values, we have a design of the system. 
Whether this design satisfies all requirements is another question. We will introduce a number 
of concepts to investigate such questions in later chapters.

If proper design variables are not selected for a problem, the formulation will be either 
incorrect or not possible. At the initial stage of problem formulation, all options for specifica-
tion of design variables should be investigated. Sometimes it may be desirable to designate 
more design variables than apparent design degrees of freedom. This gives added flexibility 
to problem formulation. Later, it is possible to assign a fixed numerical value to any variable 
and thus eliminate it from the formulation.

At times it is difficult to clearly identify a problem’s design variables. In such a case, a 
complete list of all variables may be prepared. Then, by considering each variable individu-
ally, we can determine whether or not it can be treated as an optimization variable. If it is a valid 
design variable, the designer should be able to specify a numerical value for it to select a trial 
design.

We will use the term “design variables” to indicate all optimization variables for the opti-
mization problem and will represent them in the vector x. To summarize, the following con-
siderations should be given in identifying design variables for a problem:

•	 Generally, the design variables should be independent of each other. If they are 
not, there must be some equality constraints between them (explained later in 
several examples).

•	 A minimum number of design variables is required to properly formulate a design 
optimization problem.

•	 As many independent parameters as possible should be designated as design 
variables at the problem formulation phase. Later on, some of these variables can 
be assigned fixed numerical values.

•	 A numerical value should be given to each identified design variable to determine 
if a trial design of the system is specified.

EXAMPLE 2.3 DESIGN VARIABLES FOR CANTILEVER BEAM
Only dimensions of the cross-section are identified as design variables for the cantilever beam 

design problem of Example 2.1; all other parameters are specified:

w = outside width (depth) of the section, mm
t = wall thickness, mm

Note that the design variables are defined precisely including the units to be used for them.
It is also noted here that an alternate set of design variables can be selected: wo = outer width of the 

section, and wi = inner width of the section. The problem can be formulated using these design vari-
ables. However, note that all the expressions given in Eqs. (c)–(j) will have to be re-derived in terms 
of wo and wi. Thus the two formulations will look quite different from each other for the same design 
problem. However, these two formulations should yield same final solution.
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Note also that the wall thickness t can also be specified as a design variable in addition to wo and 
wi. In terms of these variables, the problem formulation will look quite different from the previous 
two formulations. However, in this case an additional constraint = −t w w0.5( )o i  must be imposed 
in the formulation; otherwise the formulation will not be proper and will not yield a meaningful 
solution for the problem.

To demonstrate calculation of various analysis quantities, let us select a trial design as w = 60 mm 
and t = 10 mm and calculate the quantities defined in Eqs. (c)–(j):
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2.1.4  Step 4: Optimization Criterion

How Do I Know that My Design is the Best?
There can be many feasible designs for a system, and some are better than others. The 

question is how do we quantify this statement and designate a design as better than another. 
For this, we must have a criterion that associates a number with each design. This way, the 
merit of a given design is specified. The criterion must be a scalar function whose numeri-
cal value can be obtained once a design is specified; that is, it must be a function of the design 
variable vector x. Such a criterion is usually called an objective function for the optimum design 
problem, and it needs to be maximized or minimized depending on problem requirements. 
A criterion that is to be minimized is usually called a cost function in engineering literature, 
which is the term used throughout this text. It is emphasized that a valid objective function 
must be influenced directly or indirectly by the variables of the design problem; otherwise, it is not a 
meaningful objective function.

The selection of a proper objective function is an important decision in the design pro-
cess. Some common objective functions are cost (to be minimized), profit (to be maximized), 

t=0.5(wo−wi)

A=4t(w
−t)=4(10)(60−10)=2,000 mm2

I=112w4
−112(w−2t)4=112(60)4

−

112(60−2×10)4=866,667 mm4

Q=18w3
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mm2

τ=VQ2
It=20,000×19,0002×866,667×10=21.93 N/

mm2
q=PL33EI=20,000×(2,000)33×21×104

×866,667=262.73 mm
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weight (to be minimized), energy expenditure (to be minimized), and ride quality of a vehicle 
(to be maximized). In many situations, an obvious objective function can be identified. For 
example, we always want to minimize the cost of manufacturing goods or maximize return 
on investment. In some situations, two or more objective functions may be identified. For ex-
ample, we may want to minimize the weight of a structure and at the same time minimize the 
deflection or stress at a certain point. These are called multiobjective design optimization prob-
lems and are discussed in chapter: Multi-objective Optimum Design Concepts and Methods.

For some design problems, it is not obvious what the objective function should be or how 
it should be expressed in terms of the design variables. Some insight and experience may be 
needed to identify a proper objective function for a particular design problem. For example, 
consider the optimization of a passenger car. What are the design variables? What is the 
objective function, and what is its functional form in terms of the design variables? This is 
a practical design problem that is quite complex. Usually, such problems are divided into 
several smaller subproblems and each one is formulated as an optimum design problem. For 
example, design of a passenger car can be divided into a number of optimization subprob-
lems involving the trunk lid, doors, side panels, roof, seats, suspension system, transmission 
system, chassis, hood, power plant, bumpers, and so on. Each subproblem is now manage-
able and can be formulated as an optimum design problem.

EXAMPLE 2.4 OPTIMIZATION CRITERION FOR CANTILEVER BEAM
For the design problem in Example 2.1, the objective is to design a minimum-mass cantilever beam. 

Since the mass is proportional to the cross-sectional area of the beam, the objective function for the 
problem is taken as the cross-sectional area which is to be minimized:

= = −f w t A t w t( , ) 4 ( ), mm2
	 (s)

At the trial design w = 60 mm and t = 10 mm, the cost function is evaluated as

= − = × − =f w t t w t( , ) 4 ( ) 4 10(60 10) 2,000 mm2

2.1.5  Step 5: Formulation of Constraints

What Restrictions Do I have on My Design?
All restrictions placed on the design are collectively called constraints. The final step in 

the formulation process is to identify all constraints and develop expressions for them. Most 
realistic systems must be designed and fabricated with the given resources and must meet 
performance requirements. For example, structural members should not fail under normal op-
erating loads. The vibration frequencies of a structure must be different from the operating 
frequency of the machine it supports; otherwise, resonance can occur and cause catastrophic 
failure. Members must fit into the available space, and so on.

These constraints, as well as others, must depend on the design variables, since only then 
do their values change with different trial designs; that is, a meaningful constraint must be a 

f(w,t)=A=4t(w−t)  mm2

f(w,t)=4t(w−t)=4×10(60−10)=2
,000   mm2



26	 2.  Optimum Design Problem Formulation

I.  The Basic Concepts

function of at least one design variable. Several concepts and terms related to constraints are 
explained next.

Linear and Nonlinear Constraints
Many constraint functions have only first-order terms in design variables. These are called 

linear constraints. Linear-programming problems have only linear constraints and objective func-
tions. More general problems have nonlinear objective function and/or constraint functions. 
These are called nonlinear-programming problems. Methods to treat both linear and nonlinear 
constraints and objective functions are presented in this text.

Feasible Design
The design of a system is a set of numerical values assigned to the design variables (ie, 

a particular design variable vector x). Even if this design is absurd (eg, negative radius) 
or inadequate in terms of its function, it can still be called a design. Clearly, some designs 
are useful and others are not. A design meeting all requirements is called a feasible design 
(acceptable or workable). An infeasible design (unacceptable) does not meet one or more of the 
requirements.

Equality and Inequality Constraints
Design problems may have equality as well as inequality constraints. The problem de-

scription should be studied carefully to determine which requirements need to be formulated 
as equalities and which ones as inequalities. For example, a machine component may be 
required to move precisely by ∆ to perform the desired operation, so we must treat this as 
an equality constraint. A feasible design must satisfy precisely all equality constraints. Also, 
most design problems have inequality constraints, sometimes called unilateral or one-sided 
constraints. Note that the feasible region with respect to an inequality constraint is much larger 
than that with respect to the same constraint expressed as equality.

To illustrate the difference between equality and inequality constraints, we consider a con-
straint written in both equality and inequality forms. Fig. 2.2a shows the equality constraint 
x1 = x2. Feasible designs with respect to the constraint must lie on the straight line A–B. How-
ever, if the constraint is written as an inequality x1 ≤ x2, the feasible region is much larger, as 
shown in Fig. 2.2b. Any point on the line A–B or above it gives a feasible design. Therefore, it 
is important to properly identify equality and inequality constraints; otherwise a meaningful 
solution may not be obtained for the problem.

EXAMPLE 2.5 CONSTRAINTS FOR CANTILEVER BEAM
Using various expressions given in Eqs. (c)–(j), we formulate the constraints for the cantilever 

beam design problem from Example 2.1 as follows:

Bending stress constraint: σ ≤ σ a

σ≤
PLw

I2
a

	
(t)

PLw2I≤σa
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Shear stress constraint: τ ≤ τa

τ≤
PQ

It2
a

	
(u)

Deflection constraint: q ≤ qa

≤
PL
EI

q
3

a

3

	
(v)

Width–thickness restriction: ≤
w
t

8

≤w t8	 (w)

pQ2It≤τa

PL33EI≤qa

wt≤8

w≤8t

FIGURE 2.2  Shown here is the distinction between equality and inequality constraints. (a) Feasible region for 
constraint x1 = x2 (line A − B); (b) feasible region for constraint x1 ≤ x2 (line A − B and the region above it).
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Dimension restrictions:

≤ ≤w w60 , mm; 300, mm	 (x)

≤ ≤t t3 , mm; 15, mm	 (y)

Formulation for optimum design of a cantilever beam. Thus the optimization problem is to find w and t to 
minimize the cost function of Eq. (s) subject to the eight inequality constraints of Eqs. (t)–(y). Note that the 
constraints of Eqs. (t)–(v) are nonlinear functions and others are linear functions of the design variables 
(the width-thickness ratio constraint in Eq. (w) has been transformed to the linear form). There are eight 
inequality constraints and no equality constraints for this problem. Note that each constraint depends on 
at least one design variable. Substituting various expressions, constraints in Eqs. (t)–(v) can be expressed 
explicitly in terms of the design variables, if desired. Or, we can keep them in terms of the intermediate 
variables I and Q and treat them as such in numerical calculations. Later in chapter: Optimum Design: 
Numerical Solution Process and Excel Solver, an example of design of a plate girder is described where 
some intermediate variables are explicitly treated as dependent variables in the formulation.

Using the quantities calculated in Eqs. (k)–(r), let us check the status of the constraints for the 
cantilever beam design problem at the trial design point w = 60 mm and t = 10 mm:

Bending stress constraint: σ  ≤ σ a ; σ = 1385 N/mm2, σ a  = 165 N/mm2; ∴ violated
Shear stress constraint: τ ≤ τ a ; τ = 21.93 N/mm2, τ a  = 90 N/mm2; ∴ satisfied
Deflection constraint: q ≤ qa  ; q = 262.73 mm, qa  = 10 mm; ∴ violated

Width–thickness restriction: ≤
w
t

8 ; = =
w
t

60
10

6; ∴ satisfied

In addition, the width w is at its allowed minimum value and the thickness t is within its al-
lowed values as given in Eqs. (x) and (y). This trial design violates bending stress and deflection 
constraints and therefore it is not a feasible design for the problem.

2.2  DESIGN OF A CAN

Step 1: Project/problem description. The purpose of this project is to design a can, shown 
in Fig. 2.3, to hold at least 400 mL of liquid (1 mL = 1 cm3), as well as to meet other design 
requirements. The cans will be produced in the billions, so it is desirable to minimize their 
manufacturing costs. Since cost can be directly related to the surface area of the sheet metal 

60≤w   mm;   w≤  300 mm

3≤t   mm;   t≤15 mm

wt≤8wt=6010=6

FIGURE 2.3  A can.
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used, it is reasonable to minimize the amount of sheet metal required. Fabrication, handling, 
aesthetics, and shipping considerations impose the following restrictions on the size of the 
can: The diameter should be no more than 8 cm and no less than 3.5 cm, whereas the height 
should be no more than 18 cm and no less than 8 cm.

Step 2: Data and information collection. Data for the problem are given in the project statement.
Step 3: Definition of design variable. The two design variables are defined as

D = diameter of the can, cm
H = height of the can, cm

Step 4: Optimization criterion. The design objective is to minimize the total surface area S 
of the sheet metal for the three parts of the cylindrical can: the surface area of the cylinder 
(circumference × height) and the surface area of the two ends. Therefore, the optimization 
criterion, or cost function (the total area of sheet metal), is given as

π π
= + 





S DH D2
4

, cm2 2

	
(a)

Step 5: Formulation of constraints. The first constraint is that the can must hold at least 400 cm3 
of fluid, which is written as

π
≥D H

4
400, cm2 3

	
(b)

If it had been stated that “the can must hold 400 mL of fluid,” then the preceding volume 
constraint would be an equality. The other constraints on the size of the can are

≤ ≤
≤ ≤

D
H

3.5 8, cm
8 18, cm	

(c)

The explicit constraints on design variables in Eq. (c) have many different names in the 
literature, such as side constraints, technological constraints, simple bounds, sizing constraints, and 
upper and lower limits on the design variables. Note that for the present problem there are really 
four constraints in Eq. (c). Thus, the problem has two design variables and a total of five in-
equality constraints. Note also that the cost function and the first constraint are nonlinear in 
variables; the remaining constraints are linear.

Mathematical formulation. Thus the optimization problem for design of a tank is to deter-
mine the design variables D and H to minimize the cost function in Eq. (a) subject to the five 
inequalities in Eqs. (b) and (c).

2.3  INSULATED SPHERICAL TANK DESIGN

Step 1: Project/problem description. The goal of this project is to choose an insulation thick-
ness t to minimize the life-cycle cooling cost for a spherical tank. The cooling costs include 
installing and running the refrigeration equipment, and installing the insulation. Assume a 
10-year life, a 10% annual interest rate, and no salvage value. The tank has already been de-
signed having r (m) as its radius.

S=πDH+2π4D2 cm2

π4D2H≥400,  cm3

3.5≤D≤8   cm8≤H≤18 cm
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Step 2: Data and information collection. To formulate this design optimization problem, we 
need some data and analysis expressions. To calculate the volume of the insulation material, 
we require the surface area of the spherical tank, which is given as

π=A r4 , m2 2
	 (a)

To calculate the capacity of the refrigeration equipment and the cost of its operation, we 
need to calculate the annual heat gain G (Watt-hours), which is given as

= ∆
G

T A
c t

(365)(24)( )
, Wh

1	
(b)

where ∆T is the average difference between the internal and external temperatures in Kelvin, 
c1 is the thermal resistivity per unit thickness in Kelvin-meter per Watt, and t is the insula-
tion thickness in meters. ∆T can be estimated from the historical data for temperatures in the 
region in which the tank is to be used. Let c2 = the insulation cost per cubic meter ($/m3), 
c3 = the cost of the refrigeration equipment per Watt-hour of capacity ($/Wh), and c4 = the 
annual cost of running the refrigeration equipment per Watt-hour ($/Wh).

Step 3: Definition of design variables. Only one design variable is identified for this problem:

t = insulation thickness, m.

Step 4: Optimization criterion. The goal is to minimize the life-cycle cooling cost of refrigera-
tion for the spherical tank over 10 years. The life-cycle cost has three components: insulation, 
refrigeration equipment, and operations for 10 years. Once the annual operations cost has 
been converted to the present cost, the total cost is given as

= + +Cost c At c G c G uspwf[ (0.1, 10)]2 3 4	 (c)

where uspwf (0.1, 10) = 6.14457 is the uniform series present worth factor, calculated using the 
equation

= − − −uspwf i n
i

i( , )
1

[1 (1 ) ]n

	
(d)

where i is the rate of return per dollar per period and n is the number of periods. Note that 
to calculate the volume of the insulation as At, it is assumed that the insulation thickness is 
much smaller than the radius of the spherical tank; that is, t ≪ r.

Step 5: Formulation of constraints. Although no constraints are indicated in the problem 
statement, it is important to require that the insulation thickness be nonnegative (ie, t ≥ 0). 
Although this may appear obvious, it is important to include the constraint explicitly in the 
mathematical formulation of the problem. Without its explicit inclusion, the mathematics of 
optimization may assign negative values to thickness, which is, of course, meaningless. Note 
also that in reality t cannot be zero because it appears in the denominator of the expression 
for G. Therefore, the constraint should really be expressed as t > 0. However, strict inequalities 
cannot be treated mathematically or numerically in the solution process because they give an 
open feasible set. We must allow the possibility of satisfying inequalities as equalities; that 
is, we must allow the possibility that t = 0 in the solution process. Therefore, a more realistic 
constraint is t ≥ tmin, where tmin is the smallest insulation thickness available on the market.

A=4πr2   m2

G=(365)(24)(∆T)Ac1tWh

Cost=c2At+c3G+c4G[uspwf(0.1,
10)]

uspw(i,n)=1i[1−(1−i)−n]
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EXAMPLE 2.6 FORMULATION OF THE SPHERICAL TANK PROBLEM 
WITH INTERMEDIATE VARIABLES

A summary of the problem formulation for the design optimization of insulation for a spherical 
tank with intermediate variables is as follows:

Specified data: r, ∆T, c1, c2, c3, c4, tmin

Design variable: t, m
Intermediate variables: A, m; G, Watt-hours

π=

=
∆

A r

G
T A

c t

4
(365)(24)( )

2

1	

(e)

Cost function: Minimize the life-cycle cooling cost of refrigeration of the spherical tank,

= + +Cost c At c G c G6.14457 , $2 3 4 	 (f)

Constraint:

≥t tmin	 (g)

Note that A and G are also treated as design variables in this formulation. However, A must be 
assigned a fixed numerical value since r has already been determined, and the expression for G in 
Eq. (e) must be treated as an equality constraint.

Mathematical formulation. Thus the optimization problem for design of an insulated spherical 
tank is to determine the design variables t and G to minimize the cost function of Eq. (f) subject to 
the equality constraint in Eq. (e) and the inequality constraint on thickness in Eq. (g).

EXAMPLE 2.7 FORMULATION OF THE SPHERICAL TANK PROBLEM 
WITH THE DESIGN VARIABLE ONLY

Following is a summary of the problem formulation for the design optimization of insulation for 
a spherical tank in terms of the design variable only:

Specified data: r, ∆T, c1, c2, c3, c4, tmin

Design variable: t, m
Cost function: Minimize the life-cycle cooling cost of refrigeration of the spherical tank,

π

π

= + =

=
+

∆

Cost at
b
t

a c r

b
c c

c
T r

, 4 ,

( 6.14457 )
(365)(24)( )(4 )

2
2

3 4

1

2

	

(h)

A=4πr2G=(365)(24)(∆T)Ac1t

Cost=c2At+c3G+6.14457c4G

t≥tmin

Cost=at+bt,  a=4c2πr2,b=(c3+6.14457c4)c1(-
365)(24)(∆T)(4πr2)
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Constraint:

≥t tmin	 (i)

Mathematical formulation. Thus the optimization problem for design of an insulated spherical 
tank is to determine the design variable t to minimize the cost function of Eq. (h) subject to the 
minimum thickness constraint in Eq. (i).

2.4  SAWMILL OPERATION

Step 1: Project/problem description. A company owns two sawmills and two forests. Table 2.2 
shows the capacity of each of the mills (logs/day) and the distances between the forests and 
the mills (km). Each forest can yield up to 200 logs/day for the duration of the project, and 
the cost to transport the logs is estimated at $10/km/log. At least 300 logs are needed daily. 
The goal is to minimize the total daily cost of transporting the logs and meet the constraints 
on the demand and the capacity of the mills.

Step 2: Data and information collection. Data are given in Table 2.2 and in the problem statement.
Step 3: Definition of design variables. The design problem is to determine how many logs to 

ship from Forest i to Mill j, as shown in Fig. 2.4. Therefore, the design variables are identified 
and defined as follows:

x1 = number of logs shipped from Forest 1 to Mill A
x2 = number of logs shipped from Forest 2 to Mill A
x3 = number of logs shipped from Forest 1 to Mill B
x4 = number of logs shipped from Forest 2 to Mill B

t≥tmin

TABLE 2.2  Data for Sawmills

Mill Distance from Forest 1 Distance from Forest 2 Mill capacity per day

A 24.0 km 20.5 km 240 logs

B 17.2 km 18.0 km 300 logs

FIGURE 2.4  Sawmill operation.
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Note that if we assign numerical values to these variables, an operational plan for the 
project is specified and the cost of daily log transportation can be calculated; that is, they are 
independent design variables. The selected design may or may not satisfy all the constraints.

Step 4: Optimization criterion. The design objective is to minimize the daily cost of transport-
ing the logs to the mills. The cost of transportation, which depends on the distance between 
the forests and the mills given in Table 2.2, is

= + + +
= + + +

Cost x x x x
x x x x

24(10) 20.5(10) 17.2(10) 18(10)
240.0 205.0 172.0 180.0

1 2 3 4

1 2 3 4	
(a)

Step 5: Formulation of constraints. The constraints for the problem are based on mill capacity 
and forest yield:

+ ≤
+ ≤
+ ≤
+ ≤

x x

x x

x x

x x

240 (Mill A Capacity)
300 (Mill B Capacity)
200 (Forest 1 yield)
200 (Forest 2 yield)

1 2

3 4

1 3

2 4	

(b)

The constraint on the number of logs needed for each day is expressed as

+ + + ≥x x x x 300 (demand for logs)1 2 3 4	 (c)

For a realistic problem formulation, all design variables must be non-negative; that is,

≥ =x i0; 1 to 4i	 (d)

Mathematical formulation. The problem has four design variables, five inequality constraints, 
and four nonnegativity constraints on the design variables. The optimization problem is to 
determine the design variables x1–x4 to minimize the cost function in Eq. (a) subject to the con-
straints in Eqs. (b)–(d). Note that all problem functions are linear in design variables, so this 
is a linear programming problem. Note also that for a meaningful solution, all design variables 
must have integer values. Such problems are called integer-programming problems and require 
special solution methods. Some such methods are discussed in chapter: Discrete Variable 
Optimum Design Concepts and Methods.

It is also noted that the problem of sawmill operation falls into a class known as transporta-
tion problems. For such problems, we would like to ship items from several distribution cen-
ters to several retail stores to meet their demand at a minimum cost of transportation. Special 
methods have been developed to solve this class of problems.

2.5  DESIGN OF A TWO-BAR BRACKET

Step 1: Project/problem description. The objective of this project is to design a two-bar bracket 
(shown in Fig. 2.5) to support a load W without structural failure. The load is applied at an 
angle u, which is between 0 and 90°, h is the height, and s is the bracket’s base width. The 
bracket will be produced in large quantities. It has also been determined that its total cost 

Cost=24(10)x1+20.5(10)x2+
17.2(10)x3+18(10)x4 =240.0x-

1+205.0x2+172.0x3+180.0x4

x1+x2≤240 (Mill A C
apacity)x3+x4≤300 

(Mill B Capacity)x1+x3≤200 (For-
est 1 yield)x2+x4≤200 (For-

est 2 yield)
x1+x2+x3+x4≥300  (de-

mand for logs)

x1≥0;  i=1to 4
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(material, fabrication, maintenance, and so on) is directly related to the size of the two bars. 
Thus, the design objective is to minimize the total mass of the bracket while satisfying perfor-
mance, fabrication, and space limitations.

Step 2: Data and information collection. First, the load W and its angle of application u need to 
be specified. Since the bracket may be used in several applications, it may not be possible to 
specify just one angle for W. It is possible to formulate the design optimization problem such 
that a range is specified for angle u (ie, load W may be applied at any angle within that speci-
fied range). In this case, the formulation will be slightly more complex because performance 
requirements will need to be satisfied for each angle of application. However, in the present 
formulation, it is assumed that angle u is specified.

Second, the material to be used for the bars must be specified because the material proper-
ties are needed to formulate the optimization criterion and performance requirements. Wheth-
er the two bars are to be fabricated using the same material also needs to be determined. In 
the present formulation, it is assumed that they are, although it may be prudent to assume 
otherwise for some advanced applications. In addition, we need to determine the fabrication 
and space limitations for the bracket (eg, on the size of the bars, height, and base width).

In formulating the design problem, we also need to define structural performance more pre-
cisely. Forces F1 and F2 carried by bars 1 and 2, respectively, can be used to define failure con-
ditions for the bars. To compute these forces, we use the principle of static equilibrium. Using 
the free-body diagram for node 1 (shown in Fig. 2.5b), equilibrium of forces in the horizontal 
and vertical directions gives

α α θ
α α θ

− + =
− − =

F F W

F F W

sin sin cos
cos cos sin

1 2

1 2	
(a)

From the geometry of Fig. 2.5, sin a = 0.5 s/l and cos a = h/l, where l is the length of mem-

bers given as = +l h s(0.5 )2 . Note that F1 and F2 are shown as tensile forces in the free-body 

−F1sina+F2sina=W  cosu−F1cosa
−F2cosa=W  sinu

l=h2+(0.5s)2

FIGURE 2.5  Two-bar bracket. (a) Structure and (b) free-body diagram for node 1.
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diagram. The solution to Eq. (a) will determine the magnitude and direction of the forces. In 
addition, the tensile force will be taken as positive. Thus, the bar will be in compression if the 
force carried by it has negative value. By solving the two equations simultaneously for the 
unknowns F1 and F2, we obtain

θ θ

θ θ

= − +





= − −





F Wl
h s

F Wl
h s

0.5
sin 2 cos

0.5
sin 2 cos

1

2

	

(b)

To avoid bar failure due to overstressing, we need to calculate bar stress. If we know 
the force carried by a bar, then the stress σ can be calculated as the force divided by 
the bar’s cross-sectional area (stress = force/area). The SI unit for stress is N ewton/
meter2 (N/m2), also called Pascal (Pa), whereas the US–British unit is pound/in2 (written 
as psi). The expression for the cross-sectional area depends on the cross-sectional shape 
used for the bars and selected design variables. Therefore, a structural shape for the bars 
and associated design variables must be selected. This is illustrated later in the formula-
tion process.

In addition to analysis equations, we need to define the properties of the selected material. 
Several formulations for optimum design of the bracket are possible depending on the ap-
plication’s requirements. To illustrate, a material with known properties is assumed for the 
bracket. However, the structure can be optimized using other materials along with their as-
sociated fabrication costs. Solutions can then be compared to select the best possible material 
for the structure.

For the selected material, let ρ be the mass density and σ a > 0 be the allowable design 
stress. As a performance requirement, it is assumed that if the stress exceeds this allowable 
value, the bar is considered to have failed. The allowable stress is defined as the material failure 
stress (a property of the material) divided by a factor of safety greater than one. In addition, 
it is assumed that the allowable stress is calculated in such a way that the buckling failure of 
a bar in compression is avoided.

Step 3: Definition of design variables. Several sets of design variables may be identified for 
the two-bar structure. The height h and span s can be treated as design variables in the initial 
formulation. Later, they may be assigned numerical values, if desired, to eliminate them from 
the formulation. Other design variables will depend on the cross-sectional shape of bars 1 and 
2. Several cross-sectional shapes are possible, as shown in Fig. 2.6, where design variables for 
each shape are also identified.

Note that for many cross-sectional shapes, different design variables can be selected. For 
example, in the case of the circular tube in Fig. 2.6a, the outer diameter do and the ratio be-
tween the inner and outer diameters r = di/do may be selected as the design variables. Or do 
and di may be selected. However, it is not desirable to designate do, di, and r as the design vari-
ables because they are not independent of each other. If they are selected, then a relationship 
between them must be specified as an equality constraint. Similar remarks can be made for 
the design variables associated with other cross-sections, also shown in Fig. 2.6.

As an example of problem formulation, consider the design of a bracket with hollow circu-
lar tubes as members, as shown in Fig. 2.6a. The inner and outer diameters di and do and wall 

F1=−0.5Wlsinuh+2 cosusF2=−0.
5Wlsinuh−2 cosus
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thickness t may be identified as the design variables, although they are not all independent 
of each other. For example, we cannot specify di = 10, do = 12, and t = 2 because it violates the 
physical condition t = 0.5(do − di). Therefore, if we formulate the problem with di, do, and t as 
design variables, we must also impose the constraint t = 0.5(do − di). To illustrate a formula-
tion of the problem, let the design variables be defined as

x1 = height h of the bracket
x2 = span s of the bracket
x3 = outer diameter of bar 1
x4 = inner diameter of bar 1
x5 = outer diameter of bar 2
x6 = inner diameter of bar 2

FIGURE 2.6  Bar cross-sectional shapes. (a) Circular tube; (b) solid circular; (c) rectangular tube; (d) solid rectan-
gular; (e) I-section; (f) channel section.
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In terms of these variables, the cross-sectional areas A1 and A2 of bars 1 and 2 are given as

π π
= − = −A x x A x x

4
( );

4
( )1 3

2
4
2

2 5
2

6
2

	
(c)

Once the problem is formulated in terms of the six selected design variables, it is always 
possible to modify it to meet more specialized needs. For example, the height x1 may be as-
signed a fixed numerical value, thus eliminating it from the problem formulation. In addition, 
complete symmetry of the structure may be required to make its fabrication easier; that is, it 
may be necessary for the two bars to have the same cross-section, size, and material. In such 
a case, we set x3 = x5 and x4 = x6 in all expressions of the problem formulation. Such modifica-
tions are left as exercises.

Step 4: Optimization criterion. The structure’s mass is identified as the objective function in 
the problem statement. Since it is to be minimized, it is called the cost function for the problem. 
An expression for the mass is determined by the cross-sectional shape of the bars and associ-
ated design variables. For the hollow circular tubes and selected design variables, the total 
mass of the structure is calculated as (density × material volume):

ρ ρ π
= + = +



 − + −Mass l A A x x x x x x[ ( )] (0.5 )

4
( )1 2 1

2
2

2
3
2

4
2

5
2

6
2

	
(d)

Note that if the outer diameter and the ratio between the inner and outer diameters are se-
lected as design variables, the form of the mass function changes. Thus, the final form depends 
on the design variables selected for the problem.

Step 5: Formulation of constraints. It is important to include all constraints in the problem 
formulation because the final solution depends on them. For the two-bar structure, the con-
straints are on the stress in the bars and on the design variables themselves. These constraints 
will be formulated for hollow circular tubes using the previously defined design variables. 
They can be similarly formulated for other sets of design variables and cross-sectional shapes.

To avoid overstressing a bar, the calculated stress σ (tensile or compressive) must not ex-
ceed the material allowable stress σ a > 0. The stresses σ 1 and σ 2 in the two bars are calculated 
as force/area:

σ

σ

=

=

F
A

(stress in bar 1)

F
A

(stress in bar 2)

1
1

1

2
2

2	

(e)

Note that to treat positive and negative stresses (tension and compression), we must 
use the absolute value of the calculated stress in writing the constraints (eg, |σ|≤ σ a). The 
absolute-value constraints can be treated by different approaches in optimization methods. 
Here we split each absolute-value constraint into two constraints. For example, the stress 
constraint for bar 1 is written as the following two constraints:

σ σ
σ σ

≤
− ≤

(tensile stress in bar 1)
(compressive stress in bar 1)

a

a

1

1	
(f)

A1=π4(x32−x42);  A2=π4(x52−x62)

Mass=ρ[l(A1+A2)]=ρx12+(0.5x2)2

π4(x32−x42−x52−x62)

σ1=F1A1(stress in bar 1)σ2=F2A2(s
tress in bar 2)

σ1≤ σa(tensi-
le  stress in bar 1)σ1≤ σa(com-

pressive  stress in bar 1)
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With this approach, the second constraint is satisfied automatically if bar 1 is in tension, 
and the first constraint is automatically satisfied if bar 1 is in compression. Similarly, the stress 
constraint for bar 2 is written as

σ σ
σ σ

≤
− ≤

(tensile stress in bar 2)
(compressive stress in bar 2)

a

a

2

2	 (g)

Finally, to impose fabrication and space limitations, constraints on the design variables are 
imposed as

≤ ≤ =x x x i; 1 to 6iL i iU	 (h)

where xiL and xiU are the minimum and maximum allowed values for the ith design variable. 
Their numerical values must be specified before the problem can be solved.

Note that the expression for bar stress changes if different design variables are chosen for 
circular tubes, or if a different cross-sectional shape is chosen for the bars. For example, inner 
and outer radii, mean radius and wall thickness, or outside diameter and the ratio of inside 
to outside diameter as design variables will all produce different expressions for the cross-
sectional areas and stresses. These results show that the choice of design variables greatly influences 
the problem formulation.

Note also that we had to first analyze the structure (calculate its response to given inputs) 
to write the constraints properly. It was only after we had calculated the forces in the bars 
that we were able to write the constraints. This is an important step in any engineering design 
problem formulation: We must be able to analyze the system before we can formulate the design 
optimization problem.

In the following examples, we summarize two formulations of the problem. The first uses 
several intermediate variables, which is useful when the problem is transcribed into a com-
puter program. Because this formulation involves simpler expressions of various quantities, 
it is easier to write and debug a computer program. In the second formulation, all interme-
diate variables are eliminated to obtain the formulation exclusively in terms of design vari-
ables. This formulation has slightly more complex expressions. It is important to note that the 
second formulation may not be possible for all applications because some problem functions 
may only be implicit functions of the design variables. One such formulation is presented in 
chapter: Practical Applications of Optimization.

EXAMPLE 2.8 FORMULATION OF THE TWO-BAR BRACKET PROBLEM 
WITH INTERMEDIATE VARIABLES

A summary of the problem formulation for optimum design of the two-bar bracket using inter-
mediate variables is as follows:

Specified data: W, u, σ a  > 0, xiL and xiU, i = 1 to 6
Design variables: x1, x2, x3, x4, x5, x6

Intermediate variables:
Bar cross-sectional areas:

σ2≤σa(tensi-
le  stress in bar 2)σ2≤σa(compr-

essive  stress in bar 2)

xiL≤xi≤xiLI; i=1 to 6
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π π
= − = −A x x A x x
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(a)

Length of bars:

= +l x x(0.5 )1
2

2
2

	 (b)

Forces in bars:

θ θ

θ θ

= − +
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= − −
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(c)

Bar stresses:

σ σ= =
F
A

F
A

;1
1

1
2

2

2	
(d)

Cost function: Minimize the total mass of the bars,

ρ= +Mass l A A( )1 2	 (e)

Constraints:
Bar stress:

σ σ σ σ σ σ σ σ− ≤ ≤ − ≤ ≤; ; ;a a a a1 1 2 2	 (f)

Design variable limits:

≤ ≤ =x x x i; 1 to 6iL i iU	 (g)

Mathematical formulation. Thus when the intermediate variables are also treated as design vari-
ables, the optimization problem becomes: determine the design variables A1, A2, l, F1, F2, σ 1, σ 2, and 
x1–x6 to minimize the cost function in Eq. (e) subject to 7 equality constraints in Eqs. (a)–(d) and 16 
inequality constraints in Eqs. (f) and (g).

EXAMPLE 2.9 FORMULATION OF THE TWO-BAR BRACKET WITH 
DESIGN VARIABLES ONLY

A summary of the problem formulation for optimum design of the two-bar bracket in terms of design 
variables only is obtained by eliminating the intermediate variables from all the expressions as follows:

Specified data: W, u, σ a  > 0, xiL and xiU, i = 1 to 6
Design variables: x1, x2, x3, x4, x5, x6

A1=π4(x32−x32); A2=π4(x52−x62)

l=x12+(0.5x2)2

F1=−0.5Wlsinux1+2 cosux2F2=−
0.5Wlsinux1−2 cosux2

σ1=F1A1; σ=F2A2

Mass=ρl(A1+A2)

−σ1≤σa;  σ1≤σa;  −σ2≤

σa;  σ2≤σa

xiL≤xi≤xiLI;i=1 to 6
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Cost function: Minimize total mass of the bars,

πρ
= + − + −Mass x x x x x x
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(a)

Constraints:
Bar stress:
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(d)
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(e)

Design variable limits:

≤ ≤ =x x x i; 1 to 6iL i iU	 (f)

Mathematical formulation. Thus the optimization problem is to determine the design variables 
x1–x6 to minimize the cost function in Eq. (a) subject to 16 inequality constraints in Eqs. (b)–(f).

It is important to note that the intermediate variables can be treated as design variables 
in the formulation of the optimization problem. Usually this results in a simpler set of 
equations in the formulation but at the cost of additional equality constraints.

2.6  DESIGN OF A CABINET

Step 1: Project/problem description. A cabinet is assembled from components C1, C2, and C3. 
Each cabinet requires 8 C1, 5 C2, and 15 C3 components. The assembly of C1 requires either 5 
bolts or 5 rivets, whereas C2 requires 6 bolts or 6 rivets, and C3 requires 3 bolts or 3 rivets. The 
cost of installing a bolt, including the cost of the bolt itself, is $0.70 for C1, $1.00 for C2, and 
$0.60 for C3. Similarly, riveting costs are $0.60 for C1, $0.80 for C2, and $1.00 for C3. Bolting and 
riveting capacities per day are 6000 and 8000, respectively. To minimize the cost for the 100 
cabinets that must be assembled each day, we wish to determine the number of components 
to be bolted and riveted (after Siddall, 1972).

Step 2: Data and information collection. All data for the problem are given in the project statement.
This problem can be formulated in several different ways depending on the assumptions 

made and the definition of the design variables. Three formulations are presented, and for 
each one, the design variables are identified and expressions for the cost and constraint func-
tions are derived; that is, steps 3–5 are presented.

Mass=πρ4x12+(0.5x2)2(x32−x42
+x52−x62)

2Wx12+(0.5x2)2π(x32−x42) sin
ux1+2 cosux2≤σa

−2Wx12+(0.5x2)2π(x32−x42) sin
ux1+2 cosux2≤σa

2Wx12+(0.5x2)2π(x52−x62) sin
ux1+2 cosux2≤σa

−2Wx12+(0.5x2)2π(x52−x62) sin
ux1+2 cosux2≤σa

xiL≤xi≤xilI;  i=1 to 6



	 2.6  Design of a cabinet	 41

I.  The Basic Concepts

2.6.1  Formulation 1 for Cabinet Design

Step 3: Definition of design variables. In the first formulation, the following design variables 
are identified for 100 cabinets:

x1 = number of C1 to be bolted for all 100 cabinets
x2 = number of C1 to be riveted for all 100 cabinets
x3 = number of C2 to be bolted for all 100 cabinets
x4 = number of C2 to be riveted for all 100 cabinets
x5 = number of C3 to be bolted for all 100 cabinets
x6 = number of C3 to be riveted for all 100 cabinets

Step 4: Optimization criterion. The design objective is to minimize the total cost of cabinet fab-
rication, which is obtained from the specified costs for bolting and riveting each component:

= + + + + +
= + + + + +

Cost x x x x x x
x x x x x x

0.70(5) 0.60(5) 1.00(6) 0.80(6) 0.60 1.00(3)
3.5 3.0 6.0 4.8 1.8 3.0

1 2 3 4 5 6

1 2 3 4 5 6	
(a)

Step 5: Formulation of constraints. The constraints for the problem consist of riveting and 
bolting capacities and the number of cabinets fabricated each day. Since 100 cabinets must 
be fabricated, the required numbers of C1, C2, and C3 are given in the following constraints:

× + = ×x xNumber of C used must be 8 100 : 8 1001 1 2

× + = ×x xNumber of C used must be 5 100 : 5 1002 3 4	 (b)

× + = ×x xNumber of C used must be 15 100 : 15 1003 5 6

Bolting and riveting capacities must not be exceeded. Thus,

+ + ≤x x xBolting capacity: 5 6 3 60001 3 5

+ + ≤x x xRiveting capacity: 5 6 3 80002 4 6	 (c)

Finally, all design variables must be nonnegative for a meaningful solution:

≥ =x i0; 1 to 6i	 (d)

Mathematical formulation. Thus, the optimization problem is to determine six design variables 
x1 to x6 subject to three equality constraints, and eight inequality constraints in Eqs. (b)–(d).

2.6.2  Formulation 2 for Cabinet Design

Step 3: Definition of design variables. If we relax the constraint that each component must be 
bolted or riveted, then the following design variables can be defined:

x1 = total number of bolts required for all C1

x2 = total number of bolts required for all C2

x3 = total number of bolts required for all C3

Cost=0.70(5)x1+0.60(5)x2+1.00(
6)x3+0.80(6)x4+0.60x5+1.00(3)x6 
=3.5x1+3.0x2+6.0x3+4.8x4+1.8x5

+3.0x6

Number of C1 used must be 8×100: x1+x2=8×100

Number of C2 used must be 5×100: x3+x4=5×100

Number of C3 used must be 15×100:x5+x6=15×100

Bolt-
ing capacity:5x1+6x3+3x5≤6000

Rivet-
ing capacity:5x2+6x4+3x6≤8000

xi≥0; i=1 to 6
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x4 = total number of rivets required for all C1

x5 = total number of rivets required for all C2

x6 = total number of rivets required for all C3

Step 4: Optimization criterion. The objective is still to minimize the total cost of fabricating 
100 cabinets, given as

= + + + + +Cost x x x x x x0.70 1.00 0.60 0.60 0.80 1.00 , $1 2 3 4 5 6	 (e)

Step 5: Formulation of constraints. Since 100 cabinets must be built every day, it will be nec-
essary to have 800 C1, 500 C2, and 1500 C3 components. The total number of bolts and rivets 
needed for all C1, C2, and C3 components is indicated by the following equality constraints:

+ = ×x xBolts and rivets needed for C : 5 8001 1 4

+ = ×x xBolts and rivets needed for C : 6 5002 2 5	 (f)

+ = ×x xBolts and rivets needed for C : 3 15003 3 6

Bolting and riveting capacities must not be exceeded. Thus,

+ + ≤x x xBolting capacity: 60001 2 3

+ + ≤x x xRiveting capacity: 80004 5 6	 (g)

Finally, all design variables must be non-negative:

≥ =x i0; 1 to 6i	 (h)

Mathematical formulation. Thus, the optimization problem is to determine six design vari-
ables x1–x6 subject to three equality constraints and eight inequality constraints in Eqs. (g) and 
(h). After an optimum solution has been obtained, we can decide how many components to 
bolt and how many to rivet.

2.6.3  Formulation 3 for Cabinet Design

Step 3: Definition of design variables. Another formulation of the problem is possible if we 
require that all cabinets be identical. The following design variables can be identified:

x1 = number of C1 to be bolted on one cabinet
x2 = number of C1 to be riveted on one cabinet
x3 = number of C2 to be bolted on one cabinet
x4 = number of C2 to be riveted on one cabinet
x5 = number of C3 to be bolted on one cabinet
x6 = number of C3 to be riveted on one cabinet

Step 4: Optimization criterion. With these design variables, the cost of fabricating 100 cabi-
nets each day is given as

= + + + + +
= + + + + +

Cost x x x x x x
x x x x x x

100[0.70(5) 0.60(5) 1.00(6) 0.80(6) 0.60 1.00(3) ]
350 300 600 480 180 300

1 2 3 4 5 6

1 2 3 4 5 6	
(i)

Cost=0.70x1+1.00x2+0.60x3+0.60x
4+0.80x5+1.00x6, $

Bolts and rivets needed for C1:x1

+x4=5×800
Bolts and rivets need-

ed for C2: x2+x5=6×500
Bolts and rivets need-

ed for C3: x3+x6=3×1500

Bolting capacity: x1+x2+x3≤6000

Riveting capacity:x4+x5+x6≤8000

xi≥0; i=1 to 6

Cost=100[0.70](5)x1+0.60(5)x2+1
.00(6)x3+0.80(6)x4+0.60x5+1.00(3
)x6 =350x1+300x2+600x3+480x4+1

80x5+300x6
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Step 5: Formulation of constraints. Since each cabinet needs 8 C1, 5 C2, and 15 C3 components, 
the following equality constraints can be identified:

+ =
+ =
+ =

x x

x x

x x

8 (number of C needed)
5 (number of C needed)
15 (number of C needed)

1 2 1

3 4 2

5 6 3	

(j)

Constraints on the capacity to rivet and bolt are expressed as the following inequalities:

+ + ≤
+ + ≤

x x x
x x x

(5 6 3 )100 6000 (bolting capacity)
(5 6 3 )100 8000 (riveting capacity)

1 3 5

2 4 6	
(k)

Finally, all design variables must be non-negative:

≥ =x i; 1 to 6i	 (l)

Mathematical formulation. Thus, the optimization problem is to determine six design variables 
x1–x6 subject to three equality constraints, and eight inequality constraints in Eqs. (j) and (l).

The following points are noted for the three formulations:

1.	 Because cost and constraint functions are linear in all three formulations, they are linear 
programming problems. It is conceivable that each formulation will yield a different op-
timum solution. After solving the problems, the designer can select the best strategy for 
fabricating cabinets.

2.	 All formulations have three equality constraints, each involving two design variables. 
Using these constraints, we can eliminate three variables from the problem and thus 
reduce its dimension. This is desirable from a computational standpoint because the 
number of variables and constraints is reduced. However, because the elimination of 
variables is not possible for many complex problems, we must develop and use methods 
to treat both equality and inequality constraints.

3.	 For a meaningful solution for these formulations, all design variables must have integer 
values. These are called integer programming problems. Some numerical methods to 
treat this class of problem are discussed in chapter: Discrete Variable Optimum Design 
Concepts and Methods.

2.7  MINIMUM-WEIGHT TUBULAR COLUMN DESIGN

Step 1: Project/problem description. Straight columns are used as structural elements in civil, 
mechanical, aerospace, agricultural, and automotive structures. Many such applications can 
be observed in daily life, for example, a street light pole, a traffic light post, a flagpole, a water 
tower support, a highway signpost, a power transmission pole. It is important to optimize 
the design of a straight column since it may be mass-produced. The objective of this project is 
to design a minimum-mass tubular column of length l supporting a load P without buckling 
or overstressing. The column is fixed at the base and free at the top, as shown in Fig. 2.7. This 
type of structure is called a cantilever column.

x1+x2=8(number of C1 n
eeded)x3+x4=5(numbe

r of C2 needed)x5+x6=15(number of C3 need-
ed)

(5x1+6x3+3x5)100≤6000(b
olting capacity)(5x2+6x4+3

x6)100≤8000(riveting capacity)

xi≥; i=1 to 6
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Step 2: Data and information collection. The buckling load (also called the critical load) for a 
cantilever column is given as

π
=P

EI
l4

cr

2

2	
(a)

The buckling load formula for a column with other support conditions is different from 
this formula (Crandall et al., 2012). Here, I is the moment of inertia for the cross-section of the 
column and E is the material property, called the modulus of elasticity (Young’s modulus). 
Note that the buckling load depends on the design of the column (ie, the moment of inertia I). 
It imposes a limit on the applied load; that is, the column fails if the applied load exceeds the 
buckling load. The material stress σ for the column is defined as P/A, where A is the cross-
sectional area of the column. The material allowable stress under the axial load is σ a, and the 
material mass density is ρ (mass per unit volume).

A cross-section of the tubular column is shown in Fig. 2.7. Many formulations for the de-
sign problem are possible depending on how the design variables are defined. Two such 
formulations are described here.

2.7.1  Formulation 1 for Column Design

Step 3: Definition of design variables. For the first formulation, the following design variables 
are defined:

R = mean radius of the column
t = wall thickness

Assuming that the column wall is thin (R ≫ t), the material cross-sectional area and mo-
ment of inertia are

π π= =A Rt I R t2 ; 3
	 (b)

Pcr=π2EI4l2

A=2πRt;  I=πR3t

FIGURE 2.7  (a) Tubular column; (b) formulation 1 design variables; (c) formulation 2 design variables.
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Step 4: Optimization criterion. The total mass of the column to be minimized is given as

ρ ρ π= =Mass lA l Rt( ) 2	 (c)

Step 5: Formulation of constraints. The first constraint is that the stress (P/A) should not 
exceed the material allowable stress σ a to avoid material failure. This is expressed as the in-
equality σ ≤ σ a. Replacing σ with P/A and then substituting for A, we obtain

π
σ≤

P
Rt2

a
	

(d)

The column should not buckle under the applied load P, which implies that the applied 
load should not exceed the buckling load (ie, P≤Pcr). Using the given expression for the buck-
ling load in Eq. (a) and substituting for I, we obtain

π
≤P

ER t
l4

3 3

2	
(e)

Finally, the design variables R and t must be within the specified minimum (Rmin and tmin) 
and maximum values (Rmax and tmax):

≤ ≤ ≤ ≤R R R t t t;min max min max	 (f)

Mathematical formulation. Thus the optimization problem is to determine the design variables 
R and t to minimize the cost function in Eq. (c) subject to six inequality constraints in Eqs. (d)–(f).

2.7.2  Formulation 2 for Column Design

Step 3: Definition of design variables. Another formulation of the design problem is possible 
if the following design variables are defined:

Ro = outer radius of the column
Ri = inner radius of the column

In terms of these design variables, the cross-sectional area A and the moment of inertia I are

π π
= − = −A R R I R R( );

4
( )o i o i

2 2 4 4

	
(g)

Step 4: Optimization criterion. Minimize the total mass of the column:

ρ πρ= = −Mass lA l R R( ) ( )o i
2 2

	 (h)

Step 5: Formulation of the constraints. The material crushing constraint is (P/A≤σ a):

π
σ

−
≤

P
R R( )o i

2 2 a
	

(i)

Using the expression for I, the buckling load constraint is (P≤Pcr):

π
≤ −P

E
l

R R
16

( )o i

3

3
4 4

	
(j)

Mass=ρ(lA)=2ρlπRt

P2πRt≤σa

P≤π3ER3t4l2

Rmin≤R≤Rmax;  tmin≤t≤tmax

A=π(Ro2−R12);  I=π4(Ro4−Ri4)

Mass=ρ(lA)=πρl(Ro2−Ri2)

Pπ(Ro2−R12)≤σa

p≤π3E16l3(Ro4−Ri4)
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Finally, the design variables Ro and Ri must be within specified minimum (Ro min and Ri min) 
and maximum (Ro max and Ri max) limits:

≤ ≤ ≤ ≤R R R R R R;o o o i i imin max min max	 (k)

When this problem is solved using a numerical method, a constraint Ro > Ri must also 
be imposed. Otherwise, some methods may take the design to the point where Ro < Ri. This 
situation is not physically possible and must be explicitly excluded to numerically solve the 
design problem.

In addition to the foregoing constraints, local buckling of the column wall needs to be 
considered for both formulations. Local buckling can occur if the wall thickness becomes 
too small. This can be avoided if the ratio of mean radius to wall thickness is required to be 
smaller than a limiting value, that is,

+
−

≤ ≤
R R
R R

k
R
t

k
( )
2( )

oro i

o i	
(l)

where R is the mean radius, and k is a specified value that depends on Young’s modulus and 
the yield stress of the material. For steel with E = 29,000 ksi and a yield stress of 50 ksi, k is 
given as 32 (AISC, 2011).

Mathematical formulation. Thus the optimization problem is to determine the design vari-
ables Ro and Ri to minimize the cost function in Eq. (h) subject to seven inequality constraints 
in Eqs. (i)–(l).

2.8  MINIMUM-COST CYLINDRICAL TANK DESIGN

Step 1: Project/problem description. Design a minimum-cost cylindrical tank closed at both 
ends to contain a fixed volume of fluid V. The cost is found to depend directly on the area of 
sheet metal used.

Step 2: Data and information collection. Let c be the dollar cost per unit area of the sheet metal. 
Other data are given in the project statement.

Step 3: Definition of design variables. The design variables for the problem are identified as

R = radius of the tank
H = height of the tank

Step 4: Optimization criterion. The cost function for the problem is the dollar cost of the 
sheet metal for the tank. Total surface area of the sheet metal consisting of the end plates and 
cylinder is given as

π π= +A R RH2 22	 (a)

Therefore, the cost function for the problem is given as

π π= +f c R RH(2 2 )2
	 (b)

Step 5: Formulation of constraints. The volume of the tank (πR2H) is required to be V. Therefore,

π =R H V2	 (c)

Ro   min   ≤   Ro   ≤   Ro   max;  Ri   min   
≤   Ri   ≤   Ri   max

(Ro+Ri)2(Ro−Ri)≤k  or  Rt≤k

A=2πR2+2πRH

f=c(2πR2+2πRH)

πR2H=V
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Also, both of the design variables R and H must be within some minimum and maximum 
values:

≤ ≤ ≤ ≤R R R H H H;min max min max	 (d)

Mathematical formulation. The optimization problem is to determine R and H to minimize the 
cost function in Eq. (b) subject to one equality constraint in Eq. (c) and four inequalities in Eq. 
(d). This problem is quite similar to the can problem discussed in Section 2.2. The only differ-
ence is in the volume constraint. There the constraint is an inequality and here it is an equality.

2.9  DESIGN OF COIL SPRINGS

Step 1: Project/problem description. Coil springs are used in numerous practical applications. 
Detailed methods for analyzing and designing such mechanical components have been de-
veloped over the years (eg, Spotts, 1953; Wahl, 1963; Haug and Arora, 1979; Budynas and 
Nisbett, 2014). The purpose of this project is to design a minimum-mass spring (shown in 
Fig. 2.8) to carry a given axial load (called a tension–compression spring) without material 
failure and while satisfying two performance requirements: the spring must deflect by at least 
∆ (in.) and the frequency of surge waves must not be less than w0 (Hz).

Step 2: Data and information collection. To formulate the problem of designing a coil spring, 
see the notation and data defined in Table 2.3.

The wire twists when the spring is subjected to a tensile or a compressive load. Therefore, 
shear stress needs to be calculated so that a constraint on it can be included in the formula-
tion. In addition, surge wave frequency needs to be calculated. These and other design equa-
tions for the spring are given as

Load deflection equation:

δ=P K	 (a)

Spring constant, K:

=K
d G
D N8

4

3	
(b)

Shear stress, τ:

τ
π

=
kPD
d

8
3	

(c)

Rmin≤R≤Rmax;  Hmin≤H≤Hmax

p=Kd

K=d4G8D3N

τ=8kPDπd3

FIGURE 2.8  A coil spring.
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Wahl stress concentration factor, k:

=
−
−

+k
D d
D d

d
D

(4 )
4( )

0.615

	
(d)

Frequency of surge waves, w :

ω
π ρ

=
d
ND

G
2 22

	
(e)

The expression for the Wahl stress concentration factor k in Eq. (d) has been determined 
experimentally to account for unusually high stresses at certain points on the spring. These 
analysis equations are used to define the constraints.

Step 3: Definition of design variables. The three design variables for the problem are defined as

d = wire diameter, in
D = mean coil diameter, in
N = number of active coils, integer

Step 4: Optimization criterion. The problem is to minimize the mass of the spring, given as 
volume × mass density:

π π ρ π ρ= + = +Mass d N Q D N Q Dd
4

[( ) ]
1
4

( )2 2 2

	
(f)

Step 5: Formulation of constraints

k=(4D−d)4(D−d)+0.615dD

w=d2πND2G2ρ

Mass=π4d2[(N+Q)πD]ρ=14(N+
Q)π2Dd2ρ

TABLE 2.3 I nformation to Design a Coil Spring

Notation Data

Deflection along the axis of spring d, in.

Mean coil diameter D, in.

Wire diameter d, in.

Number of active coils N

Gravitational constant g = 386 in./s2

Frequency of surge waves w, Hz

Weight density of spring material g = 0.285 lb/in3

Shear modulus G = (1.15 × 107) lb/in2

Mass density of material (ρ = g/g) ρ = (7.38342 × 10−4) lb-s2/in4

Allowable shear stress τa = 80,000 lb/in2

Number of inactive coils Q = 2

Applied load P = 10 lb

Minimum spring deflection ∆ = 0.5 in.

Lower limit on surge wave frequency w0 = 100 Hz

Limit on outer diameter of coil Do = 1.5 in.
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Deflection constraint. It is often a requirement that deflection under a load P be at least ∆. 
Therefore, the constraint is that the calculated deflection d must be greater than or equal to a 
specified limit ∆. Such a constraint is common to spring design. The function of the spring in 
many applications is to provide a modest restoring force as parts undergo large displacement 
in carrying out kinematic functions. Mathematically, this performance requirement (d ≥ ∆) is 
stated in an inequality form, using Eq. (a), as

≥ ∆
P
K	

(g)

Shear-stress constraint. To prevent material overstressing, shear stress in the wire must be no 
greater than τ a, which is expressed in mathematical form as

τ τ≤ a	 (h)

Constraint on the frequency of surge waves. We also wish to avoid resonance in dynamic ap-
plications by making the frequency of surge waves (along the spring) as great as possible. For 
the present problem, we require the frequency of surge waves for the spring to be at least w0 
(Hz). The constraint is expressed in mathematical form as

ω ω≥ 0	 (i)

Diameter constraint. The outer diameter of the spring should not be greater than D0, so

+ ≤D d D0	 (j)

Explicit bounds on design variables. To avoid fabrication and other practical difficulties, we 
put minimum and maximum size limits on the wire diameter, coil diameter, and number of 
turns:

≤ ≤
≤ ≤
≤ ≤

d d d
D D D
N N N

min max

min max

min max	

(k)

Mathematical formulation. Thus, the purpose of the minimum-mass spring design prob-
lem is to select the design variables d, D, and N to minimize the mass of Eq. (f), while 
satisfying the ten inequality constraints of Eqs. (g)–(k). If the intermediate variables are 
eliminated, the problem formulation can be summarized in terms of the design variables 
only.

EXAMPLE 2.10 FORMULATION OF THE SPRING DESIGN PROBLEM 
WITH DESIGN VARIABLES ONLY

A summary of the problem formulation for the optimum design of coil springs is as follows:

Specified data: Q, P, ρ, g, τa, G, ∆, w0, D0, dmin, dmax, Dmin, Dmax, Nmin, Nmax

Design variables: d, D, N
Cost function: Minimize the mass of the spring given in Eq. (f).

PK≥∆

τ≤τa

w≥w0

D+d≤D0

dmin≤d≤dmaxDmin≤D≤Dmax
Nmin≤N≤Nmax



50	 2.  Optimum Design Problem Formulation

I.  The Basic Concepts

Constraints:
Deflection limit:

≥ ∆
PD N
d G

8 3

4	
(l)

Shear stress:

π
τ−

−
+









 ≤

PD
d

D d
D d

d
D

8 (4 )
4( )

0.615
a3

	
(m)

Frequency of surge waves:

π ρ
ω≥

d
ND

G
2 22 0

	
(n)

Diameter constraint: Given in Eq. (j).
Design variable bounds: Given in Eq. (k).

Mathematical formulation. Thus the optimization problem is to determine the design variables d, 
D and N to minimize the cost function in Eq. (f) subject to the constraints in Eq. (j), (k) and (l)–(n). 
The problem is solved optimum solution using a numerical optimization method in chapter: More 
on Numerical Methods for Constrained Optimum Design.

2.10  MINIMUM-WEIGHT DESIGN OF A SYMMETRIC  
THREE-BAR TRUSS

Step 1: Project/problem description. As an example of a slightly more complex design prob-
lem, consider the three-bar structure shown in Fig. 2.9 (Schmit, 1960; Haug and Arora, 1979). 
This is a statically indeterminate structure for which the member forces cannot be calculated 
solely from equilibrium equations. The structure is to be designed for minimum volume (or, 
equivalently, minimum mass) to support a force P. It must satisfy various performance and 
technological constraints, such as member crushing, member buckling, failure by excessive 
deflection of node 4, and failure by resonance when the natural frequency of the structure is 
below a given threshold.

Step 2: Data and information collection. Geometry data, properties of the material used, and 
loading data are needed to solve the problem. In addition, since the structure is statically 
indeterminate, the static equilibrium equations alone are not enough to analyze it. We need 
to use advanced analysis procedures to obtain expressions for member forces, nodal displace-
ments, and the natural frequency to formulate constraints for the problem. Here we will give 
such expressions.

Since the structure must be symmetric, members 1 and 3 will have the same cross-sectional 
area, say A1. Let A2 be the cross-sectional area of member 2. Using analysis procedures for 

8PD3Nd4G≥∆

8PDπd3(4D−d)4(D−d)+0.615dD≤τa

d2πND2G2ρ≥w0
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statically indeterminate structures, horizontal and vertical displacements u and v of node 4 
are calculated as

υ= =
+

υu
lP

A E
lP

A A E
2

;
2

( 2 )
u

1 1 2	
(a)

where E is the modulus of elasticity for the material, Pu and Pv are the horizontal and 
vertical components of the applied load P given as Pu =P cosu and Pv =P sinu, and l is the 
height of the truss as shown in Fig. 2.9. Using the displacements, forces carried by the 
members of the truss can be calculated. Then the stresses σ 1, σ 2, and σ 3 in members 1, 2, 
and 3 under the applied load P can be computed from member forces as (stress = force/
area; σ i = Fi/Ai):

σ = +
+











υP
A

P
A A

1
2 2

u
1

1 1 2	
(b)

σ =
+

υP
A A

2
( 2 )

2
1 2	

(c)

σ = − +
+











υP
A

P
A A

1
2 2

u
3

1 1 2	
(d)

Note that the member forces, and hence stresses, are dependent on the design of the struc-
ture, that is, the member areas.

Many structures support moving machinery and other dynamic loads. These structures 
vibrate with a certain frequency known as natural frequency. This is an intrinsic dynamic 

u=2lPuA1E;  υ=2lPυ(A1+2A2)E

σ=12PuA1+pυA1+2A2

σ2=2Pυ(A1+2A2)

σ3=12−PA1+PυA1+2A2

FIGURE 2.9  Three-bar truss.
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property of a structural system. There can be several modes of vibration, each having its own 
frequency. Resonance causes catastrophic failure of the structure, which occurs when any one 
of its vibration frequencies coincides with the frequency of the operating machinery it sup-
ports, or frequency of the applied loads.

Therefore, it is reasonable to demand that no structural frequency be close to the frequency 
of the operating machinery. The mode of vibration corresponding to the lowest natural fre-
quency is important because that mode is excited first. It is important to make the lowest 
(fundamental) natural frequency of the structure as high as possible to avoid any possibility 
of resonance. This also makes the structure stiffer. Frequencies of a structure are obtained by 
solving an eigenvalue problem involving the structure’s stiffness and mass properties. The 
lowest eigenvalue  related to the lowest natural frequency of the symmetric three-bar truss 
is computed using a consistent-mass model:

ς
ρ

=
+

EA
l A A

3
(4 2 )

1

2
1 2	

(e)

where ρ is the material mass per unit volume (mass density). This completes the analysis of 
the structure.

Step 3: Definition of design variables. The following design variables are defined for the sym-
metric three-bar truss:

Al = cross-sectional area of material for members 1 and 3
A2 = cross-sectional area of material for member 2

Other design variables for the problem are possible depending on the cross-sectional shape 
of members, as shown in Fig. 2.6.

Step 4: Optimization criterion. The relative merit of any design for the problem is measured 
in its material weight. Therefore, the total weight of three members of the truss serves as a 
cost function (weight of a member = cross-sectional area × length × weight density):

γ= +Volume l A A(2 2 )1 2	 (f)

where g  is the weight density and l is the height of the truss.
Step 5: Formulation of constraints. The truss structure is designed for use in two applications. In 

each application, it supports different loads. These are called loading conditions for the structure. 
In the present application, a symmetric structure is obtained if the following two loading condi-
tions are considered. The first load is applied at an angle u and the second one, of same magni-
tude, at an angle (π−u), where the angle u (0° ≤ u ≤ 90°) is shown earlier in Fig. 2.9. If we let mem-
ber 1 be the same as member 3, then the second loading condition can be ignored. Since we are 
designing a symmetric structure, we consider only one load applied at an angle u (0° ≤ u ≤ 90°).

Note from Eqs. (b) and (c) that the stresses σ 1 and σ 2 are always positive (tensile). If σ a > 0 
is an allowable stress for the material, then the stress constraints for members 1 and 2 are

σ σ σ σ≤ ≤;a a1 2	 (g)

However, from Eq. (c), stress in member 3 can be positive (tensile) or negative (compres-
sive) depending on the load angle. Therefore, both possibilities need to be considered in 

ς=3EA1ρl2(4A1+2A2)

Volume=lg(22A1+A2)

σ1≤σa;  σ2≤σa
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formulating the stress constraint for member 3. One way to formulate such a constraint was 
explained in Section 2.5 for the two-bar truss. Another way is as follows:

σ σ σ σ σ< − ≤ ≤IF ( 0) THEN ELSEa a3 3 3	 (h)

Since the sign of the stress does not change with design, if the member is in compression, it 
remains in compression throughout the optimization process. Therefore, the constraint func-
tion remains continuous and differentiable.

A similar procedure can be used for stresses in bars 1 and 2 if the stresses can reverse their 
sign (eg, when the load direction is reversed). Horizontal and vertical deflections of node 4 
must be within the specified limits ∆u and ∆v, respectively. Using Eq. (a), the deflection con-
straints are

υ≤ ∆ ≤ ∆υu ;u	 (i)

As discussed previously, the fundamental natural frequency of the structure should be higher 
than a specified frequency w0 (Hz). This constraint can be written in terms of the lowest ei-
genvalue for the structure. The eigenvalue corresponding to a frequency of w0 (Hz) is given 
as (2πw0)2. The lowest eigenvalue  for the structure given in Eq. (e) should be higher than 
(2πw0)2, that is,

ς πω≥ (2 )0
2

	 (j)

To impose buckling constraints for members under compression, an expression for the mo-
ment of inertia of the cross-section is needed. This expression cannot be obtained because the 
cross-sectional shape and dimensions are not specified. However, the moment of inertia I can 
be related to the cross-sectional area of the members as I = bA2, where A is the cross-sectional 
area and b is a nondimensional constant. This relation follows if the shape of the cross-section 
is fixed and all of its dimensions are varied in the same proportion.

The axial force for the ith member is given as Fi = Aiσi, where i = 1, 2, 3 with tensile force taken 
as positive. Members of the truss are considered columns with pin ends. Therefore, the buckling 
load for the ith member is given as π2EI/li

2, where li is the length of the ith member (Crandall 
et al., 2012). Buckling constraints are expressed as − Fi ≤ π2EI/li

2, where i = 1, 2, 3. The negative 
sign for Fi is used to make the left side of the constraints positive when the member is in com-
pression. Also, there is no need to impose buckling constraints for members in tension. With the 
foregoing formulation, the buckling constraint for tensile members is automatically satisfied. 
Substituting various quantities, buckling constraints for three members of the truss are

σ π β σ σ π β σ σ π β σ− ≤ ≤ − ≤ ≤ − ≤ ≤
E A

l
E A
l

E A
l2

; ;
2

a a a1

2
1

2 2

2
2

2 3

2
1

2	
(k)

Note that the buckling load has been divided by the member area to obtain the buckling 
stress in Eq. (k). The buckling stress is required not to exceed an allowable buckling stress σ a. 
It is additionally noted that with the foregoing formulation, the load P in Fig. 2.9 can be ap-
plied in the positive or negative direction. When the load is applied in the opposite direction, 
the member forces are also reversed. The foregoing formulation for the buckling constraints 
can treat both positive and negative load in the solution process.

If(σ3<0)  Then −σ3≤

σa  Else  σ3≤σa

u≤∆u;  υ≤∆υ

ς≥(2πw0)2

−σ1≤π2EbA12l2
≤σa;   −σ2≤π2EbA2l

2
≤σa;   −σ3≤π2EbA12l2

≤σa
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Finally, A1 and A2 must both be non-negative, that is, A1, A2 ≥ 0. Most practical design 
problems require each member to have a certain minimum area, Amin. Therefore the minimum 
area constraints are written as

≥A A A,1 2 min	 (l)

Mathematical formulation. The optimum design problem, then, is to find cross-sectional ar-
eas A1, A2 ≥ Amin to minimize the volume of Eq. (f) subject to the constraints of Eqs. (g)–(l). 
This small-scale problem has 11 inequality constraints and 2 design variables. The problem 
is solved for optimum solution using a numerical optimization method in chapter: Practical 
Applications of Optimization.

2.11  A GENERAL MATHEMATICAL MODEL  
FOR OPTIMUM DESIGN

To describe optimization concepts and methods, we need a general mathematical state-
ment for the optimum design problem. Such a mathematical model is defined as the mini-
mization of a cost function while satisfying all equality and inequality constraints. The in-
equality constraints in the model are always transformed as “≤ types.” This will be called 
the standard design optimization model that is treated throughout this text. In the optimization 
literature, this model is also called nonlinear programming problem (NLP). It will be shown that 
all design problems can easily be transcribed into this standard form.

2.11.1  Standard Design Optimization Model

In previous sections, several design problems were formulated. All problems have an op-
timization criterion that can be used to compare various designs and to determine an opti-
mum or the best one. Most design problems must also satisfy performance constraints and 
other limitations. Some design problems have only inequality constraints, others have only 
equality constraints, and some have both. We can define a general mathematical model for 
optimum design to encompass all of these possibilities. A standard form of the model is first 
stated, and then transformation of various problems into the standard form is explained.

Standard Design Optimization Model
Find an n-vector x = (x1, x2, …, xn) of design variables to

Minimize a cost function:

=f f x x xx( ) ( , ..., )n1 2	 (2.1)

subject to the p equality constraints:

ρ= = =h h x x x jx( ) ( , , ..., ) 0; 1 toj j n1 2	 (2.2)

and the m inequality constraints:

= ≤ =g g x x i mx( ) ( , ..., ) 0; 1 toi i n1	 (2.3)

A1,A2≥Amin

f(x)=f(x1,x2...,xn)

hj(x)=hj(x1,x2, ...,xn)=0;  j=1 to ρ

gi(x)=gi(x1, ..., xn)≤0;  i=1 to m
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Note that the simple bounds on design variables, such as xi ≥ 0, or xiL ≤ xi ≤ xiU, where 
xiL and xiU are the smallest and largest allowed values for xi, are assumed to be included in 
the inequalities of Eq. (2.3). In numerical methods, these constraints are treated explicitly to 
take advantage of their simple form to achieve efficiency. However, in discussing the basic 
optimization concepts, we assume that the inequalities in Eq. (2.3) include these constraints 
as well.

2.11.2  Maximization Problem Treatment

The general design model treats only minimization problems. This is no restriction, as 
maximization of a function F(x) is the same as minimization of a transformed function 
f(x) = −F(x). To see this graphically, consider a plot of the function of one variable F(x), shown 
in Fig. 2.10a. The function F(x) takes its maximum value at the point x*. N ext consider a 
graph of the function f(x) = − F(x), shown in Fig. 2.10b. It is seen that f(x) is a reflection of F(x) 
about the x-axis. It is also seen from the graph that f(x) takes on a minimum value at the same 
point x* where the maximum of F(x) occurs. Therefore, minimization of f(x) is equivalent to 
maximization of F(x).

FIGURE 2.10  Point maximizing F(x) equals point minimizing −F(x). (a) Plot of F(x); (b) plot of f(x) = −F(x).
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2.11.3  Treatment of “Greater Than Type” Constraints

The standard design optimization model treats only “≤ type” inequality constraints. Many 
design problems may also have “≥ type” inequalities. Such constraints can be converted to 
the standard form without much difficulty. The “≥ type” constraint Gj(x) ≥ 0 is equivalent to 
the “≤ type” inequality gj(x) = −Gj(x) ≤ 0. Therefore, we can multiply any “≥ type” constraint 
by −1 to convert it to a “≤ type.”

2.11.4  Application to Different Engineering Fields

Design optimization problems from different fields of engineering can be transcribed into 
the standard model. However, the overall process of designing different engineering systems is the 
same. Analytical and numerical methods for analyzing systems can differ. Formulation of the 
design problem can contain terminology that is specific to the particular domain of applica-
tion. For example, in the fields of structural, mechanical, and aerospace engineering, we are 
concerned with the integrity of the structure and its components. The performance require-
ments involve constraints on member stresses, strains, deflections at key points, frequencies 
of vibration, buckling failure, and so on. Such concepts are specific to each field, and design-
ers working in the particular field understand their meaning and the constraints.

Other fields of engineering also have their own terminology to describe design optimiza-
tion problems. However, once the problems from different fields have been transcribed into 
mathematical statements using a standard notation, they have the same mathematical form. 
They are contained in the standard design optimization model defined in Eqs. (2.1) to (2.3). 
For example, all of the problems formulated earlier in this chapter can be transformed into 
the form of Eqs. (2.1) to (2.3). The optimization concepts and methods described in the text 
are quite general and can be used to solve problems from diverse fields. The methods can be de-
veloped without reference to any design application. This is a key point that must be kept in mind 
while studying the optimization concepts and methods.

2.11.5  Important Observations about the Standard Model

Several features of the standard model must be clearly understood:

1.	 Dependence of functions on design variables: First of all, the functions f(x), hj(x), and gi(x) 
must depend, explicitly or implicitly, on some of the design variables. Only then are they 
valid for the design problem. Functions that do not depend on any variable have no rela-
tion to the problem and can be safely ignored.

2.	 Number of equality constraints: The number of independent equality constraints must be less 
than, or at the most equal to, the number of design variables (ie, p ≤ n). When p > n, we 
have an overdetermined system of equations. In that case, either some equality constraints 
are redundant (linearly dependent on other constraints) or they are inconsistent. In the 
former case, redundant constraints can be deleted and, if p < n, the optimum solution 
for the problem is possible. In the latter case, no solution for the design problem is 
possible and the problem formulation needs to be closely reexamined. When p = n, no 
optimization of the system is necessary because the roots of the equality constraints are 
the only candidate points for optimum design.



	 2.11 A  general mathematical model for optimum design 	 57

I.  The Basic Concepts

3.	 Number of inequality constraints: Although there is a limitation on the number of 
independent equality constraints, there is no restriction on the number of inequality 
constraints. However, the total number of active constraints (satisfied at equality) must, at 
the optimum, be less than or at the most equal to the number of design variables.

4.	 Unconstrained problems: Some design problems may not have any constraints. These are 
called unconstrained; those with constraints are called constrained.

5.	 Linear programming problems: If all of the functions f(x), hj(x), and gi(x) are linear in design 
variables x, then the problem is called a linear programming problem. If any of these 
functions is nonlinear, the problem is called a nonlinear programming problem.

6.	 Scaling of problem functions: It is important to note that if the cost function is scaled by 
multiplying it with a positive constant, the optimum design does not change. However, 
the optimum cost function value does change. Also, any constant can be added to 
the cost function without affecting the optimum design. Similarly, the inequality 
constraints can be scaled by any positive constant and the equalities by any constant. This 
will not affect the feasible region and hence the optimum solution. All the foregoing 
transformations, however, affect the values of the Lagrange multipliers (defined in 
chapter: Optimum Design Concepts: Optimality Conditions). Also, performance of the 
numerical algorithms for a solution to the optimization problem may be affected by 
these transformations.

2.11.6  Feasible Set

The term feasible set will be used throughout the text. A feasible set for the design problem is a 
collection of all feasible designs. The terms constraint set and feasible design space are also used to 
represent the feasible set of designs. The letter S is used to represent the feasible set. Math-
ematically, the set S is a collection of design points satisfying all constraints:

= = = ≤ =S h j p g i mx x x( | ( ) 0, 1 to ; ( ) 0, 1 to )j i	 (2.4)

The set of feasible designs is sometimes referred to as the feasible region, especially for optimi-
zation problems with two design variables. It is important to note that the feasible region usu-
ally shrinks when more constraints are added to the design model and expands when some constraints 
are deleted. When the feasible region shrinks, the number of possible designs that can optimize 
the cost function is reduced; that is, there are fewer feasible designs. In this event, the mini-
mum value of the cost function is likely to increase. The effect is completely opposite when 
some constraints are dropped. This observation is significant for practical design problems 
and should be clearly understood.

2.11.7  Active/Inactive/Violated Constraints

We will quite frequently refer to a constraint as active, tight, inactive, or violated. We define 
these terms precisely. An inequality constraint gj(x) ≤ 0 is said to be active at a design point 
x* if it is satisfied at equality (ie, gj(x*) = 0). This is also called a tight or binding constraint. For 
a feasible design, an inequality constraint may or may not be active. However, all equality 
constraints are active for all feasible designs.

S=(x|hj
(x)=0, j=1 to ρ; gi(x)≤0, i=1 to m)
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An inequality constraint gj(x) ≤ 0 is said to be inactive at a design point x* if it is strictly 
satisfied (ie, gj(x*) < 0). It is said to be violated at a design point x* if its value is positive (ie, 
gj(x*) > 0). An equality constraint hi(x) = 0 is violated at a design point x* if hi(x*) is not identi-
cally zero. Note that by these definitions, an equality constraint is either active or violated at 
a given design point.

2.11.8  Discrete and Integer Design Variables

So far, we have assumed in the standard model that variables xi can have any numerical 
value within the feasible region. Many times, however, some variables are required to have 
discrete or integer values. Such variables appear quite often in engineering design problems. 
We encountered problems in Sections 2.4, 2.6, and 2.9 that have integer design variables. Before 
describing how to treat them, let us define what we mean by discrete and integer variables.

A design variable is called discrete if its value must be selected from a given finite set of 
values. For example, a plate thickness must be the one that is available commercially: 1/8, 
1/4, 3/8, 1/2, 5/8, 3/4, 1 in, and so on. Similarly, structural members must be selected from 
a catalog to reduce fabrication cost. Such variables must be treated as discrete in the standard 
formulation.

An integer variable, as the name implies, must have an integer value; for example, the num-
ber of logs to be shipped, the number of bolts used, the number of coils in a spring, the num-
ber of items to be shipped, and so on. Problems with such variables are called discrete and 
integer programming problems. Depending on the type of problem functions, the problems can 
be classified into five different categories. These classifications and the methods to solve them 
are discussed in chapter: Discrete Variable Optimum Design Concepts and Methods.

In some sense, discrete and integer variables impose additional constraints on the design 
problem. Therefore, as noted before, the optimum value of the cost function is likely to in-
crease with these variables compared with the same problem that is solved with continuous 
variables. If we treat all design variables as continuous, the minimum value of the cost func-
tion represents a lower bound on the true minimum value when discrete or integer variables 
are used. This gives some idea of the “best” optimum solution if all design variables are 
treated as continuous. The optimum cost function value is likely to increase when discrete 
values are assigned to variables. Thus, the first suggested procedure is to solve the problem 
assuming continuous design variables if possible. Then the nearest discrete/integer values 
are assigned to the variables and the design is checked for feasibility. With a few trials, the 
best feasible design close to the continuous optimum can be obtained.

As a second approach for solving such problems, an adaptive numerical optimization proce-
dure may be used. An optimum solution with continuous variables is first obtained if pos-
sible. Then only the variables that are close to their discrete or integer value are assigned that 
value. They are held fixed and the problem is optimized again. The procedure is continued 
until all variables have been assigned discrete or integer values. A few further trials may be 
carried out to improve the optimum cost function value. This procedure has been demon-
strated by Arora and Tseng (1988).

The foregoing procedures require additional computational effort and do not guarantee a 
true minimum solution. However, they are quite straightforward and do not require any ad-
ditional methods or software for solution of discrete/integer variable problems.
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2.11.9  Types of Optimization Problems

The standard design optimization model can represent many different problem types. We 
saw that it can be used to represent linear programming, and unconstrained and constrained, 
nonlinear programming optimization problems. It is important to understand other optimiza-
tion problems that are encountered in practical applications. Many times these problems can 
be transformed into the standard model and solved by the optimization methods presented 
and discussed in this text. Here we present an overview of the types of optimization problems.

Continuous/Discrete-Variable Optimization Problems
When the design variables can have any numerical value within their allowable range, 

the problem is called a continuous-variable optimization problem. When the problem has only 
discrete/integer variables, it is called a discrete/integer-variable optimization problem. When 
the problem has both continuous and discrete variables, it is called a mixed-variable opti-
mization problem. Numerical methods for these types of problems have been developed, as 
discussed in later chapters.

Smooth/Nonsmooth Optimization Problems
When its functions are continuous and differentiable, the problem is referred to as smooth 

(differentiable). There are numerous practical optimization problems in which the functions 
can be formulated as continuous and differentiable. There are also many practical applica-
tions where the problem functions are not differentiable or even discontinuous. Such prob-
lems are called nonsmooth (nondifferentiable).

Numerical methods to solve these two classes of problems can be different. Theory and 
numerical methods for smooth problems are well developed. Therefore, it is most desirable 
to formulate the problem with continuous and differentiable functions as far as possible. 
Sometimes, a problem with discontinuous or nondifferentiable functions can be transformed 
into one that has continuous and differentiable functions so that optimization methods for 
smooth problems can be used. Such applications are discussed in chapter: Practical Applica-
tions of Optimization.

Problems with Implicit Constraints
Some constraints are quite simple, such as the smallest and largest allowable values for 

the design variables, whereas more complex ones may be indirectly influenced by the de-
sign variables. For example, deflection at a point in a large structure depends on its design. 
However, it is impossible to express deflection as an explicit function of the design variables 
except for very simple structures. These are called implicit constraints. When there are implicit 
functions in the problem formulation, it is not possible to formulate the problem functions ex-
plicitly in terms of design variables alone. Instead, we must use some intermediate variables in 
the problem formulation. We will discuss formulations having implicit functions in chapter: 
Practical Applications of Optimization.

Network Optimization Problems
A network or a graph consists of points and lines connecting pairs of points. N etwork 

models are used to represent many practical problems and processes from different branches 
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of engineering, computer science, operations research, transportation, telecommunication, 
decision support, manufacturing, airline scheduling, and many other disciplines. Depending 
on the application type, network optimization problems have been classified as transpor-
tation problems, assignment problems, shortest-path problems, maximum-flow problems, 
minimum-cost-flow problems, and critical path problems.

To understand the concept of network problems, let us describe the transportation prob-
lem in more detail. Transportation models play an important role in logistics and supply 
chain management for reducing cost and improving service. Therefore the goal is to find 
the most effective way to transport goods. A shipper having m warehouses with supply si of 
goods at the ith warehouse must ship goods to n geographically dispersed retail centers, each 
with a customer demand dj that must be met. The objective is to determine the minimum cost 
distribution system, given that the unit cost of transportation between the ith warehouse and 
the jth retail center is cij.

This problem can be formulated as one of linear programming. Since such network opti-
mization problems are encountered in diverse fields, special methods have been developed 
to solve them more efficiently and perhaps in real time. Many textbooks are available on this 
subject. We do not address these problems in any detail, although some of the methods pre-
sented in Chapters 15–19 can be used to solve them.

Dynamic-Response Optimization Problems
Many practical systems are subjected to transient dynamic loads. In such cases, some of the 

problem constraints are time-dependent. Each of these constraints must be imposed for the 
entire time interval of interest. Therefore each represents an infinite set of constraints because 
the constraint must be imposed at each time point in the given interval. The usual approach to 
treating such a constraint is to impose it at a finite number of time points in the given interval. 
This way the problem is transformed into the standard form and treated with the methods 
presented in this textbook.

Design Variables as Functions
In some applications, the design variables are not parameters but functions of one, two, 

or even three variables. Such design variables arise in optimal control problems where the 
input needs to be determined over the desired range of time to control the behavior of the 
system. The usual treatment of design functions is to parameterize them. In other words, each 
function is represented in terms of some known functions, called the basis functions, and the 
parameters multiplying them. The parameters are then treated as design variables. In this 
way the problem is transformed into the standard form and the methods presented in this 
textbook can be used to solve it.

2.12  DEVELOPMENT OF PROBLEM FORMULATION  
FOR PRACTICAL APPLICATIONS

On the basis of experience, it is noted that usually several iterations are needed before an 
acceptable formulation for a practical design optimization problem is obtained. In any case, 
one has to start with an initial formulation for the problem. When a solution is sought for 
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this initial formulation, several flaws may be detected that need to be rectified by trial and 
error iterative process. For example, the solution algorithm may not be able to satisfy all the 
constraints; that is, there is no feasible design for the problem. In this case, one needs to de-
termine the offending constraints and redefine them so that there are feasible designs for the 
problem. This in itself may require several iterations.

In other cases, the solution process can find feasible designs for the problem but it cannot 
converge to an optimum solution. In such cases, the feasible set is most likely unbounded 
and realistic bounds need to be defined for the design variables of the problem. In yet other 
cases, the solution process can converge to an optimum solution but the solution is weird 
and impractical. In such cases, perhaps some practical performance requirements have not 
been included in the formulation; or, practical bounds may need to be defined for the design 
variables of the problem and the problem needs to be solved again.

In some cases, the entire formulation for the problem may need to be re-examined if the solu-
tion process does not yield an optimum solution, or it gives an unrealistic solution. In these cases, 
the design variables, the optimization criterion, and all the constraints may need to be re-exam-
ined and re-formulated. Sometimes, additional objective functions may need to be introduced 
into the formulation to obtain practical solutions. With more than one objective function in the 
formulation, multiobjective optimization methods will need to be used to solve the problem.

Thus we see that several modifications of the initial formulation may be needed in an 
iterative manner before a proper formulation for a practical problem is achieved. Each modi-
fication requires the problem to be solved using an efficient numerical optimization algo-
rithm and the associated software. Further discussion of this important topic is presented in 
chapter: Optimum Design: Numerical Solution Process and Excel Solver.

Development of a proper formulation for optimization of a practical design problem 
is an iterative process requiring several trial runs before an acceptable formulation 
is realized.

EXERCISES FOR CHAPTER 2

Transcribe the problem statements to mathematical formulation for optimum design

2.1	 A 100 × 100-m lot is available to construct a multistory office building. At least  
20,000 m2 of total floor space is needed. According to a zoning ordinance, the 
maximum height of the building can be only 21 m, and the parking area outside the 
building must be at least 25% of the total floor area. It has been decided to fix the 
height of each story at 3.5 m. The cost of the building in millions of dollars is estimated 
at 0.6h + 0.001A, where A is the cross-sectional area of the building per floor and h is 
the height of the building. Formulate the minimum-cost design problem.

2.2	 A refinery has two crude oils:
1.	 Crude A costs $120/barrel (bbl) and 20,000 bbl are available.
2.	 Crude B costs $150/bbl and 30,000 bbl are available.

	 The company manufactures gasoline and lube oil from its crudes. Yield and sale price 
per barrel and markets are shown in Table E2.2. How much crude oil should the 
company use to maximize its profit? Formulate the optimum design problem.
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2.3	 Design a beer mug, shown in Fig. E2.3, to hold as much beer as possible. The height 
and radius of the mug should be no more than 20 cm. The mug must be at least 5 cm 
in radius. The surface area of the sides must be no greater than 900 cm2 (ignore the 
bottom area of the mug and mug handle). Formulate the optimum design problem.

2.4	 A company is redesigning its parallel-flow heat exchanger of length l to increase 
its heat transfer. An end view of the unit is shown in Fig. E2.4. There are certain 
limitations on the design problem. The smallest available conducting tube has a radius 
of 0.5 cm, and all tubes must be of the same size. Further, the total cross-sectional area 
of all of the tubes cannot exceed 2000 cm2 to ensure adequate space inside the outer 
shell. Formulate the problem to determine the number of tubes and the radius of each 
one to maximize the surface area of the tubes in the exchanger.

2.5	 Proposals for a parking ramp have been defeated, so we plan to build a parking lot 
in the downtown urban renewal section. The cost of land is 200W + 100D, where W is 
the width along the street and D is the depth of the lot in meters. The available width 
along the street is 100 m, whereas the maximum depth available is 200 m. We want the 
size of the lot to be at least 10,000 m2. To avoid unsightliness, the city requires that the 

TABLE E2.2  Data for Refinery Operations

Product

Yield/bbl Sale price  
per bbl ($) Market (bbl)Crude A Crude B

Gasoline 0.6 0.8 200 20,000

Lube oil 0.4 0.2 400 10,000

FIGURE E2.3  Beer mug.

FIGURE E2.4  Cross-section of a heat exchanger.
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longer dimension of any lot be no more than twice the shorter dimension. Formulate 
the minimum-cost design problem.

2.6	 A manufacturer sells products A and B. Profit from A is $10/kg and is $8/kg from B. 
Available raw materials for the products are 100 kg of C and 80 kg of D. To produce 
1 kg of A, we need 0.4 kg of C and 0.6 kg of D. To produce 1 kg of B, we need 0.5 kg 
of C and 0.5 kg of D. The markets for the products are 70 kg for A and 110 kg for B. 
How much of A and B should be produced to maximize profit? Formulate the design 
optimization problem.

2.7	 Design a diet of bread and milk to get at least 5 units of vitamin A and 4 units of vitamin 
B daily. The amount of vitamins A and B in 1 kg of each food and the cost per kilogram 
of the food are given in Table E2.7. For example, one kg of bread costs 2$ and provides 
one unit of vitamin A and 3 units of vitamin B. Formulate the design optimization 
problem so that we get at least the basic requirements of vitamins at the minimum cost.

2.8	 Enterprising engineering students have set up a still in a bathtub. They can produce 
225 bottles of pure alcohol each week. They bottle two products from alcohol: (1) 
wine, at 20 proof, and (2) whiskey, at 80 proof. Recall that pure alcohol is 200 proof. 
They have an unlimited supply of water, but can only obtain 800 empty bottles per 
week because of stiff competition. The weekly supply of sugar is enough for either 600 
bottles of wine or 1200 bottles of whiskey. They make a $1.00 profit on each bottle of 
wine and a $2.00 profit on each bottle of whiskey. They can sell whatever they produce. 
How many bottles of wine and whiskey should they produce each week to maximize 
profit? Formulate the design optimization problem (created by D. Levy).

2.9	 Design a can closed at one end using the smallest area of sheet metal for a specified 
interior volume of 600 m3. The can is a right-circular cylinder with interior height h and 
radius r. The ratio of height to diameter must not be less than 1.0 nor greater than 1.5. 
The height cannot be more than 20 cm. Formulate the design optimization problem.

2.10	 Design a shipping container closed at both ends with dimensions b × b × h to minimize 
the ratio: (round-trip cost of shipping container only)/(one-way cost of shipping contents 
only). Use the data in Table E2.10. Formulate the design optimization problem.

TABLE E2.7  Data for the Diet Problem

Vitamin 1 kg bread provides 1 kg milk provides

A 1 unit 2 units

B 3 units 2 units

Cost/kg, $ 2 1

TABLE E2.10  Data for Shipping Container

Mass of container/surface area 80 kg/m2

Maximum b 10 m

Maximum h 18 m

One-way shipping cost, full or empty $18/kg gross mass

Mass of contents 150 kg/m3
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2.11	 Certain mining operations require an open-top rectangular container to transport 
materials. The data for the problem are as follows:

	 Construction costs:
•	 Sides: $50/m2

•	 Ends: $60/m2

•	 Bottom: $90/m2

	 Minimum volume needed: 150 m3

	 Formulate the problem of determining the container dimensions at a minimum cost.
2.12	 Design a circular tank closed at both ends to have a volume of 250 m3. The fabrication 

cost is proportional to the surface area of the sheet metal and is $400/m2. The tank is to 
be housed in a shed with a sloping roof. Therefore, height H of the tank is limited by 
the relation H ≤ (10 − D/2), where D is the tank’s diameter. Formulate the minimum-
cost design problem.

2.13	 Design the steel framework shown in Fig. E2.13 at a minimum cost. The cost of a 
horizontal member in one direction is $20 w and in the other direction it is $30 d. The 
cost of a vertical column is $50 h. The frame must enclose a total volume of at least  
600 m3. Formulate the design optimization problem.

2.14	 Two electric generators are interconnected to provide total power to meet the load. 
Each generator’s cost is a function of the power output, as shown in Fig. E2.14. All 
costs and power are expressed on a per-unit basis. The total power needed is at least 60 
units. Formulate a minimum-cost design problem to determine the power outputs P1 
and P2.

2.15	 Transportation problem. A company has m manufacturing facilities. The facility at the 
ith location has capacity to produce bi units of an item. The product should be shipped 
to n distribution centers. The distribution center at the jth location requires at least aj 
units of the item to satisfy demand. The cost of shipping an item from the ith plant to 
the jth distribution center is cij. Formulate a minimum-cost transportation system to 
meet each of the distribution center’s demands without exceeding the capacity of any 
manufacturing facility.

2.16	 Design of a two-bar truss. Design a symmetric two-bar truss (both members have the 
same cross-section), as shown in Fig. E2.16, to support a load W. The truss consists of 

FIGURE E2.13  Steel frame.
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two steel tubes pinned together at one end and supported on the ground at the other. 
The span of the truss is fixed at s. Formulate the minimum-mass truss design problem 
using height and cross-sectional dimensions as design variables. The design should 
satisfy the following constraints:
1.	 Because of space limitations, the height of the truss must not exceed b1 and must not 

be less than b2.
2.	 The ratio of mean diameter to thickness of the tube must not exceed b3.
3.	 The compressive stress in the tubes must not exceed the allowable stress σ a for steel.
4.	 The height, diameter, and thickness must be chosen to safeguard against member 

buckling.
	 Use the following data: W = 10 kN; span s = 2 m; b1 = 5 m; b2 = 2 m; b3 = 90; allowable 

stress σ a = 250 MPa; modulus of elasticity E = 210 GPa; mass density ρ = 7850 kg/m3; 
factor of safety against buckling FS = 2; 0.1 ≤ D ≤ 2 (m); and 0.01 ≤ t ≤ 0.1 (m).

FIGURE E2.14  Graphic of a power generator.

FIGURE E2.16  Two-bar structure.
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2.17	 A beam of rectangular cross-section (Fig. E2.17) is subjected to a maximum bending 
moment of M and a maximum shear of V. The allowable bending and shearing stresses 
are σ a and τ a, respectively. The bending stress in the beam is calculated as

σ =
M

bd
6

2

	 and the average shear stress in the beam is calculated as

τ =
V
bd

3
2

	 where d is the depth and b is the width of the beam. It is also desirable to have the depth 
of the beam not exceed twice its width. Formulate the design problem for minimum 
cross-sectional area using this data: M = 140 kN m, V = 24 kN, σ a = 165 MPa, τ a = 50 MPa.

2.18	 A vegetable oil processor wishes to determine how much shortening, salad oil, and 
margarine to produce to optimize the use its current oil stock supply. At the present 
time, he has 250,000 kg of soybean oil, 110,000 kg of cottonseed oil, and 2000 kg of 
milk-base substances. The milk-base substances are required only in the production of 
margarine. There are certain processing losses associated with each product: 10% for 
shortening, 5% for salad oil, and no loss for margarine. The producer’s back orders 
require him to produce at least 100,000 kg of shortening, 50,000 kg of salad oil, and 
10,000 kg of margarine. In addition, sales forecasts indicate a strong demand for all 
products in the near future. The profit per kilogram and the base stock required per 
kilogram of each product are given in Table E2.18. Formulate the problem to maximize 
profit over the next production-scheduling period (created by J. Liittschwager)

σ=6Mbd2

τ=3V2bd

FIGURE E2.17  Cross-section of a rectangular beam.

TABLE E2.18  Data for the Vegetable Oil Processing Problem

Product

Parts per kg of base stock requirements

Profit per kg Soybean Cottonseed Milk base

Shortening 1.00 2 1 0

Salad oil 0.80 0 1 0

Margarine 0.50 3 1 1
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Section 2.11: A General Mathematical Model for Optimum Design

2.19	 Answer true or false:
  1.	Design of a system implies specification of the design variable values.
  2.	All design problems have only linear inequality constraints.
  3.	All design variables should be independent of each other as far as possible.
  4.	If there is an equality constraint in the design problem, the optimum solution must 

satisfy it.
  5.	Each optimization problem must have certain parameters called the design variables.
  6.	A feasible design may violate equality constraints.
  7.	A feasible design may violate “≥ type” constraints.
  8.	A “≤ type” constraint expressed in the standard form is active at a design point if it 

has zero value there.
  9.	The constraint set for a design problem consists of all feasible points.
10.	The number of independent equality constraints can be larger than the number of 

design variables for the problem.
11.	The number of “≤ type” constraints must be less than the number of design 

variables for a valid problem formulation.
12.	The feasible region for an equality constraint is a subset of that for the same 

constraint expressed as an inequality.
13.	Maximization of f(x) is equivalent to minimization of 1/f(x).
14.	A lower minimum value for the cost function is obtained if more constraints are 

added to the problem formulation.
15.	Let fn be the minimum value for the cost function with n design variables for a 

problem. If the number of design variables for the same problem is increased to, 
say, m = 2n, then fm > fn, where fm is the minimum value for the cost function with m 
design variables.

2.20	 A trucking company wants to purchase several new trucks. It has $2 million to 
spend. The investment should yield a maximum of trucking capacity for each day in 
tons × kilometers. Data for the three available truck models are given in Table E2.20: 
truck load capacity, average speed, crew required per shift, hours of operation for three 
shifts, and cost of each truck. There are some limitations on the operations that need to be 
considered. The labor market is such that the company can hire at most 150 truck drivers. 
Garage and maintenance facilities can handle at the most 25 trucks. How many trucks of 
each type should the company purchase? Formulate the design optimization problem.

TABLE E2.20  Data for Available Trucks

Truck 
model

Truck load 
capacity 
(tonnes)

Average 
truck speed 
(km/h)

Crew required 
per shift

No. of hours of 
operations per 
day (3 shifts)

Cost of each 
truck ($)

A 10 55 1 18 40,000

B 20 50 2 18 60,000

C 18 50 2 21 70,000
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2.21	 A large steel corporation has two iron-ore-reduction plants. Each plant processes 
iron ore into two different ingot stocks, which are shipped to any of three fabricating 
plants where they are made into either of two finished products. In total, there are two 
reduction plants, two ingot stocks, three fabricating plants, and two finished products. 
For the upcoming season, the company wants to minimize total tonnage of iron ore 
processed in its reduction plants, subject to production and demand constraints. 
Formulate the design optimization problem and transcribe it into the standard model.
Nomenclature (values for the constants are given in Table E2.21)
a(r, s) = tonnage yield of ingot stock s from 1 ton of iron ore processed at reduction 
plant r
b(s, f, p) = total yield from 1 ton of ingot stock s shipped to fabricating plant f and 
manufactured into product p
c(r) = ore-processing capacity in tonnage at reduction plant r
k(f) = capacity of fabricating plant f in tonnage for all stocks
D(p) = tonnage demand requirement for product p

	 Production and demand constraints:
1.	 The total tonnage of iron ore processed by both reduction plants must equal the total 

tonnage processed into ingot stocks for shipment to the fabricating plants.
2.	 The total tonnage of iron ore processed by each reduction plant cannot exceed its 

capacity.
3.	 The total tonnage of ingot stock manufactured into products at each fabricating plant 

must equal the tonnage of ingot stock shipped to it by the reduction plants.
4.	 The total tonnage of ingot stock manufactured into products at each fabricating plant 

cannot exceed the plant’s available capacity.
5.	 The total tonnage of each product must equal its demand.

2.22	 Optimization of a water canal. Design a water canal having a cross-sectional area of 
150 m2. The lowest construction costs occur when the volume of the excavated material 
equals the amount of material required for the dykes, that is, =A A1 2  (see Fig. E2.22). 
Formulate the problem to minimize the dugout material A1. Transcribe the problem 
into the standard design optimization model.

A1=A2

TABLE E2.21 C onstants for Iron Ore Processing Operation

a(1,1) = 0.39 c(1) = 1,200,000 k(1) = 190,000 D(1) = 330,000

a(1,2) = 0.46 c(2) = 1,000,000 k(2) = 240,000 D(2) = 125,000

a(2,1) = 0.44 k(3) = 290,000

a(2,2) = 0.48

b(1,1,1) = 0.79 b(1,1,2) = 0.84

b(2,1,1) = 0.68 b(2,1,2) = 0.81

b(1,2,1) = 0.73 b(1,2,2) = 0.85

b(2,2,1) = 0.67 b(2,2,2) = 0.77

b(1,3,1) = 0.74 b(1,3,2) = 0.72

b(2,3,1) = 0.62 b(2,3,2) = 0.78
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2.23	 A cantilever beam is subjected to the point load P (kN), as shown in Fig. E2.23. The 
maximum bending moment in the beam is PL (kN·m) and the maximum shear is 
P (kN). Formulate the minimum-mass design problem using a hollow circular cross-
section. The material should not fail under bending or shear stress. The maximum 
bending stress is calculated as

σ =
PL
I

Ro
	

(a)

	 where I = moment of inertia of the cross-section. The maximum shearing stress is 
calculated as

τ = + +
P
I

R R R R
3

( )o o i i
2 2

	
(b)

	 Transcribe the problem into the standard design optimization model (also use Ro ≤ 
40.0 cm, Ri ≤ 40.0 cm). Use this data: P = 14 kN; L = 10 m; mass density ρ = 7850 kg/m3; 
allowable bending stress σ b = 165 MPa; allowable shear stress τ a = 50 MPa.

2.24	 Design a hollow circular beam-column, shown in Fig. E2.24, for two conditions: When 
the axial tensile load P = 50 (kN), the axial stress σ must not exceed an allowable value 
σ a, and when P = 0, deflection d due to self-weight should satisfy the limit d ≤ 0.001L. 
The limits for dimensions are: thickness t = 0.10–1.0 cm, mean radius R = 2.0–20.0 cm, 
and R/t ≤ 20 (AISC, 2011). Formulate the minimum-weight design problem and 
transcribe it into the standard form. Use the following data: deflection d = 5wL4/384EI; 
w = self-weight force/length (N/m); σ a = 250 MPa; modulus of elasticity E = 210 GPa; 

σ=PLIRo

τ=P3I(R02+R0Ri+Ri2)

FIGURE E2.22  Cross-section of a canal. (Created by V. K. Goel.)

FIGURE E2.23  Cantilever beam.
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mass density of beam material ρ = 7800 kg/m3; axial stress under load P, σ = P/A; 
gravitational constant g = 9.80 m/s2; cross-sectional area A = 2πRt (m2); moment of 
inertia of beam cross-section I = πR3t (m4). Use Newton (N) and millimeters (mm) as 
units in the formulation.
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