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5
More on Optimum Design Concepts: 

Optimality Conditions

Upon completion of this chapter, you will be able to:

•	 Write	and	use	an	alternate	form	of	optimality	
conditions	for	constrained	problems

•	 Determine	if	the	candidate	minimum	points	
are irregular

•	 Check	the	second-order	optimality	
conditions	at	the	candidate	minimum	points	
for	general	constrained	problems

•	 Describe	duality	theory	of	nonlinear	
programming

In	 this	 chapter,	 we	 discuss	 some	 additional	 topics	 related	 to	 the	 optimality	 condition	
for	constrained	problems.	Implications	of	the	regularity	requirement	in	the	Karush–Kuhn–
Tucker	(KKT)	necessary	conditions	are	discussed.	Second-order	optimality	conditions	for	the	
problem	are	presented	and	discussed.	These	topics	are	usually	not	covered	in	a	first	course	on	
optimization.	Also,	they	may	be	omitted	in	a	first	reading	of	this	book.	They	are	more	suitable	
for	a	second	course	or	a	graduate	level	course	on	the	subject.

5.1 ALTERNATE FORM OF KKT NECESSARY CONDITIONS

There	 is	 an	alternate	but	 entirely	 equivalent	 form	 for	 the	KKT	necessary	 conditions.	 In	
this	form,	the	slack	variables	are	not	added	to	the	inequality	constraints	and	the	conditions	
of	 Eqs.	 (4.46)–(4.52)	 are	 written	 without	 them.	 It	 can	 be	 seen	 that	 in	 the	 necessary	 condi-
tions	of	Eqs.	 (4.46)–(4.52),	 the	slack	variable	si	appears	 in	only	two	equations:	Eq.	 (4.49)	as	
gi(x*)	+	si

2	=	0,	and	Eq.	(4.51)	as	 =u s* 0i i .	We	will	show	that	both	the	equations	can	be	written	
in	an	equivalent	form	without	the	slack	variable	si.

Consider	 first	 Eq.	 (4.49):	 gi(x*)	+	si
2 = 0 for i	=	1	 to	 m.	 The	 purpose	 of	 this	 equation	 is	 to	

ensure	that	all	the	inequalities	remain	satisfied	at	the	candidate	minimum	point.	The	equa-
tion can be written as si

2 = −gi(x*)	and,	since	si
2 ≥ 0 ensures satisfaction of the constraint, we 

ui*si=0
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get −gi(x*)	≥ 0, or gi(x*)	≤ 0 for i	=	1	to	m.	Thus,	Eq.	(4.49),	gi(x*)	+	si
2 = 0 along with si

2 ≥ 0, can 
be	simply	replaced	by	gi(x*)	≤	0.

The	second	equation	involving	the	slack	variable	is	Eq.	(4.51),	 =u s* 0i i , i	=	1	to	m. Multi-
plying	the	equation	by	si, we get =u s* 0i

2
i

.	now	substituting	si
2 = −gi(x*),	we	get	 u*i gi(x*)	=	0,	

i	=	1	to	m.	This	way	the	slack	variable	is	eliminated	from	the	equation	and	the	switching	con-
dition	of	Eq.	(4.51)	can	be	written	as	 u*i gi(x*)	=	0,	i	=	1	to	m.	These	conditions	can	be	used	to	
define	various	cases	as	 =u* 0i  or gi	=	0	(instead	of	si	=	0).	Table	5.1	gives	the	KKT	conditions	of	
Theorem	4.6	in	the	alternate	form	without	the	slack	variables,	and	Examples	5.1	and	5.2	provide	
illustrations	of	their	use.

EXAMPLE 5.1 USE OF THE ALTERNATE FORM OF THE KKT 
CONDITIONS

Minimize

= − + −f x y x y( , ) ( 10) ( 8)2 2	 (a)

subject	to

g x y 12 01 = + − ≤	 (b)

g x 8 02 = − ≤	 (c)

Solution
Since	the	problem	is	already	expressed	in	the	standard	form,	there	is	no	need	to	perform	any	

transformations	to	convert	the	problem	to	the	standard	form.	The	KKT	conditions	are

ui*si=0
ui*s2=0ui*

ui*
ui*=0

f(x,y)=(x−10)2+(y−8)2

g1=x+y−12≤0

g2=x−8≤0

TABLE 5.1 alternate Form of KKt necessary Conditions

Problem: Minimize f (x)	subject	to	hi(x)	=	0,	i	=	1	to	p; gj	(x)	≤ 0, j	=	1	to	m

1.	 Lagrangian function definition: ∑ ∑= + +
= =

L f v h u gi i
i

p

j j
j

m

1 1

	 (5.1)

2.	 Gradient conditions: ∑∑∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

= =
==
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x

f
x
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h
x

u
g
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j

j

m
j

ki

p

11

		 	(5.2)

3.	 Feasibility check: ( ) ( )= = ≤ =h i p g j mx* x*0; 1 to ; 0; 1 toi j 		 	(5.3)

4.	 Switching conditions:  ( ) = =u g j mx** 0; 1 toj j 		 	(5.4)

5.	 Nonnegativity of Lagrange multipliers for inequalities: ≥ =u j m* 0; 1 toj 		 	(5.5)

6.	 Regularity check:	Gradients	of	active	constraints	must	be	linearly	independent.	In	such	a	case,	the	Lagrange	
multipliers	for	the	constraints	are	unique.

L=f+∑i=1pvihi+∑j=1mujgj

∂L∂xk=0;∂f∂xk+∑i=1pvi*∂hi∂xk+∑j=1
muj*∂gj∂xk=0;k=1ton

hix*=0;i=1top;gjx*≤0;j=1  to m

uj*gjx*=0;j=1  to  m

uj*  ≥0;  j=1  to  m
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1. Lagrangian	function	definition	of	Eq.	(5.1):

L x y u x y u x( 10) ( 8) ( 12) ( 8)2 2
1 2= − + − + + − + −	 (d)

2. Gradient	condition	of	Eq.	(5.2):

L
x

x u u

L
y

y u

2( 10) 0

2( 8) 0

1 2

1

∂
∂

= − + + =

∂
∂

= − + =
	 (e)

3. Feasibility	check	of	Eq.	(5.3):

≤ ≤g g0, 01 2	 (f)

4. Switching	conditions	of	Eq.	(5.4):

u g u g0, 01 1 2 2= = (g)

5. nonnegativity	of	Lagrange	multipliers	of	Eq.	(5.5):

≥u u, 01 2	 (h)

6. Regularity	check.

The	switching	conditions	of	Eq.	(g)	give	the	following	four	cases:

1. u1 = 0, u2	=	0	(both	g1	and	g2	inactive)
2. u1 = 0, g2	=	0	(g1	inactive,	g2	active)
3. g1 = 0, u2	=	0	(g1	active,	g2	inactive)
4. g1 = 0, g2	=	0	(both	g1	and	g2	active)

Case 1: u1 = 0, u2 = 0 (both g1 and g2 inactive)
Eq.	(e)	give	the	solution	as,	x	=	10,	y	=	8.	Checking	feasibility	of	this	point	gives	g1	=	6	> 0, g2	=	2	> 0; 

thus	both	constraints	are	violated	and	so	this	case	does	not	give	any	feasible	candidate	minimum	point.

Case 2: u1 = 0, g2 = 0 (g1 inactive, g2 active)
g2	=	0	gives	x	=	8.	Eq.	(e)	give	y	=	8	and	u2	=	4.	At	the	point	(8,	8),	g1	=	4	>	0,	which	is	a	violation.	Thus	

the	point	(8,	8)	is	infeasible	and	this	case	also	does	not	give	any	feasible	candidate	minimum	points.

Case 3: g1 = 0, u2 = 0 (g1 active, g2 inactive)
Eq.	(e)	and	g1	=	0	give	x = 7, y	=	5,	u1	=	6	>	0.	Checking	feasibility,	g2 = −1	<	0,	which	is	satisfied.	

Since	there	is	only	one	active	constraint,	the	question	of	linear	dependence	of	gradients	of	active	
constraints	does	not	arise;	therefore,	regularity	condition	is	satisfied.	Thus	point	(7,	5)	satisfies	all	
the	KKT	necessary	conditions.

Case 4: g1 = 0, g2 = 0 (both g1 and g2 active)
The case g1 = 0, g2	=	0	gives	x = 8, y	=	4.	Eq.	(e)	give	u1 = 8, u2 = −4	<	0,	which	is	a	violation	of	the	

necessary	conditions.	Therefore,	this	case	also	does	not	give	any	candidate	minimum	points.
It	may	be	checked	that	this	is	a	convex	programming	problem	since	constraints	are	linear	and	the	

cost	function	is	convex.	Therefore,	the	point	obtained	in	Case	3	is	indeed	a	global	minimum	point	
according	to	the	convexity	results	of	Section	4.8.

L=(x−10)2+(y−8)2+u1(x+y−12)
+u2(x−8)

∂L∂x=2(x−10)+u1+u2=0∂L∂y=2(
y−8)+u1=0

g1≤0, g2≤0

u1g1=0,  u2g2=0

u1,u2≥0
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EXAMPLE 5.2 CHECK FOR KKT NECESSARY CONDITIONS
An	optimization	problem	has	one	equality	constraint	h	and	one	inequality	constraint	g.	Check	

the	KKT	necessary	conditions	at	what	 is	believed	 to	be	 the	minimum	point	using	 the	 following	
information:

= = ∇ = ∇ = − ∇ = − − −h g f h g0, 0, (2, 3, 2), (1, 1, 1), ( 1, 2, 1)	 (a)

Solution
At	the	candidate	minimum	point,	the	gradients	of	h	and	g	are	linearly	independent,	so	the	given	

point	is	regular.	To	check	linear	independence,	we	form	a	linear	combination	of	∇h	and	∇g	and	set	
it	to	zero	(refer	to	Appendix	A	for	this	check):

−












+
−
−
−













=












c c
1
1
1

1
2
1

0
0
0

1 2	 (b)

where c1	and	c2	are	the	parameters	of	linear	combination.	If	 c c0 and 01 2= =  is the only solution for 
the	linear	system	in	Eq.	(b),	then	the	vectors	are	linearly	independent.	In	the	linear	system	in	Eq.	(b),	
the	first	and	the	third	equations	are	the	same;	the	determinant	of	the	coefficient	matrix	of	the	first	
two	equations	is	−3; therefore, the only solution is c 0 and c 01 2= = .

The	KKT	conditions	for	the	problem	are

L f h u g
h g ug u

0
0, 0, 0, 0

υ∇ = ∇ + ∇ + ∇ =
= ≤ = ≥	 (c)

Substituting	for	∇f, ∇h,	and	∇g in ∇L =	0,	we	get	the	following	three	equations:

u u u2 0, 3 2 0, 2 0υ υ υ+ − = − − = + − =	 (d)

These	are	three	equations	in	two	unknowns;	however,	only	two	of	them	are	linearly	indepen-
dent.	Solving	for	u	and	v, we get u	=	5/3	≥	0	and	v = −1/3.	Thus,	all	of	the	KKT	necessary	conditions	
are	satisfied.

5.2 IRREGULAR POINTS

In	all	of	the	examples	that	have	been	considered	thus	far,	it	is	implicitly	assumed	that	con-
ditions	of	the	KKT	Theorem	4.6	or	the	Lagrange	Theorem	4.5	are	satisfied.	In	particular,	we	
have	assumed	that	x* is a regular point	of	the	feasible	design	space.	That	is,	gradients	of	all	
the	active	constraints	at	x*	are	linearly	independent	(ie,	they	are	neither	parallel	to	each	other,	
nor	can	any	gradient	be	expressed	as	a	linear	combination	of	others).	It	must	be	realized	that	
necessary	conditions	are	applicable only if the assumption of the regularity of x*	is	satisfied.	To	
show	that	the	necessary	conditions	are	not	applicable	if	x*	is	not	a	regular	point,	we	consider	
Example	5.3.

h=0, g=0,  ∇f=(2,3,2),  ∇h=(1,−1,1),  ∇
g=(−1,−2,−1)

c11−11+c2−1−2−1=000

c1=0  and  c2=0

c1=0  and  c2=0

     ∇L=∇f+υ∇h+u∇g=0h=0,     g≤0
,      ug=0,      u≥0

2+υ−u=0,  3−υ−2u=0,  2+υ−u=0
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EXAMPLE 5.3 CHECK FOR KKT CONDITIONS AT IRREGULAR 
POINTS

Minimize

f x x x x x( , ) 4 41 2 1
2 2

2 1= + − +	 (a)

subject	to

g x 01 1= − ≤	 (b)

g x 02 2= − ≤	 (c)

g x x(1 ) 03 2 1
3= − − ≤	 (d)

Check	if	the	minimum	point	(1,	0)	satisfies	the	KKT	necessary	conditions	(McCormick,	1967).

Solution
The graphical solution, shown in Fig.	5.1,	gives	the	global	minimum	for	the	problem	at	x*	=	(1,	0).	

Let	us	see	if	the	solution	satisfies	the	KKT	necessary	conditions:

1. Lagrangian	function	definition	of	Eq.	(5.1):

L x x x u x u x u x x4 4 ( ) ( ) [ (1 ) ]1
2 2

2 1 1 1 2 2 3 2 1
3= + − + + − + − + − −	 (e)

2. Gradient	condition	of	Eq.	(5.2):

L
x

x u u x

L
x

x u u

2 4 (3)(1 ) 0

2 0

1
1 1 3 1

2

2
2 2 3

∂
∂

= − − + − =

∂
∂

= − + =
	 (f)

f(x1,x2)=x1
2+x2

−4x1+4

g1=−x1≤0

g2=−x2≤0

g3=x2−(1−x1)3
≤0

L=x1
2+x2

−4x1+4+u1(−x1)+u2(−x
2)+u3[x2−(1−x1)3]

∂L∂x1=2x1−4−u1+u3(3)(1−x1)2=
0∂L∂x2=2x2−u2+u3=0

FIGURE 5.1 Graphical solution for Example 5.3: irregular optimum point.
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3. Feasibility	check	of	Eq.	(5.3):

g i0, 1, 2, 3i ≤ = (g)

4. Switching	conditions	of	Eq.	(5.4):

u g i0, 1, 2, 3i i = = (h)

5. nonnegativity	of	Lagrange	multipliers	of	Eq.	(5.5):

u i0, 1, 2, 3i ≥ = (i)

6. Regularity	check.

At	x*	=	(1,	0)	the	first	constraint	(g1)	is	inactive	and	the	second	and	third	constraints	are	active.	
The	switching	conditions	in	Eq.	(h)	identify	the	case	as	u1 = 0, g2 = 0, g3	=	0.	Substituting	the	solution	
into	Eqs.	(f),	we	find	that	the	first	equation	gives	−2	=	0	and	therefore,	it	is	not	satisfied.	Thus,	the	
KKT	necessary	conditions	are	not	satisfied	at	the	minimum	point.

This apparent contradiction	can	be	resolved	by	checking	the	regularity	condition	at	the	minimum	
point x*	=	(1,	0).	The	gradients	of	the	active	constraints	g2	and	g3	are	given	as

g g0
1

; 0
12 3∇ =

−






∇ = 





	 (j)

These vectors are not linearly independent.	They	are	along	the	same	line	but	in	opposite	directions,	
as seen in Fig.	5.1.	Thus	x*	is	not	a	regular	point	of	the	feasible	set.	Since	this	is	assumed	in	the	KKT	
conditions,	their	use	is	invalid	here.	note	also	that	the	geometrical	interpretation	of	the	KKT	condi-
tions	of	Eq.	(4.53)	is	violated;	that	is,	for	the	present	example,	∇f	at	(1,	0)	cannot	be	written	as	a	linear	
combination	of	the	gradients	of	the	active	constraints	g2	and	g3.	Actually,	∇f is normal to both ∇g2 
and	∇g3, as seen in the Fig.	5.1;	therefore	it	cannot	be	expressed	as	their	linear	combination.

note	that	for	some	problems	irregular	points	can	be	obtained	as	a	solution	to	the	KKT	condi-
tions;	however,	in	such	cases,	the	Lagrange	multipliers	of	the	active	constraints	cannot	be	guaran-
teed	to	be	unique.	Also,	the	constraint	variation	sensitivity	result	of	Section	4.7	may	or	may	not	be	
applicable	to	some	values	of	the	Lagrange	multipliers.

5.3 SECOND-ORDER CONDITIONS FOR  
CONSTRAINED OPTIMIZATION

Solutions	 to	 the	 first-order	 necessary	 conditions	 are	 candidate	 local	 minimum	 designs.	
In	 this	section,	we	will	discuss	second-order	necessary	and	sufficiency	conditions	 for	con-
strained	optimization	problems.	As	in	the	unconstrained	case,	second-order information about 
the	functions	at	the	candidate	point	x*	will	be	used	to	determine	if	the	point	is	indeed	a	local	
minimum.	 Recall	 for	 the	 unconstrained	 problem	 that	 the	 local	 sufficiency	 of	 Theorem	 4.4	
requires	the	quadratic	part	of	Taylor’s	expansion	for	the	function	at	x*	to	be	positive	for	all	
nonzero	design	changes	d.	In the constrained case, we must also consider active constraints at x* to 
determine feasible changes d.	We	will	consider	only	the	points	x = x*	+	d	in	the	neighborhood	of	
x*	that	satisfy	the	active	constraint	equations.

gi≤0,  i=1,2,3

uigi=0,  i=1,2,3

ui≥0,  i=1,2,3

∇g2=0−1;   ∇g3=01
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Any d ≠ 0 satisfying active constraints to the first order must be in the constraint tangent hyper-
plane	(Fig.	5.2).	Such	d’s	are	then	orthogonal	to	the	gradients	of	the	active	constraints	since	
constraint	gradients	are	normal	to	the	constraint	tangent	hyperplane.	Therefore,	the	dot	product	
of d	with	each	of	the	active	constraint	gradients	∇hi	and	∇gi must be zero; that is, ∇hi

Td = 0 
and	∇gi

Td	=	0.	These	equations	are	used	to	determine	directions	d	that	define	a	feasible	region	
around	the	point	x*.	note	that	only	active	inequality	constraints	(gi	=	0)	are	used	in	determin-
ing d.	The	situation	is	depicted	in	Fig.	5.2	for	one	inequality	constraint.

To	derive	the	second-order	conditions,	we	write	Taylor’s	expansion	of	the	Lagrange	func-
tion	and	consider	only	those	d	that	satisfy	the	preceding	conditions.	x* is then a local mini-
mum	point	if	the	second-order	term	of	Taylor’s	expansion	is	positive	for	all	d in the constraint 
tangent hyperplane.	This	is	then	the	sufficient	condition	for	an	isolated	local	minimum	point.	
As	a	necessary	condition	the	second-order	term	must	be	nonnegative.	We	summarize	these	
results	in	Theorems	5.1	and	5.2.

THEOREM 5.1

Second-Order Necessary Conditions for General Constrained Problems
Let	x*	satisfy	the	first-order	KKT	necessary	conditions	for	the	general	optimum	design	problem.	

Define	the	hessian	of	the	Lagrange	function	L at x* as

L f v h u g* *
i

p
j i j

m
j j

2 2
1

2
1

2∑ ∑∇ = ∇ + ∇ + ∇
= =	 (5.6)

Let	there	be	nonzero	feasible	directions,	d ≠ 0, satisfying the following linear systems at the 
point x*:

h i pd 0; 1toi
T∇ = = (5.7)

∇ = =g j gd x0 for all active inequalities ( ie , for those with ( *) 0)i
T

j	 (5.8)

Then, if x*	is	a	local	minimum	point	for	the	optimum	design	problem,	it	must	be	true	that

≥ = ∇Q Q Ld x d0 where ( *)T 2	 (5.9)

∇2L=∇2f+∑i=1p υi*∇2hi+∑j=1m u
j*∇2gj

∇hiTd=0;  i=1 to p

∇giTd=0 for all active  inequali-
ties (ie, for those j with gj(x*)=0

Q≥0  where  Q=dT∇2L(x*)d

FIGURE 5.2 Directions d used in second-order conditions.



214 5. MOre On OptiMuM Design COnCepts: OptiMality COnDitiOns

I.	 ThE	BASIC	ConCEpTS

Note that any point that does not satisfy the second-order necessary conditions cannot 
be a local minimum point.

THEOREM 5.2

Sufficient Conditions for General Constrained Problems
Let	x*	satisfy	the	first-order	KKT	necessary	conditions	for	the	general	optimum	design	problem.	

Define	the	hessian	of	the	Lagrange	function	L at x*	as	shown	in	Eq.	(5.6).	Define	nonzero	feasible	
directions,	d ≠ 0, as solutions to the linear systems:

h i pd 0; 1toi
T∇ = =	 (5.10)

g ud 0 for all those active inequalities with * 0j
T

j∇ = > (5.11)

Also	let	 g ud 0 for those active inequalities with * 0j
T

j∇ ≤ = .	If

Q Q Ld x d0, where ( *)T 2> = ∇	 (5.12)

then x* is an isolated local minimum	 point	 (isolated means that there are no other local minimum 
points	in	the	neighborhood	of	x*).

∇hiTd=0;  i=1 to p

∇gjTd=0  for all those  active  in-
equalities with uj*>

∇gjTd≤0  for those active  in-
equalities with uj*=0

Q>0,  where  Q=dT∇2L(x*)d

Insights for Second-Order Conditions

1. note	first	the	difference	in	the	conditions	for	the	directions	d	in	Eq.	(5.8) for the neces-
sary	condition	and	Eq.	(5.11)	for	the	sufficient	condition.	In	Eq.	(5.8),	all	active	inequali-
ties	with	nonnegative	multipliers	are	included,	whereas	in	Eq.	(5.11)	only	those	active	
inequalities	with	a	positive	multiplier	are	included.

2. Eqs.	(5.10)	and	(5.11)	simply	say	that	the	dot	product	of	vectors	∇hi	and	d	and	 gj∇  
(having	u* 0j > )	and	d	should	be	zero.	Thus,	only	the	d	orthogonal	to	the	gradients	of	
equality	and	active	inequality	constraints	with	u* 0j > 	are	considered.	Stated	differently,	
only d	in	the	tangent	hyperplane	to	the	active	constraints	at	the	candidate	minimum	
point	are	considered.

3. Eq.	(5.12)	says	that	the	hessian	of	the	Lagrangian	must	be	positive	definite	for	all	d lying 
in	the	constraint	tangent	hyperplane.	note	that ∇hi, gj∇ ,	and	∇2L	are	calculated	at	the	
candidate	local	minimum	points	x*	satisfying	the	KKT	necessary	conditions.

4. It	should	also	be	emphasized	that	if	the	inequality	in	Eq.	(5.12)	is	not	satisfied	(ie,	Q ≯	0),	
we	cannot	conclude	that	x*	is	not	a	local	minimum.	It	may	still	be	a	local	minimum	
but	not	an	isolated	one.	note	also	that	the	theorem	cannot	be	used	for	any	x* if its 
assumptions	are	not	satisfied.	In	that	case,	we	cannot	draw	any	conclusions	for	the	
point x*.

5. It	is	important	to	note	that	if	matrix	∇2L(x*)	is	negative	definite	or	negative	semidefinite	
then	the	second-order	necessary	condition	in	Eq.	(5.9)	for	a	local	minimum	is	violated	
and	x*	cannot	be	a	local	minimum	point.

6. It is also important to note that if ∇2L(x*)	is	positive	definite	(ie,	Q	in	Eq.	(5.12)	is	positive	
for any d ≠ 0)	then	x*	satisfies	the	sufficiency	condition	for	an	isolated	local	minimum	

∇gj
uj*>0
uj*>0

∇gj
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and	no	further	checks	are	needed.	The	reason	is	that	if	∇2L(x*)	is	positive	definite,	then	
it	is	positive	definite	for	those	d	that	satisfy	Eqs.	(5.10)	and	(5.11).	however,	if ∇2L(x*)	
is not positive definite (ie, it is positive semidefinite or indefinite), then we cannot conclude that 
x* is not an isolated local minimum.	We	must	calculate	d	to	satisfy	Eqs.	(5.10)	and	(5.11) 
and	carry	out	the	sufficiency	test	given	in	Theorem	5.2.	This	result	is	summarized	in	
Theorem	5.3.

THEOREM 5.3

Strong Sufficient Condition
Let	x*	satisfy	the	first-order	KKT	necessary	conditions	for	the	general	optimum	design	problem.	

Define	hessian	∇2L(x*)	for	the	Lagrange	function	at	x*	as	shown	in	Eq.	(5.6).	Then,	if	∇2L(x*)	is	posi-
tive	definite,	x*	is	an	isolated	minimum	point.

7. one	case	arising	in	some	applications	needs	special	mention.	This	occurs	when	the	total	
number	of	active	constraints	(with	at	least	one	inequality)	at	the	candidate	minimum	
point x*	is	equal	to	the	number	of	independent	design	variables;	that	is,	there	are	no	
design	degrees	of	freedom	at	the	candidate	minimum	point.	Since	x*	satisfies	the	KKT	
necessary	conditions,	the	gradients	of	all	the	active	constraints	are	linearly	independent.	
Thus,	the	only	solution	for	the	system	of	Eqs.	(5.10)	and	(5.11) is d = 0	and	Theorem	5.2	
cannot	be	used.	however,	since	d = 0	is	the	only	solution,	there	are	no	feasible	directions	
in	the	neighborhood	that	can	reduce	the	cost	function	any	further.	Thus,	the	point	x* is 
indeed	a	local	minimum	for	the	cost	function	(see	also	the	definition	of	a	local	minimum	
in	Section	4.1.1).	We	consider	Examples	5.4–5.6	to	illustrate	the	use	of	second-order	
conditions	of	optimality.

EXAMPLE 5.4 CHECK FOR SECOND-ORDER CONDITIONS 1
Check	the	second-order	condition	for	Example	4.30:

Minimize

f x b c x bcx f(x)
1
3

1
2

( )3 2
0= − + + +	 (a)

subject	to

a x d≤ ≤	 (b)

where 0 < a < b < c < d	and	f0	are	specified	constants.

Solution
There	is	only	one	constrained	candidate	local	minimum	point,	x = a.	Since	there	is	only	one	de-

sign	variable	and	one	active	constraint,	the	condition	 g d 01∇ = 	of	Eq.	(5.11)	gives	 d 0=  as the only 
solution	(note	that	 d 	is	used	as	a	direction	for	sufficiency	check	since	d	is	used	as	a	constant	in	the	

f(x)=13x3
−12(b+c)x2+bcx+f0

a≤x≤d

∇g1d¯=0d¯=0
d¯
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example).	Therefore,	Theorem	5.2	cannot	be	used	for	a	sufficiency	check.	Also	note	 that	at	x = a, 
d2L/dx2	=	(a − b)	+	(a	− c),	which	is	always	negative,	so	we	cannot	use	curvature	of	the	Lagrangian	
function	to	check	the	sufficiency	condition	(strong	sufficient	Theorem	5.3).	however,	from	Fig.	4.16	
we	observe	that x = a	is	indeed	an	isolated	local	minimum	point.

From	this	example,	we	see	that	if	the	number	of	active	inequality	constraints	is	equal	to	the	num-
ber	of	independent	design	variables	and	all	other	KKT	conditions	are	satisfied,	then	the	candidate	
point	is	indeed	a	local	minimum	point.

EXAMPLE 5.5 CHECK FOR SECOND-ORDER CONDITIONS 2
Consider	the	optimization	problem	of	Example	4.31:

Minimize

f x x x x(x) 31
2 2

2 1 2= + −	 (a)

subject	to

g x x(x) 6 01
2 2

2= + − ≤	 (b)

Check	for	sufficient	conditions	for	the	candidate	minimum	points.

Solution
From	solution	of	Example	4.31,	the	points	satisfying	KKT	necessary	conditions	are

= = = = = − − =u u ux x x(i) * (0, 0), * 0; (ii) * ( 3 , 3), *
1
2

; (iii) * ( 3 , 3), *
1
2

	 (c)

It	was	observed	in	Example	4.31	and	Fig.	4.17	that	the	point	(0,	0)	did	not	satisfy	the	sufficiency	
condition	and	that	the	other	two	points	did	satisfy	it.	Those	geometrical	observations	will	be	math-
ematically	verified	using	the	second-order	optimality	conditions.

The	hessian	matrices	for	the	cost	and	constraint	functions	are

∇ =
−

−












∇ =












f g
2 3
3 2

,
2 0
0 2

2 2
 (d)

By	 the	method	of	Appendix	A,	 eigenvalues	of	∇2g are λ1	=	2	and	λ2	=	2.	Since	both	eigenval-
ues	are	positive,	the	function	g	is	convex,	and	so	the	feasible	set	defined	by	g(x)	≤	0	is	convex	by	
Theorem	4.9.	however,	since	eigenvalues	of	∇2f are −1	and	5,	 f	is	not	convex.	Therefore,	it	cannot	
be	classified	as	a	convex	programming	problem	and	sufficiency	cannot	be	shown	by	the	convexity	
Theorem	4.11.	We	must	resort	to	the	sufficiency	Theorem	5.2.

The	hessian	of	the	Lagrangian	function	is	given	as

L f u g
u

u
2 2 3  

3  2 2
2 2 2∇ = ∇ + ∇ =

+ −
− +













 (e)

1. For	the	first	point	x*	=	(0,	0),	u* = 0, ∇2L becomes ∇2f	(the	constraint	g(x)	≤	0	is	inactive).	In	this	
case,	 the	problem	 is	unconstrained	and	 the	 local	 sufficiency	 requires	dT∇2f (x*)d > 0 for all d.	

f(x)=x1
2+x2

−3x1x2

g(x)=x1
2+x2

−6≤0

(i) x*=(0,0), u*=0;  (ii) x*=(3, 3), u*
=12; (iii) x*=(−3,−3), u*=12

∇2f=2−3−32,  ∇2g=2002

∇2L=∇2f+u∇2g=2+2u−3−32+2u
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or	∇2f	should	be	positive	definite	at	x*.	Since	both	eigenvalues	of	∇2f	are	not	positive,	we	con-
clude	that	the	aforementioned	condition	is	not	satisfied.	Therefore,	x*	=	(0,	0)	does	not	satisfy	the	
second-order	sufficiency	condition	for	a	local	minimum.	note	that	since	λ1= −1	and	λ2	=	5,	the	
matrix	∇2f	is	indefinite	at	x*.	The	point	x*	=	(0,	0),	then,	violates the second-order necessary condition 
of	Theorem	4.4	requiring	∇2f	to	be	at	least	positive	semidefinite	at	the	candidate	local	minimum	
point.	Thus,	x*	=	(0,	0)	cannot	be	a	local	minimum	point.	This	agrees	with	graphical	observation	
made	in	Example	4.31.

2. At	points	 = = = − − =u ux x* ( 3 , 3), *
1
2

and * ( 3 , 3), *
1
2

,

∇ = ∇ + ∇ = + −
− +







= −
−







L f u g u
u

2 2 3
3 2 2

3 3
3 3

2 2 2	 (f)

g (2 3 , 2 3) 2 3(1,1)∇ = ± = ±	 (g)

It	may	be	checked	that	∇2L	is	not	positive	definite	at	either	of	the	two	points.	Therefore,	we	can-
not	use	Theorem	5.3	to	conclude	that	x*	is	an	isolated	local	minimum	point.	We	must	find	d satisfy-
ing	Eqs.	(5.10)	and	(5.11).	If	we	let	d	=	(d1, d2),	then	∇gTd	=	0	gives

d
d

d d2 3 1 1 0; or 01

2
1 2±  









 = + =	 (h)

Thus, d1= −d2 = c, where c ≠	0	is	an	arbitrary	constant,	and	a	d ≠ 0 satisfying ∇gTd	=	0	is	given	as	
d = c(1,	−1).	The	sufficiency	condition	of	Eq.	(5.12)	gives

Q L c c c cd d( ) [1 1] 3 3
3 3

1
1

12 0 for 0T 2 2= ∇ = − −
−





 −







= > ≠	 (i)

The points x x* ( 3 , 3) and * ( 3 , 3)= = − − 	satisfy	the	sufficiency	condition	of	Eq.	(5.12).	There-
fore,	 they	 are	 isolated	 local	 minimum	 points,	 as	 was	 observed	 graphically	 in	 Example	 4.31	 and	
Fig.	4.17.	We	see	for	this	example	that	∇2L	 is	not	positive	definite	at	x*, but x*	 is	still	an	isolated	
minimum	point.

note	that	since	 f	 is	continuous	and	the	feasible	set	is	closed	and	bounded,	we	are	guaranteed	
the	existence	of	a	global	minimum	by	the	Weierstrass	Theorem	4.1.	Also	we	have	examined	every	
possible	 point	 satisfying	 necessary	 conditions.	 Therefore,	 we	 must	 conclude	 by	 elimination	 that	
x x* ( 3 , 3) and * ( 3 , 3)= = − − 	 are	 global	 minimum	 points.	 The	 value	 of	 the	 cost	 function	 for	
both points is f (x*)	=	−	3.

EXAMPLE 5.6 CHECK FOR SECOND-ORDER CONDITIONS 3
Consider	Example	4.32:

Minimize

f x x x x x x( , ) 2 2 21 2 1
2 2

2 1 2= + − − +	 (a)

x*=(3,3), u*=12 and x*=(−3), −3
), u*=12,

∇2L=∇2f+u∇2g=2+2u−3−32+2u=3−3−33

∇g=±(23,23)=±23(1,1)

±231    1d1d2=0;  or d1+d2=0

Q=dT(∇2L)d=c[1−1]3−3−33c1−
1=12c2

>0  for  c≠0

x*=(3,3)  and  x*=(−3,−3)

x*=(3,3)  and  x*=(−3,−3)

f(x1,x2)=x1
2+x2

−2x1−2x2+2
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subject	to

g x x2 4 01 1 2= − − + ≤	 (b)

g x x2 4 02 1 2= − − + ≤	 (c)

Check	the	second-order	conditions	for	the	candidate	minimum	point.

Solution
From	Example	4.32,	the	KKT	necessary	conditions	are	satisfied	for	the	point

x x u u* 4
3

, * 4
3

, * 2
9

, * 2
91 2 1 2= = = = (d)

Since	 all	 the	 constraint	 functions	 are	 linear,	 the	 feasible	 set	 S	 is	 convex.	 The	 hessian	 of	 the	
cost	 function	 is	 positive	 definite.	 Therefore,	 it	 is	 also	 convex	 and	 the	 problem	 is	 convex	 and	 by	
	Theorem	4.11,

x x* 4
3

, * 4
31 2= =

satisfies sufficiency conditions for a global minimum with the cost function as f x( *)
2
9

=

note	that	local	sufficiency	cannot	be	shown	by	the	method	of	Theorem	5.2.	The	reason	is	that	the	
conditions	of	Eq.	(5.11)	give	two	equations	in	two	unknowns:

d d d d2 0, 2 01 2 1 2− − = − − = (e)

This	is	a	homogeneous	system	of	equations	with	a	nonsingular	coefficient	matrix.	Therefore,	
its only solution is d1 = d2	=	0.	Thus,	we	cannot	find	a	d ≠ 0	for	use	in	the	condition	of	Eq.	(5.12), 
and	Theorem	5.2	cannot	be	used.	however,	we	have	seen	in	the	foregoing	and	in	Fig.	4.18	that	
the	point	is	actually	an	isolated	global	minimum	point.	Since	it	is	a	two-variable	problem	and	
two	 inequality	 constraints	 are	 active	 at	 the	 KKT	 point,	 the	 condition	 for	 a	 local	 minimum	 is	
satisfied.

5.4 SECOND-ORDER CONDITIONS FOR THE RECTANGULAR 
BEAM DESIGN PROBLEM

The	rectangular	beam	design	problem	is	 formulated	and	graphically	solved	 in	Fig.	3.11	
in		Section	3.8.	The	KKT	necessary	conditions	are	written	and	solved	in	Section	4.9.2.	Several	
points	that	satisfy	the	KKT	conditions	are	obtained.	It	is	seen	from	the	graphical	representa-
tion	of	 the	problem	in	Fig.	3.11	that	all	of	 these	points	are	global	minima	for	the	problem;	
however,	none	of	the	points	is	an	isolated	local	minimum.	Let	us	show	that	the	second-order	
sufficiency	condition	of	Theorem	5.2	will	not	be	satisfied	for	any	of	these	points.

Cases	3,	5,	and	6	in	Section	4.9.2	gave	solutions	that	satisfy	all	the	KKT	necessary	condi-
tions.	 Cases	 5	 and	 6	 had	 two	 active	 constraints	 with	 g1	 having	 Lagrange	 multiplier	 value	

g1=−2x1−x2+4≤0

g2=−x1−2x2+4≤0

x1*=43,  x2*=43,  u1*=29,  u2*=29

x1*=43, x2*=43

f(x*)=29

−2d1−d2=0, −d1−2d2=0
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of	 zero;	 however,	 only	 the	 constraint	 with	 positive	 multiplier	 needs	 to	 be	 considered	 in	
Eq.	(5.11).	The	sufficiency	Theorem	5.2	requires	only	constraints	with	ui >	0	to	be	considered	
in	calculating	 the	 feasible	directions	 for	use	 in	Eq.	 (5.12).	Therefore,	only	 the	g2 constraint 
needs	to	be	included	in	the	check	for	sufficiency	conditions.	Thus,	we	see	that	all the three cases 
have the same sufficiency check.

We	need	to	calculate	hessians	of	the	cost	function	and	the	second	constraint:

∇ =












∇ = × 











f g
b d

d bd
bd b

0 1
1 0

,
(2.25 10 ) 2

2
2 2

2

5

3 3

2

2

 
(a)

Since	bd	=	(1.125	×105),	∇2g2 becomes

∇ =
×

×



















−

−
g b

d

2

2
(1.125 10 )

(1.125 10 )
2

2
2

2
5 1

5 1
2

 

(b)

The	hessian	of	the	Lagrangian	is	given	as

L f u g b

d

0 1
1 0

2(56, 250)

2
(1.125 10 )

(1.125 10 )
2

2 2
2

2
2

2
5 1

5 1
2

∇ = ∇ + ∇ = 





+
×

×



















−

−

 

(c)

L b

d

(2.25 10 )
2

2
(2.25 10 )

2

5

2

5

2

∇ =

×

×



















 

(d)

Since	the	determinant	of	∇2L is 0 for bd	=	(1.125	×	105),	the	matrix	is	only	positive	semidefi-
nite.	Therefore,	the	Strong	Sufficiency	Theorem	5.3	cannot	be	used	to	show	the	sufficiency	
of x*.	We	must	check	the	sufficiency	condition	of	Eq.	(5.12).	In	order	to	do	that,	we	must	find	
directions	y	(since	d	is	used	as	a	design	variable,	we	use	y	instead	of	d)	satisfying	Eq.	(5.11).	
The	gradient	of	g2	is	given	as

∇ =
− × − ×







g

b d bd
(2.25 10 )

,
(2.25 10 )

2

5

2

5

2
 

(e)

The	feasible	directions	y at the point bd	=	(1.125	×	105)	are	given	by	∇g2
Ty = 0, as

+ = = −
b

y
d

y
d
b

y
1 1

0, or y1 2 2 1
 

(f)

∇2f=0110,  ∇2g2=(2.25×105)b3d32d
2bdbd2b2

∇2g2=22b2(1.125×105)−1(1.125×105)−12d2

∇2L=∇2f+u2∇2g2=0110+2(56,250)2b2(
1.125×105)−1(1.125×105)−12d2

∇2L=(2.25×105)b222(2.25×105)d2

∇g2=−(2.25×105)b2d, −(2.25×10
5)bd2

1by1+1dy2=0, or y2=−dby1
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Therefore,	vector	y	is	given	as	y	=	(1,	−d/b)c, where c = y1	is	any	constant.	Using	∇2L	and	y, 
Q	of	Eq.	(5.12)	is	given	as

Q Ly y 0T 2= ∇ = (g)

Thus,	 the	 sufficiency	 condition	 of	 Theorem	 5.2	 is	 not	 satisfied.	 The	 points	 satisfying	
bd	=	(1.125	×	105)	are	not	isolated	local	minimum	points.	This	is,	of	course,	true	from	Fig.	3.11.	
note,	however,	that	since	Q	=	0,	the	second-order	necessary	condition	of	Theorem	5.1	is	satis-
fied	for	Case	3.	Theorem	5.1	cannot	be	used	to	check	the	second-order	necessary	conditions	
for	solutions	to	Cases	5	and	6	since	there	are	two	active	constraints	for	this	two-variable	prob-
lem; therefore, there are no nonzero y	vectors.

It	is	important	to	note	that	this	problem	does	not	satisfy	the	conditions	for	a	convex	pro-
gramming	problem	and	all	of	 the	points	satisfying	KKT	conditions	do	not	satisfy	 the	suf-
ficiency	 condition	 for	 an	 isolated	 local	 minimum.	 Yet	 all	 of	 the	 points	 are	 actually	 global	
minimum	points.	Two	conclusions	can	be	drawn	from	this	example:

1. Global minimum points can be obtained for problems that cannot be classified as 
convex programming problems. We cannot show global optimality of a point un-
less we find all of the local minimum points in the closed and bounded feasible set 
(the Weierstrass Theorem 4.1).

2. If second-order sufficiency condition is not satisfied, the only conclusion we can draw 
is that the candidate point is not an isolated local minimum. It may have many local 
optima in the neighborhood, and they may all be actually global minimum points.

5.5 DUALITY IN NONLINEAR PROGRAMMING

Given	a	nonlinear	programming	problem,	there	is	another	nonlinear	programming	prob-
lem	closely	associated	with	it.	The	former	is	called	the	primal problem,	and	the	latter	is	called	
the dual problem.	Under	certain	convexity	assumptions,	the	primal	and	dual	problems	have	
the	same	optimum	objective	function	values	and	therefore,	it	is	possible	to	solve	the	primal	
problem	indirectly	by	solving	the	dual	problem.	As	a	by-product	of	one	of	the	duality	theo-
rems, we obtain the saddle point necessary conditions.

Duality	has	played	an	important	role	in	the	development	of	optimization	theory	and	numer-
ical	methods.	Development	of	the	duality	theory	requires	assumptions	about	the	convexity	of	the	
problem.	however,	to	be	broadly	applicable,	the	theory	should	require	a	minimum	of	convexity	
assumptions.	This	leads	to	the	concept	of	local	convexity	and	to	the	local duality theory.

In	this	section,	we	will	present	only	the	local	duality.	The	theory	can	be	used	to	develop	
computational	methods	for	solving	optimization	problems.	We	will	see	in	chapter:	More	on	
numerical	Methods	for	Unconstrained	optimum	Design,	that	it	can	be	used	to	develop	the	
so-called	augmented Lagrangian methods.

5.5.1 Local Duality: Equality Constraints Case

For	sake	of	developing	the	local duality theory,	we	consider	the	equality-constrained	prob-
lem	first.

Q=yT∇2Ly=0
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Problem E
Find	an	n-vector	x to

Minimize

f x( ) (5.13)

subject	to

h i px( ) 0; 1 toi = = (5.14)

f(x)

hi(x)=0;  i=1 to p

Later	on	we	will	extend	the	theory	to	both	equality-	and	inequality-constrained	problems.	
The	theory	we	are	going	to	present	is	sometimes	called	the	strong duality or Lagrangian duality.	
We	assume	that	functions	f	and	hi	are	twice	continuously	differentiable.	We	will	first	define	
a	dual	function	associated	with	problem	E	and	study	its	properties.	Then	we	will	define	the	
dual	problem	associated	with	problem	E.

To	present	the	duality	results	for	problem	E	the	following	notation	is	used.
The Lagrangian function:

L f v h fx v x x v h( , ) ( ) ( ) ( )
i

p

i i
1

i∑= + = +
= 

(5.15)

The Hessian of the Lagrangian function with respect to x:

L f
v

h
H x v

x
x

x x
( , )

( )
x

i

p

i
i

2

2

2

2
1

2

2∑=
∂
∂

=
∂

∂
+

∂
∂= 

(5.16)

The gradient matrix of equality constraints:

h

x
N j

i n p

=
∂
∂











× 
(5.17)

In	these	equations,	v is the p-dimensional	Lagrange	multiplier	vector	for	the	equality	con-
straints.

Let	x*	be	a	local	minimum	of	problem	E	that	is	also	a	regular	point	of	the	feasible	set.	Then	
there	exists	a	unique	Lagrange	multiplier	 *iυ 	for	each	constraint	such	that	the	first-order	nec-
essary	condition	is	met:

L f
v

hx v
x

x
x

x
x

( *, *)
0, or

( *) * ( *)
0i

i

p
i

1
∑∂

∂
=

∂
∂

+
∂

∂
=

= 
(5.18)

For	development	of	the	local	duality	theory,	we	make	the	assumption	that	the	hessian	
of	 the	 Lagrangian	 function	 Hx(x*, v*)	 at	 the	 minimum	 point	 x*	 is	 positive	 definite.	 This	
assumption guarantees that the Lagrangian	of	Eq.	(5.15) is locally convex at x*.	This	also	sat-
isfies	the	sufficiency	condition	for	x*	to	be	an	isolated	local	minimum	of	problem	E.	With	

L(x,v)=f(x)+∑i=1p υihi=f(x)+(vh)

Hx(x,v)=∂2L∂x2=∂2f(x)∂x2+∑i=1p υi∂2hi∂x2

N=∂hj∂xin×p

υi*

∂L(x*,v*)
∂x=0, or ∂f(x*)∂x+∑i=1pυi*∂hi(x-

*)∂x=0
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this assumption, the point x*	 is	not	only	a	local	minimum	of	problem	E,	it	is	also	a	local	
minimum	for	the	unconstrained	problem:

L f v h
x

x v
x

xminimize ( , * ) or minimize ( ) *i i
i

p

1
∑+






= 
(5.19)

where v*	 is	a	vector	of	Lagrange	multipliers	at	x*.	The	necessary	and	sufficient	conditions	
for	the	aforementioned	unconstrained	problem	are	the	same	as	for	the	constrained	problem	
E	 (with	Hx(x*, v*)	being	positive	definite).	 In	addition	 for	any	v sufficiently close to v*, the 
Lagrange	function	L(x, v)	will	have	a	local	minimum	at	a	point	x near x*.	now	we	will	estab-
lish	the	condition	that	x(v)	exists	and	is	a	differentiable	function	of	v.

The	necessary	condition	at	the	point	(x, v)	in	the	vicinity	of	(x*, v*)	is	given	as

L f
v

h fx v
x

x
x x

0
x
x

Nv 0
( , ) ( )

, or
( )

i
i

p
i

1
∑∂

∂
=

∂
∂

+
∂
∂

=
∂

∂
+ =

= 
(5.20)

Since	Hx(x*, v*)	 is	positive	definite,	 it	 is	nonsingular.	Also	because	of	 this	positive	defi-
niteness, Hx(x, v)	is	positive	definite	in	the	vicinity	of	(x*, v*)	and	thus	nonsingular.	This	is	
a generalization of a theorem from calculus: If a function is positive at a point, it is positive in a 
 neighborhood of that point.	note	that	Hx(x, v)	is	also	the	Jacobian	of	the	necessary	conditions	
of	Eq.	(5.20) with respect to x.	Therefore,	Eq.	(5.20) has a solution x near x* when v is near 
v*.	Thus,	locally	there	is	a	unique	correspondence	between	v	and	x through a solution to the 
unconstrained	problem:

L f v h
x

x v
x

xminimize ( , ) or minimize ( ) i i
i

p

1
∑+











= 
(5.21)

Furthermore,	for	a	given	v, x(v)	is	a	differentiable	function	of	v	(by	the	implicit	functions	
theorem	of	calculus).

Dual Function
near	v*,	we	define	the	dual	function	φ(v)	by	the	equation

L f v hv
x

x v
x

x( ) minimize ( , ) or minimize ( ) i i
i

p

1
∑φ = +











= 
(5.22)

where	the	minimum	is	taken	locally	with	respect	to	x near x*.

Dual Problem

v
vmaximize ( )φ

 
(5.23)

∅(v)=minimizexL(x,v)     or     min
imizexf(x)+∑i=1pυihi

maximizev ∅(v)

With	this	definition	of	the	dual	function	we	can	show	that	locally	the	original	constrained	
problem	 E	 is	 equivalent	 to	 unconstrained	 local maximization of the dual function φ(v)	 with	

minimizexL(x,v*)    or    minimizexf(x)+∑i=1pυi*hi

∂L(x,v)∂x=∂f(x)∂x+∑i=1pυi∂hi∂x
=0  or  ∂f(x)∂x+Nv = 0

minimizexL(x
,v)     or     minimizexf(x)+∑i=1pυihi
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respect to v.	Thus,	we	can	establish	equivalence	between	a	constrained	problem	in	x	and	an	
unconstrained	problem	in	v.	To	establish	the	duality	relation,	we	must	prove	two	lemmas.

LEMMA 5.1
The	gradient	of	the	dual	function	φ(v)	is	given	as

φ∂
∂

=
v

v
h x v

( )
( ( ))

 
(5.24)

Proof
Let	x(v)	represent	a	local	minimum	for	the	Lagrange	function

= +L fx v x v h( , ) ( ) ( )i (5.25)

Therefore,	the	dual	function	can	be	explicitly	written	from	Eq.	(5.22) as

φ = +fv x v v h x v( ) [ ( ( )) ( ( ( )))]i (5.26)

where x(v)	is	a	solution	of	the	necessary	condition	in	Eq.	(5.20).
now,	differentiating	φ(v)	in	Eq.	(5.26) with respect to v,	and	using	the	fact	that	x(v)	is	a	differen-

tiable function of v, we get

φ φ φ∂
∂

=
∂

∂
+

∂
∂

∂
∂

= +
∂

∂
∂
∂

Lx v
v

v
v

v
v x

h x v
x v

v x
( ( )) ( ) x( )

( ( ))
( )

 
(5.27)

where x v
v
( )∂

∂
 is a p × n	matrix.	But	∂L/∂x	in	Eq.	(5.27) is zero because x(v)	minimizes	the	Lagrange	

function	of	Eq.	(5.25).	This	proves	the	result	of	Eq.	(5.24).

∂∅(v)∂v=h[x(v)]

L(x,v)=f(x)+(vh)

∅(v)=f[x(v)]+vh[x(v)]

∂∅[x(v)]∂v=∂∅(v)∂v+∂x(v)∂v∂
∅∂x=h[x(v)]+∂x(v)∂v∂L∂x∂x(v)∂v

Lemma	5.1	is	of	practical	importance	because	it	shows	that	the	gradient	of	the	dual	func-
tion	is	quite	simple	to	calculate.	once	the	dual	function	is	evaluated	by	minimization	with	
respect to x,	the	corresponding	h(x),	which	is	the	gradient	of	φ(v),	can	be	evaluated	without	
any	further	calculation.

LEMMA 5.2
The	hessian	of	the	dual	function	is	given	as

H
v

v
N H x N

( )
[ ( )]xv

2

2
T 1φ

=
∂

∂
= − −

 
(5.28)

Proof
Differentiate	Eq.	(5.24) with respect to v to obtain

φ
=

∂
∂

∂
∂









=
∂

∂
=

∂
∂

H
v

x v
v

h x v
v

x v
v

N
( ( )) ( ( )) ( )

v
 

(5.29)

Hv=∂2
∅(v)∂v2=−NT[Hx(x)]−1N

Hv=∂∂v∂∅[x(v)]∂v=∂h[x(v)]∂v
=∂x(v)∂vN
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Since	[Hx(x)]−1	is	positive	definite,	and	since	N	is	of	full	column	rank	near	x,	we	have	Hv(v), 
a p × p	matrix	(hessian	of	φ(v)),	to	be	negative definite.	This	observation	and	the	hessian	of	
φ(v)	play	a	role	in	the	analysis	of	dual	methods.

To calculate x v
v
( )∂

∂
,	we	differentiate	 the	necessary	condition	of	Eq.	 (5.20) with respect to v to 

obtain

+
∂

∂
=N

x v
v

H x 0
( )

( )x
T

 
(5.30)

Solving	for	 x v
v
( )∂

∂
	from	Eq.	(5.30), we get

x v
v

N H x
( )

[ ( )]T
x

1∂
∂

= − −

 
(5.31)

Substituting	Eq.	(5.31)	into	Eq.	(5.29)	and	using	the	fact	that	h(x(v))	does	not	depend	explicitly	
on v,	we	obtain	the	result	of	Eq.	(5.28),	which	was	to	be	proved.

∂x(v)∂v

NT+∂x(v)∂vHx(x)=0

∂x(v)∂v

∂x(v)∂v=−NT[Hx(x)]−1

THEOREM 5.4

Local Duality Theorem
For	problem	E,	let

x*	be	a	local	minimum.
x*	be	a	regular	point.
v*	be	the	Lagrange	multipliers	at	x*.
Hx(x*, v*)	be	positive	definite.

Then	for	the	dual	problem
Maximize

v( )φ (5.32)

has a local solution at v* with x* = x(v*).	The	maximum	value	of	the	dual	function	is	equal	to	the	
minimum	value	of	f (x);	that	is,

fv x( *) ( *)φ = (5.33)

Proof
Solution	of	the	necessary	conditions	in	Eq.	(5.20)	gives	x = x(v)	for	use	in	the	definition	of	the	dual	

function φ(v).	Therefore	at	v*, x* = x(v*).	now,	at	v*,	we	have	Lemma	5.1:

φ∂
∂

= =
v
v

h x 0
( *)

( )
 

(a)

Also,	by	Lemma	5.2,	 the	hessian	of	φ(v)	 is	negative	definite.	Thus,	v*	 satisfies	 the	first-order	
necessary	and	second-order	sufficiency	conditions	for	an	unconstrained	maximum	point	of	φ(v).

∅(v)

∅(v*)=f(x*)

∂∅(v*)∂v=h(x)=0
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EXAMPLE 5.7 SOLUTION TO THE DUAL PROBLEM
Consider	the	following	problem	in	two	variables;	derive	the	dual	of	the	problem	and	solve	it:
Minimize

= −f x x1 2 (a)

subject	to

− + =x x( 3) 51
2

2
2 (b)

Solution
Let	us	first	solve	the	primal	problem	using	the	optimality	conditions.	The	Lagrangian	for	the	

problem	is	given	as

L x x v x x[( 3) 5]1 2 1
2

2
2= − + − + − (c)

The	first-order	necessary	conditions	are

x x v(2 6) 02 1− + − = (d)

x x v2 01 2− + = (e)

Together	with	the	equality	constraint	in	Eq.	(b),	these	equations	have	a	solution:

x x v f* 4, * 2, * 1, * 81 2= = = = − (f)

The	hessian	of	the	Lagrangian	function	is	given	as

H x v( *, *) 2 1
1 2x = −

−




 

(g)

Since	this	is	a	positive	definite	matrix,	we	conclude	that	the	solution	obtained	satisfies	second-
order	sufficiency	conditions,	and	therefore,	is	an	isolated	local	minimum.

Since	Hx(x*, v*)	is	positive	definite,	we	can	apply	the	local	duality	theory	near	the	solution	point.	
Define	a	dual	function	as

Lv
x

x v( ) minimize ( , )φ =
 

(h)

f=−x1x2

(x1−3)2+x22=5

L=−x1x2+υ[(x1−3)2+x22−5]

−x2+(2x1−6)υ=0

−x1+2x2υ=0

x1*=4, x2*=2, υ*=1, f*=−8

Hx(x*,v*)=2−1−12

∅(v)=minimizexL(x,v)

Substituting	v*	in	the	definition	of	φ(v)	in	Eq.	(5.26), we get

φ = +
= +
=

f
f

f

v x v v h x v
x v h x

x

( *) [ ( ( *)) ( * ( ( *)))]
[ ( *) ( * ( *))]

( *)

i
i

 

(b)

which	was	to	be	proved.

∅(v*)=f[x(v*)]+{v*h[x(v*)]}=f(x
*)+[v*h(x*)]=f(x*)
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Solving	Eqs.	(d)	and	(e),	we	get	x1	and	x2 in terms of v,	provided	that

v4 1 02 − ≠ (i)

and

x
v

v
x

v
v

12
4 1

,
6

4 1
1

2

2 2 2
=

−
=

− 
(j)

Substituting	Eqs.	(j)	into	Eq.	(c),	the	dual	function	of	Eq.	(h)	is	given	as

v
v v v

v
( )

4 4 80
(4 1)

3 5

2 2
φ =

+ −
− 

(k)

which	is	valid	for	v ≠ ±
1
2

.	This	φ(v)	has	a	local	maximum	at	v* =	1.	Substituting	v =	1	in	Eqs.	(j),	we	

get	the	same	solution	as	in	Eqs.	(f).	note	that	φ(v*)	=	− 8, which is the same as f	*	in	Eq.	(f).

5.5.2 Local Duality: The Inequality Constraints Case

Consider	the	equality/inequality-constrained	problem.

Problem P
In	addition	to	the	equality	constraints	in	problem	E,	we	impose	inequality	constraints:

g i mx( ) 0; 1 toi ≤ = (5.34)

The feasible set S	for	problem	p	is	defined	as

|S h i p g j mx x{x ( ) 0, 1 to ; ( ) 0, 1 to }i j= = = ≤ = (5.35)

The	Lagrangian	function	is	defined	as

L f v h u g

f u j m

x v u x

x v h u g

( , , ) ( )

( ) ( ) ( ); 0, 1 to

i i
i

p

j j
j

m

j

1 1

i i

∑ ∑= + +

= + + ≥ =
= =

 

(5.36)

The dual function	for	problem	p	is	defined	as

L u j mv u
x

x v u( , ) minimize ( , , ); 0, 1 tojφ = ≥ =
 

(5.37)

The	dual	problem	is	defined	as

φ ≥ =u j mv u v umaximize
, ( , ); 0, 1 toj

 
(5.38)

gi(x)≤0;  i=1 to m

S={x|hi
(x)=0,  i=1 to p;  gj(x)≤0, j=1 to m}

L(x,v,u)=f(x)+∑i=1pυihi+∑
j=1mujgj =f(x)+(vh)+(ug);

uj≥0, j=1 to m

∅(v,u)=minimizexL(x,v,u);  uj≥
0,  j=1 to m

maximizev,u∅(v,u);  uj≥0,  j=
1 to m

4υ2
−1≠0

x1=12υ24υ2
−1,  x2=6υ4υ2

−1

∅(υ)=4υ+4υ3
−80υ5(4υ2

−1)2

12
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THEOREM 5.5

Strong Duality Theorem
Let	the	following	apply:

x*	be	a	local	minimum	of	problem	p.
x*	be	a	regular	point.
Hx(x*, v*, u*)	be	positive	definite.
v*, u*	be	the	Lagrange	multipliers	at	the	optimum	point	x*.

Then v*	and	u*	solve	the	dual	problem	that	is	defined	in	Eq.	(5.38) with f (x*)	=	φ(v*, u*)	and	
x* = x(v*, u*).

If	the	assumption	of	the	positive	definiteness	of	Hx(x*, v*)	is	not	made,	we	get	the	weak	
duality	theorem.

THEOREM 5.6

Weak Duality Theorem
Let	x	be	a	feasible	solution	for	problem	p	and	let	v	and	u	be	the	feasible	solution	for	the	dual	

problem	 that	 is	 defined	 in	 Eq.	 (5.38); thus, h i px( ) 0, 1 toi = = ,	 and	 g u j mx( ) 0 and 0, 1 toj j≤ ≥ = .	
Then

fv u x( , ) ( )φ ≤ (5.39)

Proof
By	definition

since ui ≥ 0, gi(x)	≤	0,	and	uigi = 0 for i =	1	to	m;	and	hi(x)	= 0, i =	1	to	p.

hi(x)=0, i=1 to pgj(x)≤ 0 and uj ≥ 0, j=1  to m

∅(v,u)≤f(x)

Lv u
x

x v u( , ) minimize ( , , )φ = ∅(v,u)=minimizexL(x,v,u)

= + +f
x

x v h u gminimize [ ( ) ( ) ( )]i i
=minimizex[f(x)+(vh)+(ug)]

≤ + + ≤f fx v h u g x[ ( ) ( ) ( )] ( )i i
≤[f(x)+(vh)+(ug)]≤f(x)

From	Theorem	5.5,	we	obtain	the	following	results:

1. Minimum	[f (x)	with	x ∈ S]	≥	maximum	[φ(v, u)	with	ui ≥ 0, i =	1	to	m].
2. If f (x*)	= φ(v*, u*)	with	ui ≥ 0, i =	1	to	m	and	x* ∈ S, then x*	and	(v*, u*)	solve	the	primal	

and	dual	problems,	respectively.
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3. If	Minimum	[f (x)	with	x ∈ S]	=	−∞,	then	the	dual	is	infeasible,	and	vice	versa	(ie,	if	dual	is	
infeasible, the primal is unbounded).

4. If	Maximum	[φ(v, u)	with	ui ≥ 0, i =	1	to	m]	=	∞, then the primal problem has no feasible 
solution,	and	vice	versa	(ie,	if	primal	is	infeasible,	the	dual	is	unbounded).

LEMMA 5.3

Lower Bound for Primal Cost Function
For any v	and	u with ui ≥ 0, i	=	1	to	m

fv u x( , ) ( *)φ ≤ (5.40)

Proof
φ(v, u)	≤	maximum	φ(v, u); ui ≥ 0, i =	1	to	m

= + + ≥ =







f u i mv u x
x v h u gmaximize

,
minimize [ ( ) ( ) ( )]; 0, 1 toii i

∅(v,u)≤f(x*)

=maximizev,uminimizex[f(x)+(
vh)+(ug)];ui≥0,  i=1 to m

{ }= + + ≥ =f u i mv u x v u v h u gmaximize
, ( ( , )) ( ) ( ) ; 0, 1 toii i=maximizev,uf[x(v,u)]+(vh)+(u

g);  ui≥0, i=1 to m
f fx v u v h u g x( ( *, *)) ( * ) ( * ) ( *)i i= + + =f[x(v*,u*)]+(v*h)+(u*g)=f(x*)

Lemma	5.3	is	quite	useful	for	practical	applications.	It	tells	us	how	to	find	a	lower	bound	
on	the	optimum	primal	cost	function.	The	dual	cost	function	for	arbitrary	vi , i	=	1	to	p	and	
ui ≥ 0, i =	1	to	m	provides	a	lower bound	for	the	primal	cost	function.	Also	for	any	x ∈ S, f (x)	
provides	an	upper bound	for	the	optimum	cost	function.

Saddle Points
Let	L(x, v, u)	be	the	Lagrange	function.	L	has	a	saddle	point	at	x*, v*, u*	subject	to	ui ≥ 0, 

i	=	1	to	m if

L L Lx v u x v u x v u( *, , ) ( *, *, *) ( , *, *)≤ ≤ (5.41)

holds	for	all	x near x*	and	(v, u)	near	(v*, u*) with ui ≥ 0 for i =	1	to	m.

L(x*,v,u)≤L(x*v*,u*)≤L(x,v*,u*)

THEOREM 5.7

Saddle Point Theorem
For	problem	p	let	all	functions	be	twice	continuously	differentiable	and	let	L(x, v, u)	be	defined	as

= + + ≥ =L f u j mx v u x v h u g( , , ) ( ) ( ) ( ); 0, 1 toji i (5.42)L(x,v,u)=f(x)+(vh)+(ug);             u
j≥0,  j=1  to m  
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See	Bazarra	et	al.	(2006)	for	proof	of	Theorem	5.7.

EXERCISES FOR CHAPTER 5

5.1 Answer true or false.
1. A	convex	programming	problem	always	has	a	unique	global	minimum	point.
2. For	a	convex	programming	problem,	KKT	necessary	conditions	are	also	sufficient.
3. The	hessian	of	the	Lagrange	function	must	be	positive	definite	at	constrained	

minimum	points.
4. For	a	constrained	problem,	if	the	sufficiency	condition	of	Theorem	5.2	is	violated,	

the	candidate	point	x*	may	still	be	a	minimum	point.
5. If	the	hessian	of	the	Lagrange	function	at	x*, ∇2L(x*)	is	positive	definite,	the	optimum	

design	problem	is	convex.
6. For	a	constrained	problem,	the	sufficient	condition	at	x*	is	satisfied	if	there	are	no	

feasible	directions	in	a	neighborhood	of	x*	along	which	the	cost	function	reduces.
5.2 	Formulate	the	problem	of	Exercise	4.84.	Show	that	the	solution	point	for	the	problem	is	

not	a	regular	point.	Write	KKT	conditions	for	the	problem,	and	study	the	implication	
of	the	irregularity	of	the	solution	point.

5.3 Solve	the	following	problem	using	the	graphical	method:
Minimize f (x1, x2)	=	(x1 −	10)2	+	(x2 −	5)2

subject	to	x1	+	x2 ≤	12,	x1 ≤ 8, x1 − x2 ≤	4
 	 Show	that	the	minimum	point	does	not	satisfy	the	regularity	condition.	Study	the	

implications	of	this	situation.

Solve the following problems graphically. Check necessary and sufficient conditions for candidate 
local minimum points and verify them on the graph for the problem.

5.4 Minimize f (x1, x2)	=	4x1
2	+	3x2

2 −	5x1x2 − 8x1

subject	to	x1	+	x2	=	4
5.5 Maximize	F (x1, x2)	=	4x1

2	+	3x2
2 −	5x1x2 − 8x1

subject	to	x1	+	x2	=	4
5.6 Minimize f (x1, x2)	=	(x1 −	2)2	+	(x2	+	1)2

subject	to	2x1	+	3x2 −	4	=	0
5.7 Minimize f (x1, x2)	=	4x1

2	+	9x2
2	+	6x2 −	4x1	+	13

subject	to	x1 − 3x2	+	3	=	0

Let	L(x*, v*, u*)	exist	with	 ≥ =u i m0, 1 toi
* .	Also	let	Hx(x*, v*, u*)	be	positive definite.	Then	x* sat-

isfying	a	suitable	constraint	qualification	is	a	local	minimum	of	problem	p	if	and	only	if	(x*, v*, u*)	
is	a	saddle	point	of	the	Lagrangian;	that	is,

L L Lx v u x v u x v u( *, , ) ( *, *, *) ( , *, *)≤ ≤ (5.43)

for all x near x*	and	all	(v, u)	near	(v*, u*),	with	ui ≥ 0 for i =	1	to	m.

u1*≥0,  i=1 to m

L(x*,v,u)≤L(x*,v*,u*)≤L(x,v*,
u*)
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5.8 Minimize f (x)	=	(x1 −	1)2	+	(x2	+	2)2	+	(x3 −	2)2

subject	to	2x1	+	3x2 −	1	=	0
 x1	+	x2	+	2x3 −	4	=	0

5.9 Minimize f (x1, x2)	=	9x1
2	+	18x1x2	+	13x2

2 −	4
subject	to	x1

2	+	x2
2	+	2x1	=	16

5.10 Minimize f (x1, x2)	=	(x1 −	1)2	+	(x2 −	1)2

subject	to	x1	+	x2 −	4	=	0
5.11 Minimize f (x1, x2)	=	4x1

2	+	3x2
2 −	5x1x2 − 8

subject	to	x1	+	x2	=	4
5.12 Maximize	F (x1, x2)	=	4x1

2	+	3x2
2 −	5x1x2 − 8

subject	to	x1	+	x2	=	4
5.13 Maximize	F (x1, x2)	=	4x1

2	+	3x2
2 −	5x1x2 − 8

subject	to	x1	+	x2 ≤	4
5.14 Minimize f (x1, x2)	=	4x1

2	+	3x2
2 −	5x1x2 − 8

subject	to	x1	+	x2 ≤4
5.15 Maximize	F (x1, x2)	=	4x1

2	+	3x2
2 −	5x1x2 − 8x1

subject	to	x1	+	x2 ≤	4
5.16 Minimize f (x1, x2)	=	(x1 −	1)2	+	(x2 −	1)2

subject	to	x1	+	x2 ≥	4
 x1 − x2 −	2	=	0

5.17 Minimize f (x1, x2)	=	(x1 −	1)2	+	(x2 −	1)2

subject	to	x1	+	x2	=	4
 x1 − x2 −	2	≥ 0

5.18 Minimize f (x1, x2)	=	(x1 −	1)2	+	(x2 −	1)2

subject	to	x1	+	x2 ≥	4
 x1 − x2 ≥	2

5.19 Minimize f (x, y)	=	(x −	4)2	+	(y −	6)2

subject	to	12	≥ x	+	y
 x ≥	6,	y ≥ 0

5.20 Minimize f (x1, x2)	=	2x1	+	3x2 − x1
3 −	2x2

2

subject	to	x1	+	3x2 ≤	6
	 5x1	+	2x2 ≤	10
 x1, x2 ≥ 0

5.21 Minimize f (x1, x2)	=	4x1
2	+	3x2

2 −	5x1x2 − 8x1

subject	to	x1	+	x2 ≤	4
5.22 Minimize f (x1, x2)	=	x1

2	+	x2
2 −	4x1 −	2x2	+	6

subject	to	x1	+	x2 ≥	4
5.23 Minimize f (x1, x2)	=	2x1

2 −	6x1x2	+	9x2
2 −	18x1	+	9x2

subject	to	x1	+	2x2 ≤	10
	 4x1 − 3x2 ≤	20;	xi ≥ 0; i	=	1,	2

5.24 Minimize f (x1, x2)	=	(x1 −	1)2	+	(x2 −	1)2

subject	to	x1	+	x2 −	4	≤ 0
5.25 Minimize f (x1, x2)	=	(x1 −	1)2	+	(x2 −	1)2

subject	to	x1	+	x2 −	4	≤ 0
 x1 − x2 −	2	≤ 0
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5.26 Minimize f (x1, x2)	=	(x1 −	1)2	+	(x2 −	1)2

subject	to	x1	+	x2 −	4	≤ 0
	 2	− x1 ≤ 0

5.27 Minimize f (x1, x2)	=	9x1
2 −	18x1x2	+	13x2

2 −	4
subject	to	x1

2	+	x2
2	+	2x1 ≥	16

5.28 Minimize f (x1, x2)	=	(x1 −	3)2	+	(x2 −	3)2

subject	to	x1	+	x2 ≤	4
 x1 − 3x2	=	1

5.29 Minimize f (x1, x2)	=	x1
3 −	16x1	+	2x2 − 3x2

2

subject	to	x1	+	x2 ≤ 3
5.30 Minimize f (x1, x2)	=	3x1

2 −	2x1x2	+	5x2
2	+	8x2

subject	to	x1
2 − x2

2	+	8x2 ≤	16
5.31 Minimize f (x, y)	=	(x −	4)2	+	(y −	6)2

subject	to	x	+	y ≤	12
 x ≤	6
 x, y ≥ 0

5.32 Minimize f (x, y)	=	(x −	8)2	+	(y −	8)2

subject	to	x	+	y ≤	12
 x ≤	6
 x, y ≥ 0

5.33 Maximize	F (x, y)	=	(x −	4)2	+	(y −	6)2

subject	to	x	+	y ≤	12
	 6	≥ x
 x, y ≥ 0

5.34 Maximize	F (r, t)	=	(r −	8)2	+	(t −	8)2

subject	to	10	≥ r	+	t
 t ≤	5
 r, t ≥ 0

5.35 Maximize	F (r, t)	=	(r −	3)2	+	(t −	2)2

subject	to	10	≥ r	+	t
 t ≤	5
 r, t ≥ 0

5.36 Maximize	F (r, t)	=	(r −	8)2	+	(t −	8)2

subject	to	r	+	t ≤	10
 t ≥ 0
 r ≥ 0

5.37 Maximize F (r, t)	=	(r −	3)2	+	(t −	2)2

subject	to	10	≥ r	+	t
 t ≥	5
 r, t ≥ 0

5.38 	Formulate	and	graphically	solve	Exercise	2.23	of	the	design	of	a	cantilever	beam	
using	hollow	circular	cross-section.	Check	the	necessary	and	sufficient	conditions	
at	the	optimum	point.	The	data	for	the	problem	are	P	=	10	kn;	l	=	5	m;	modulus	of	
elasticity, E	=	210	Gpa;	allowable	bending	stress,	σa	=	250	Mpa;	allowable	shear	stress,	
ta	=	90	Mpa;	and	mass	density,	r	=	7850	kg/m3; 0 ≤ Ro ≤	20	cm,	and	0	≤ Ri ≤	20	cm.
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5.39 	Formulate	and	graphically	solve	Exercise	2.24.	Check	the	necessary	and	sufficient	
conditions	for	the	solution	points	and	verify	them	on	the	graph.

5.40 	Formulate	and	graphically	solve	Exercise	3.28.	Check	the	necessary	and	
sufficient	conditions	for	the	solution	points	and	verify	them	on	the	graph.

Find optimum solutions for the following problems graphically. Check necessary and sufficient 
 conditions for the solution points and verify them on the graph for the problem.

5.41 	A	minimum	weight	tubular	column	design	problem	is	formulated	in	Section	2.7	
using	mean	radius	R	and	thickness	t	as	design	variables.	Solve	the	problem	by	
imposing	an	additional	constraint	R/t ≤	50	for	the	following	data:	P	=	50	kn,	
l	=	5.0	m,	E	=	210	Gpa,	σa	=	250	Mpa,	and	r	=	7850	kg/m3.

5.42 	A	minimum	weight	tubular	column	design	problem	is	formulated	in	Section	2.7	
using	outer	radius	Ro	and	inner	radius	Ri	as	design	variables.	Solve	the	problem	by	
imposing	an	additional	constraint	0.5(Ro	+	Ri)/(Ro − Ri)	≤	50.	Use	the	same	data	as	
in	Exercise	5.41.

5.43 Solve	the	problem	of	designing	a	“can”	formulated	in	Section	2.2.
5.44 Exercise	2.1

*5.45 Exercise	3.34
*5.46 Exercise	3.35
*5.47 Exercise	3.36
*5.48 Exercise	3.54

5.49 Answer true or false.
1. Candidate	minimum	points	for	a	constrained	problem	that	do	not	satisfy	second-

order	sufficiency	conditions	can	be	global	minimum	designs.
2. Lagrange	multipliers	may	be	used	to	calculate	the	sensitivity	coefficient	for	

the	cost	function	with	respect	to	the	right	side	parameters	even	if	Theorem	4.7	
cannot	be	used.

3. Relative	magnitudes	of	the	Lagrange	multipliers	provide	useful	information	for	
practical	design	problems.

5.50 	A	circular	tank	that	is	closed	at	both	ends	is	to	be	fabricated	to	have	a	volume	of	
250p m3.	The	fabrication	cost	is	found	to	be	proportional	to	the	surface	area	of	
the	sheet	metal	needed	for	fabrication	of	the	tank	and	is	$400/m2.	The	tank	is	to	
be	housed	in	a	shed	with	a	sloping	roof	which	limits	the	height	of	the	tank	by	
the relation H ≤ 8D, where H	is	the	height	and	D	is	the	diameter	of	the	tank.	The	
problem	is	formulated	as	minimize	f (D, H)	=	400(0.5p D2	+	p Dh)	subject	to	the	
constraints

π π=D H
4

2502 ,	and	H ≤ 8D.	Ignore	any	other	constraints.
1. Check	for	convexity	of	the	problem.
2. Write	KKT	necessary	conditions.
3. Solve	KKT	necessary	conditions	for	local	minimum	points.	Check	sufficient	

conditions	and	verify	the	conditions	graphically.
4. What	will	be	the	change	in	cost	if	the	volume	requirement	is	changed	to	255p m3 in 

place	of	250p m3?
5.51 	A	symmetric	(area	of	member	1	is	the	same	as	area	of	member	3)	three-bar	truss	

problem	is	described	in	Section	2.10.

π4D2H=250π



I.	 ThE	BASIC	ConCEpTS

 reFerenCes 233

1. Formulate	the	minimum	mass	design	problem	treating	A1	and	A2	as	design	variables.
2. Check	for	convexity	of	the	problem.
3. Write	KKT	necessary	conditions	for	the	problem.
4. Solve	the	optimum	design	problem	using	the	data:	P	=	50	kn,	u = 30°, r	=	7800	kg/m3, 

σ a	=	150	Mpa.	Verify	the	solution	graphically	and	interpret	the	necessary	conditions	
on	the	graph	for	the	problem.

5. What	will	be	the	effect	on	the	cost	function	if	σa	is	increased	to	152	Mpa?

Formulate and solve the following problems graphically; check necessary and sufficient conditions 
at the solution points; verify the conditions on the graph for the problem and study the effect of varia-
tions in constraint limits on the cost function.

5.52 Exercise	2.1
5.53 Exercise	2.3
5.54 Exercise	2.4
5.55 Exercise	2.5
5.56 Exercise	2.9
5.57 Exercise	4.92
5.58 Exercise	2.12
5.59 Exercise	2.14
5.60 Exercise	2.23
5.61 Exercise	2.24
5.62 Exercise	5.41
5.63 Exercise	5.42
5.64 Exercise	5.43
5.65 Exercise	3.28
5.66 Exercise	3.34

*5.67 Exercise	3.35
*5.68 Exercise	3.36
*5.69 Exercise	3.39
*5.70 Exercise	3.40
*5.71 Exercise	3.41
*5.72 Exercise	3.46
*5.73 Exercise	3.47
*5.74 Exercise	3.48
*5.75 Exercise	3.49
*5.76 Exercise	3.50
*5.77 Exercise	3.51
*5.78 Exercise	3.52
*5.79 Exercise	3.53
*5.80 Exercise	3.54
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