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5
More on Optimum Design Concepts: 

Optimality Conditions

Upon completion of this chapter, you will be able to:

•	 Write and use an alternate form of optimality 
conditions for constrained problems

•	 Determine if the candidate minimum points 
are irregular

•	 Check the second-order optimality 
conditions at the candidate minimum points 
for general constrained problems

•	 Describe duality theory of nonlinear 
programming

In this chapter, we discuss some additional topics related to the optimality condition 
for constrained problems. Implications of the regularity requirement in the Karush–Kuhn–
Tucker (KKT) necessary conditions are discussed. Second-order optimality conditions for the 
problem are presented and discussed. These topics are usually not covered in a first course on 
optimization. Also, they may be omitted in a first reading of this book. They are more suitable 
for a second course or a graduate level course on the subject.

5.1  ALTERNATE FORM OF KKT NECESSARY CONDITIONS

There is an alternate but entirely equivalent form for the KKT necessary conditions. In 
this form, the slack variables are not added to the inequality constraints and the conditions 
of Eqs. (4.46)–(4.52) are written without them. It can be seen that in the necessary condi-
tions of Eqs. (4.46)–(4.52), the slack variable si appears in only two equations: Eq. (4.49) as 
gi(x*) + si

2 = 0, and Eq. (4.51) as =u s* 0i i . We will show that both the equations can be written 
in an equivalent form without the slack variable si.

Consider first Eq. (4.49): gi(x*) + si
2 = 0 for i = 1 to m. The purpose of this equation is to 

ensure that all the inequalities remain satisfied at the candidate minimum point. The equa-
tion can be written as si

2 = −gi(x*) and, since si
2 ≥ 0 ensures satisfaction of the constraint, we 

ui*si=0
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get −gi(x*) ≥ 0, or gi(x*) ≤ 0 for i = 1 to m. Thus, Eq. (4.49), gi(x*) + si
2 = 0 along with si

2 ≥ 0, can 
be simply replaced by gi(x*) ≤ 0.

The second equation involving the slack variable is Eq. (4.51), =u s* 0i i , i = 1 to m. Multi-
plying the equation by si, we get =u s* 0i

2
i

. Now substituting si
2 = −gi(x*), we get u*i gi(x*) = 0, 

i = 1 to m. This way the slack variable is eliminated from the equation and the switching con-
dition of Eq. (4.51) can be written as u*i gi(x*) = 0, i = 1 to m. These conditions can be used to 
define various cases as =u* 0i  or gi = 0 (instead of si = 0). Table 5.1 gives the KKT conditions of 
Theorem 4.6 in the alternate form without the slack variables, and Examples 5.1 and 5.2 provide 
illustrations of their use.

EXAMPLE 5.1 USE OF THE ALTERNATE FORM OF THE KKT 
CONDITIONS

Minimize

= − + −f x y x y( , ) ( 10) ( 8)2 2	 (a)

subject to

g x y 12 01 = + − ≤	 (b)

g x 8 02 = − ≤	 (c)

Solution
Since the problem is already expressed in the standard form, there is no need to perform any 

transformations to convert the problem to the standard form. The KKT conditions are

ui*si=0
ui*s2=0ui*

ui*
ui*=0

f(x,y)=(x−10)2+(y−8)2

g1=x+y−12≤0

g2=x−8≤0

TABLE 5.1 A lternate Form of KKT Necessary Conditions

Problem: Minimize f (x) subject to hi(x) = 0, i = 1 to p; gj (x) ≤ 0, j = 1 to m

1.	 Lagrangian function definition: ∑ ∑= + +
= =

L f v h u gi i
i

p

j j
j

m

1 1

	 (5.1)

2.	 Gradient conditions: ∑∑∂
∂

=
∂
∂

+
∂
∂

+
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= =
==
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h
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j
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ki

p

11

 	  (5.2)

3.	 Feasibility check: ( ) ( )= = ≤ =h i p g j mx* x*0; 1 to ; 0; 1 toi j  	  (5.3)

4.	 Switching conditions:	 ( ) = =u g j mx** 0; 1 toj j  	  (5.4)

5.	 Nonnegativity of Lagrange multipliers for inequalities: ≥ =u j m* 0; 1 toj  	  (5.5)

6.	 Regularity check: Gradients of active constraints must be linearly independent. In such a case, the Lagrange 
multipliers for the constraints are unique.

L=f+∑i=1pvihi+∑j=1mujgj

∂L∂xk=0;∂f∂xk+∑i=1pvi*∂hi∂xk+∑j=1
muj*∂gj∂xk=0;k=1ton

hix*=0;i=1top;gjx*≤0;j=1  to m

uj*gjx*=0;j=1  to  m

uj*  ≥0;  j=1  to  m
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1.	 Lagrangian function definition of Eq. (5.1):

L x y u x y u x( 10) ( 8) ( 12) ( 8)2 2
1 2= − + − + + − + −	 (d)

2.	 Gradient condition of Eq. (5.2):

L
x

x u u

L
y

y u

2( 10) 0

2( 8) 0

1 2

1

∂
∂

= − + + =

∂
∂

= − + =
	 (e)

3.	 Feasibility check of Eq. (5.3):

≤ ≤g g0, 01 2	 (f)

4.	 Switching conditions of Eq. (5.4):

u g u g0, 01 1 2 2= =	 (g)

5.	 Nonnegativity of Lagrange multipliers of Eq. (5.5):

≥u u, 01 2	 (h)

6.	 Regularity check.

The switching conditions of Eq. (g) give the following four cases:

1.	 u1 = 0, u2 = 0 (both g1 and g2 inactive)
2.	 u1 = 0, g2 = 0 (g1 inactive, g2 active)
3.	 g1 = 0, u2 = 0 (g1 active, g2 inactive)
4.	 g1 = 0, g2 = 0 (both g1 and g2 active)

Case 1: u1 = 0, u2 = 0 (both g1 and g2 inactive)
Eq. (e) give the solution as, x = 10, y = 8. Checking feasibility of this point gives g1 = 6 > 0, g2 = 2 > 0; 

thus both constraints are violated and so this case does not give any feasible candidate minimum point.

Case 2: u1 = 0, g2 = 0 (g1 inactive, g2 active)
g2 = 0 gives x = 8. Eq. (e) give y = 8 and u2 = 4. At the point (8, 8), g1 = 4 > 0, which is a violation. Thus 

the point (8, 8) is infeasible and this case also does not give any feasible candidate minimum points.

Case 3: g1 = 0, u2 = 0 (g1 active, g2 inactive)
Eq. (e) and g1 = 0 give x = 7, y = 5, u1 = 6 > 0. Checking feasibility, g2 = −1 < 0, which is satisfied. 

Since there is only one active constraint, the question of linear dependence of gradients of active 
constraints does not arise; therefore, regularity condition is satisfied. Thus point (7, 5) satisfies all 
the KKT necessary conditions.

Case 4: g1 = 0, g2 = 0 (both g1 and g2 active)
The case g1 = 0, g2 = 0 gives x = 8, y = 4. Eq. (e) give u1 = 8, u2 = −4 < 0, which is a violation of the 

necessary conditions. Therefore, this case also does not give any candidate minimum points.
It may be checked that this is a convex programming problem since constraints are linear and the 

cost function is convex. Therefore, the point obtained in Case 3 is indeed a global minimum point 
according to the convexity results of Section 4.8.

L=(x−10)2+(y−8)2+u1(x+y−12)
+u2(x−8)

∂L∂x=2(x−10)+u1+u2=0∂L∂y=2(
y−8)+u1=0

g1≤0, g2≤0

u1g1=0,  u2g2=0

u1,u2≥0
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EXAMPLE 5.2 CHECK FOR KKT NECESSARY CONDITIONS
An optimization problem has one equality constraint h and one inequality constraint g. Check 

the KKT necessary conditions at what is believed to be the minimum point using the following 
information:

= = ∇ = ∇ = − ∇ = − − −h g f h g0, 0, (2, 3, 2), (1, 1, 1), ( 1, 2, 1)	 (a)

Solution
At the candidate minimum point, the gradients of h and g are linearly independent, so the given 

point is regular. To check linear independence, we form a linear combination of ∇h and ∇g and set 
it to zero (refer to Appendix A for this check):

−
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









+
−
−
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

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
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


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
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
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c c
1
1
1

1
2
1

0
0
0

1 2	 (b)

where c1 and c2 are the parameters of linear combination. If c c0 and 01 2= =  is the only solution for 
the linear system in Eq. (b), then the vectors are linearly independent. In the linear system in Eq. (b), 
the first and the third equations are the same; the determinant of the coefficient matrix of the first 
two equations is −3; therefore, the only solution is c 0 and c 01 2= = .

The KKT conditions for the problem are

L f h u g
h g ug u

0
0, 0, 0, 0

υ∇ = ∇ + ∇ + ∇ =
= ≤ = ≥	 (c)

Substituting for ∇f, ∇h, and ∇g in ∇L = 0, we get the following three equations:

u u u2 0, 3 2 0, 2 0υ υ υ+ − = − − = + − =	 (d)

These are three equations in two unknowns; however, only two of them are linearly indepen-
dent. Solving for u and v, we get u = 5/3 ≥ 0 and v = −1/3. Thus, all of the KKT necessary conditions 
are satisfied.

5.2  IRREGULAR POINTS

In all of the examples that have been considered thus far, it is implicitly assumed that con-
ditions of the KKT Theorem 4.6 or the Lagrange Theorem 4.5 are satisfied. In particular, we 
have assumed that x* is a regular point of the feasible design space. That is, gradients of all 
the active constraints at x* are linearly independent (ie, they are neither parallel to each other, 
nor can any gradient be expressed as a linear combination of others). It must be realized that 
necessary conditions are applicable only if the assumption of the regularity of x* is satisfied. To 
show that the necessary conditions are not applicable if x* is not a regular point, we consider 
Example 5.3.

h=0, g=0,  ∇f=(2,3,2),  ∇h=(1,−1,1),  ∇
g=(−1,−2,−1)

c11−11+c2−1−2−1=000

c1=0  and  c2=0

c1=0  and  c2=0

     ∇L=∇f+υ∇h+u∇g=0h=0,     g≤0
,      ug=0,      u≥0

2+υ−u=0,  3−υ−2u=0,  2+υ−u=0
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EXAMPLE 5.3 CHECK FOR KKT CONDITIONS AT IRREGULAR 
POINTS

Minimize

f x x x x x( , ) 4 41 2 1
2 2

2 1= + − +	 (a)

subject to

g x 01 1= − ≤	 (b)

g x 02 2= − ≤	 (c)

g x x(1 ) 03 2 1
3= − − ≤	 (d)

Check if the minimum point (1, 0) satisfies the KKT necessary conditions (McCormick, 1967).

Solution
The graphical solution, shown in Fig. 5.1, gives the global minimum for the problem at x* = (1, 0). 

Let us see if the solution satisfies the KKT necessary conditions:

1.	 Lagrangian function definition of Eq. (5.1):

L x x x u x u x u x x4 4 ( ) ( ) [ (1 ) ]1
2 2

2 1 1 1 2 2 3 2 1
3= + − + + − + − + − −	 (e)

2.	 Gradient condition of Eq. (5.2):

L
x

x u u x

L
x

x u u

2 4 (3)(1 ) 0

2 0

1
1 1 3 1

2

2
2 2 3

∂
∂

= − − + − =

∂
∂

= − + =
	 (f)

f(x1,x2)=x1
2+x2

−4x1+4

g1=−x1≤0

g2=−x2≤0

g3=x2−(1−x1)3
≤0

L=x1
2+x2

−4x1+4+u1(−x1)+u2(−x
2)+u3[x2−(1−x1)3]

∂L∂x1=2x1−4−u1+u3(3)(1−x1)2=
0∂L∂x2=2x2−u2+u3=0

FIGURE 5.1  Graphical solution for Example 5.3: irregular optimum point.
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3.	 Feasibility check of Eq. (5.3):

g i0, 1, 2, 3i ≤ =	 (g)

4.	 Switching conditions of Eq. (5.4):

u g i0, 1, 2, 3i i = =	 (h)

5.	 Nonnegativity of Lagrange multipliers of Eq. (5.5):

u i0, 1, 2, 3i ≥ =	 (i)

6.	 Regularity check.

At x* = (1, 0) the first constraint (g1) is inactive and the second and third constraints are active. 
The switching conditions in Eq. (h) identify the case as u1 = 0, g2 = 0, g3 = 0. Substituting the solution 
into Eqs. (f), we find that the first equation gives −2 = 0 and therefore, it is not satisfied. Thus, the 
KKT necessary conditions are not satisfied at the minimum point.

This apparent contradiction can be resolved by checking the regularity condition at the minimum 
point x* = (1, 0). The gradients of the active constraints g2 and g3 are given as

g g0
1

; 0
12 3∇ =

−






∇ = 





	 (j)

These vectors are not linearly independent. They are along the same line but in opposite directions, 
as seen in Fig. 5.1. Thus x* is not a regular point of the feasible set. Since this is assumed in the KKT 
conditions, their use is invalid here. Note also that the geometrical interpretation of the KKT condi-
tions of Eq. (4.53) is violated; that is, for the present example, ∇f at (1, 0) cannot be written as a linear 
combination of the gradients of the active constraints g2 and g3. Actually, ∇f is normal to both ∇g2 
and ∇g3, as seen in the Fig. 5.1; therefore it cannot be expressed as their linear combination.

Note that for some problems irregular points can be obtained as a solution to the KKT condi-
tions; however, in such cases, the Lagrange multipliers of the active constraints cannot be guaran-
teed to be unique. Also, the constraint variation sensitivity result of Section 4.7 may or may not be 
applicable to some values of the Lagrange multipliers.

5.3  SECOND-ORDER CONDITIONS FOR  
CONSTRAINED OPTIMIZATION

Solutions to the first-order necessary conditions are candidate local minimum designs. 
In this section, we will discuss second-order necessary and sufficiency conditions for con-
strained optimization problems. As in the unconstrained case, second-order information about 
the functions at the candidate point x* will be used to determine if the point is indeed a local 
minimum. Recall for the unconstrained problem that the local sufficiency of Theorem 4.4 
requires the quadratic part of Taylor’s expansion for the function at x* to be positive for all 
nonzero design changes d. In the constrained case, we must also consider active constraints at x* to 
determine feasible changes d. We will consider only the points x = x* + d in the neighborhood of 
x* that satisfy the active constraint equations.

gi≤0,  i=1,2,3

uigi=0,  i=1,2,3

ui≥0,  i=1,2,3

∇g2=0−1;   ∇g3=01
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Any d ≠ 0 satisfying active constraints to the first order must be in the constraint tangent hyper-
plane (Fig. 5.2). Such d’s are then orthogonal to the gradients of the active constraints since 
constraint gradients are normal to the constraint tangent hyperplane. Therefore, the dot product 
of d with each of the active constraint gradients ∇hi and ∇gi must be zero; that is, ∇hi

Td = 0 
and ∇gi

Td = 0. These equations are used to determine directions d that define a feasible region 
around the point x*. Note that only active inequality constraints (gi = 0) are used in determin-
ing d. The situation is depicted in Fig. 5.2 for one inequality constraint.

To derive the second-order conditions, we write Taylor’s expansion of the Lagrange func-
tion and consider only those d that satisfy the preceding conditions. x* is then a local mini-
mum point if the second-order term of Taylor’s expansion is positive for all d in the constraint 
tangent hyperplane. This is then the sufficient condition for an isolated local minimum point. 
As a necessary condition the second-order term must be nonnegative. We summarize these 
results in Theorems 5.1 and 5.2.

THEOREM 5.1

Second-Order Necessary Conditions for General Constrained Problems
Let x* satisfy the first-order KKT necessary conditions for the general optimum design problem. 

Define the Hessian of the Lagrange function L at x* as

L f v h u g* *
i

p
j i j

m
j j

2 2
1

2
1

2∑ ∑∇ = ∇ + ∇ + ∇
= =	 (5.6)

Let there be nonzero feasible directions, d ≠ 0, satisfying the following linear systems at the 
point x*:

h i pd 0; 1toi
T∇ = =	 (5.7)

∇ = =g j gd x0 for all active inequalities ( ie , for those with ( *) 0)i
T

j	 (5.8)

Then, if x* is a local minimum point for the optimum design problem, it must be true that

≥ = ∇Q Q Ld x d0 where ( *)T 2	 (5.9)

∇2L=∇2f+∑i=1p υi*∇2hi+∑j=1m u
j*∇2gj

∇hiTd=0;  i=1 to p

∇giTd=0 for all active  inequali-
ties (ie, for those j with gj(x*)=0

Q≥0  where  Q=dT∇2L(x*)d

FIGURE 5.2  Directions d used in second-order conditions.
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Note that any point that does not satisfy the second-order necessary conditions cannot 
be a local minimum point.

THEOREM 5.2

Sufficient Conditions for General Constrained Problems
Let x* satisfy the first-order KKT necessary conditions for the general optimum design problem. 

Define the Hessian of the Lagrange function L at x* as shown in Eq. (5.6). Define nonzero feasible 
directions, d ≠ 0, as solutions to the linear systems:

h i pd 0; 1toi
T∇ = =	 (5.10)

g ud 0 for all those active inequalities with * 0j
T

j∇ = >	 (5.11)

Also let g ud 0 for those active inequalities with * 0j
T

j∇ ≤ = . If

Q Q Ld x d0, where ( *)T 2> = ∇	 (5.12)

then x* is an isolated local minimum point (isolated means that there are no other local minimum 
points in the neighborhood of x*).

∇hiTd=0;  i=1 to p

∇gjTd=0  for all those  active  in-
equalities with uj*>

∇gjTd≤0  for those active  in-
equalities with uj*=0

Q>0,  where  Q=dT∇2L(x*)d

Insights for Second-Order Conditions

1.	 Note first the difference in the conditions for the directions d in Eq. (5.8) for the neces-
sary condition and Eq. (5.11) for the sufficient condition. In Eq. (5.8), all active inequali-
ties with nonnegative multipliers are included, whereas in Eq. (5.11) only those active 
inequalities with a positive multiplier are included.

2.	 Eqs. (5.10) and (5.11) simply say that the dot product of vectors ∇hi and d and gj∇  
(having u* 0j > ) and d should be zero. Thus, only the d orthogonal to the gradients of 
equality and active inequality constraints with u* 0j >  are considered. Stated differently, 
only d in the tangent hyperplane to the active constraints at the candidate minimum 
point are considered.

3.	 Eq. (5.12) says that the Hessian of the Lagrangian must be positive definite for all d lying 
in the constraint tangent hyperplane. Note that ∇hi, gj∇ , and ∇2L are calculated at the 
candidate local minimum points x* satisfying the KKT necessary conditions.

4.	 It should also be emphasized that if the inequality in Eq. (5.12) is not satisfied (ie, Q ≯ 0), 
we cannot conclude that x* is not a local minimum. It may still be a local minimum 
but not an isolated one. Note also that the theorem cannot be used for any x* if its 
assumptions are not satisfied. In that case, we cannot draw any conclusions for the 
point x*.

5.	 It is important to note that if matrix ∇2L(x*) is negative definite or negative semidefinite 
then the second-order necessary condition in Eq. (5.9) for a local minimum is violated 
and x* cannot be a local minimum point.

6.	 It is also important to note that if ∇2L(x*) is positive definite (ie, Q in Eq. (5.12) is positive 
for any d ≠ 0) then x* satisfies the sufficiency condition for an isolated local minimum 

∇gj
uj*>0
uj*>0

∇gj
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and no further checks are needed. The reason is that if ∇2L(x*) is positive definite, then 
it is positive definite for those d that satisfy Eqs. (5.10) and (5.11). However, if ∇2L(x*) 
is not positive definite (ie, it is positive semidefinite or indefinite), then we cannot conclude that 
x* is not an isolated local minimum. We must calculate d to satisfy Eqs. (5.10) and (5.11) 
and carry out the sufficiency test given in Theorem 5.2. This result is summarized in 
Theorem 5.3.

THEOREM 5.3

Strong Sufficient Condition
Let x* satisfy the first-order KKT necessary conditions for the general optimum design problem. 

Define Hessian ∇2L(x*) for the Lagrange function at x* as shown in Eq. (5.6). Then, if ∇2L(x*) is posi-
tive definite, x* is an isolated minimum point.

7.	 One case arising in some applications needs special mention. This occurs when the total 
number of active constraints (with at least one inequality) at the candidate minimum 
point x* is equal to the number of independent design variables; that is, there are no 
design degrees of freedom at the candidate minimum point. Since x* satisfies the KKT 
necessary conditions, the gradients of all the active constraints are linearly independent. 
Thus, the only solution for the system of Eqs. (5.10) and (5.11) is d = 0 and Theorem 5.2 
cannot be used. However, since d = 0 is the only solution, there are no feasible directions 
in the neighborhood that can reduce the cost function any further. Thus, the point x* is 
indeed a local minimum for the cost function (see also the definition of a local minimum 
in Section 4.1.1). We consider Examples 5.4–5.6 to illustrate the use of second-order 
conditions of optimality.

EXAMPLE 5.4 CHECK FOR SECOND-ORDER CONDITIONS 1
Check the second-order condition for Example 4.30:

Minimize

f x b c x bcx f(x)
1
3

1
2

( )3 2
0= − + + +	 (a)

subject to

a x d≤ ≤	 (b)

where 0 < a < b < c < d and f0 are specified constants.

Solution
There is only one constrained candidate local minimum point, x = a. Since there is only one de-

sign variable and one active constraint, the condition g d 01∇ =  of Eq. (5.11) gives d 0=  as the only 
solution (note that d  is used as a direction for sufficiency check since d is used as a constant in the 

f(x)=13x3
−12(b+c)x2+bcx+f0

a≤x≤d

∇g1d¯=0d¯=0
d¯
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example). Therefore, Theorem 5.2 cannot be used for a sufficiency check. Also note that at x = a, 
d2L/dx2 = (a − b) + (a − c), which is always negative, so we cannot use curvature of the Lagrangian 
function to check the sufficiency condition (strong sufficient Theorem 5.3). However, from Fig. 4.16 
we observe that x = a is indeed an isolated local minimum point.

From this example, we see that if the number of active inequality constraints is equal to the num-
ber of independent design variables and all other KKT conditions are satisfied, then the candidate 
point is indeed a local minimum point.

EXAMPLE 5.5 CHECK FOR SECOND-ORDER CONDITIONS 2
Consider the optimization problem of Example 4.31:

Minimize

f x x x x(x) 31
2 2

2 1 2= + −	 (a)

subject to

g x x(x) 6 01
2 2

2= + − ≤	 (b)

Check for sufficient conditions for the candidate minimum points.

Solution
From solution of Example 4.31, the points satisfying KKT necessary conditions are

= = = = = − − =u u ux x x(i) * (0, 0), * 0; (ii) * ( 3 , 3), *
1
2

; (iii) * ( 3 , 3), *
1
2

	 (c)

It was observed in Example 4.31 and Fig. 4.17 that the point (0, 0) did not satisfy the sufficiency 
condition and that the other two points did satisfy it. Those geometrical observations will be math-
ematically verified using the second-order optimality conditions.

The Hessian matrices for the cost and constraint functions are

∇ =
−

−












∇ =












f g
2 3
3 2

,
2 0
0 2

2 2
	 (d)

By the method of Appendix A, eigenvalues of ∇2g are λ1 = 2 and λ2 = 2. Since both eigenval-
ues are positive, the function g is convex, and so the feasible set defined by g(x) ≤ 0 is convex by 
Theorem 4.9. However, since eigenvalues of ∇2f are −1 and 5, f is not convex. Therefore, it cannot 
be classified as a convex programming problem and sufficiency cannot be shown by the convexity 
Theorem 4.11. We must resort to the sufficiency Theorem 5.2.

The Hessian of the Lagrangian function is given as

L f u g
u

u
2 2 3  

3  2 2
2 2 2∇ = ∇ + ∇ =

+ −
− +













	 (e)

1.	 For the first point x* = (0, 0), u* = 0, ∇2L becomes ∇2f (the constraint g(x) ≤ 0 is inactive). In this 
case, the problem is unconstrained and the local sufficiency requires dT∇2f (x*)d > 0 for all d. 

f(x)=x1
2+x2

−3x1x2

g(x)=x1
2+x2

−6≤0

(i) x*=(0,0), u*=0;  (ii) x*=(3, 3), u*
=12; (iii) x*=(−3,−3), u*=12

∇2f=2−3−32,  ∇2g=2002

∇2L=∇2f+u∇2g=2+2u−3−32+2u
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Or ∇2f should be positive definite at x*. Since both eigenvalues of ∇2f are not positive, we con-
clude that the aforementioned condition is not satisfied. Therefore, x* = (0, 0) does not satisfy the 
second-order sufficiency condition for a local minimum. Note that since λ1= −1 and λ2 = 5, the 
matrix ∇2f is indefinite at x*. The point x* = (0, 0), then, violates the second-order necessary condition 
of Theorem 4.4 requiring ∇2f to be at least positive semidefinite at the candidate local minimum 
point. Thus, x* = (0, 0) cannot be a local minimum point. This agrees with graphical observation 
made in Example 4.31.

2.	 At points = = = − − =u ux x* ( 3 , 3), *
1
2

and * ( 3 , 3), *
1
2

,

∇ = ∇ + ∇ = + −
− +







= −
−







L f u g u
u

2 2 3
3 2 2

3 3
3 3

2 2 2	 (f)

g (2 3 , 2 3) 2 3(1,1)∇ = ± = ±	 (g)

It may be checked that ∇2L is not positive definite at either of the two points. Therefore, we can-
not use Theorem 5.3 to conclude that x* is an isolated local minimum point. We must find d satisfy-
ing Eqs. (5.10) and (5.11). If we let d = (d1, d2), then ∇gTd = 0 gives

d
d

d d2 3 1 1 0; or 01

2
1 2±  









 = + =	 (h)

Thus, d1= −d2 = c, where c ≠ 0 is an arbitrary constant, and a d ≠ 0 satisfying ∇gTd = 0 is given as 
d = c(1, −1). The sufficiency condition of Eq. (5.12) gives

Q L c c c cd d( ) [1 1] 3 3
3 3

1
1

12 0 for 0T 2 2= ∇ = − −
−





 −







= > ≠	 (i)

The points x x* ( 3 , 3) and * ( 3 , 3)= = − −  satisfy the sufficiency condition of Eq. (5.12). There-
fore, they are isolated local minimum points, as was observed graphically in Example 4.31 and 
Fig. 4.17. We see for this example that ∇2L is not positive definite at x*, but x* is still an isolated 
minimum point.

Note that since f is continuous and the feasible set is closed and bounded, we are guaranteed 
the existence of a global minimum by the Weierstrass Theorem 4.1. Also we have examined every 
possible point satisfying necessary conditions. Therefore, we must conclude by elimination that 
x x* ( 3 , 3) and * ( 3 , 3)= = − −  are global minimum points. The value of the cost function for 
both points is f (x*) = − 3.

EXAMPLE 5.6 CHECK FOR SECOND-ORDER CONDITIONS 3
Consider Example 4.32:

Minimize

f x x x x x x( , ) 2 2 21 2 1
2 2

2 1 2= + − − +	 (a)

x*=(3,3), u*=12 and x*=(−3), −3
), u*=12,

∇2L=∇2f+u∇2g=2+2u−3−32+2u=3−3−33

∇g=±(23,23)=±23(1,1)

±231    1d1d2=0;  or d1+d2=0

Q=dT(∇2L)d=c[1−1]3−3−33c1−
1=12c2

>0  for  c≠0

x*=(3,3)  and  x*=(−3,−3)

x*=(3,3)  and  x*=(−3,−3)

f(x1,x2)=x1
2+x2

−2x1−2x2+2
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subject to

g x x2 4 01 1 2= − − + ≤	 (b)

g x x2 4 02 1 2= − − + ≤	 (c)

Check the second-order conditions for the candidate minimum point.

Solution
From Example 4.32, the KKT necessary conditions are satisfied for the point

x x u u* 4
3

, * 4
3

, * 2
9

, * 2
91 2 1 2= = = =	 (d)

Since all the constraint functions are linear, the feasible set S is convex. The H essian of the 
cost function is positive definite. Therefore, it is also convex and the problem is convex and by 
Theorem 4.11,

x x* 4
3

, * 4
31 2= =

satisfies sufficiency conditions for a global minimum with the cost function as f x( *)
2
9

=

Note that local sufficiency cannot be shown by the method of Theorem 5.2. The reason is that the 
conditions of Eq. (5.11) give two equations in two unknowns:

d d d d2 0, 2 01 2 1 2− − = − − =	 (e)

This is a homogeneous system of equations with a nonsingular coefficient matrix. Therefore, 
its only solution is d1 = d2 = 0. Thus, we cannot find a d ≠ 0 for use in the condition of Eq. (5.12), 
and Theorem 5.2 cannot be used. However, we have seen in the foregoing and in Fig. 4.18 that 
the point is actually an isolated global minimum point. Since it is a two-variable problem and 
two inequality constraints are active at the KKT point, the condition for a local minimum is 
satisfied.

5.4  SECOND-ORDER CONDITIONS FOR THE RECTANGULAR 
BEAM DESIGN PROBLEM

The rectangular beam design problem is formulated and graphically solved in Fig. 3.11 
in Section 3.8. The KKT necessary conditions are written and solved in Section 4.9.2. Several 
points that satisfy the KKT conditions are obtained. It is seen from the graphical representa-
tion of the problem in Fig. 3.11 that all of these points are global minima for the problem; 
however, none of the points is an isolated local minimum. Let us show that the second-order 
sufficiency condition of Theorem 5.2 will not be satisfied for any of these points.

Cases 3, 5, and 6 in Section 4.9.2 gave solutions that satisfy all the KKT necessary condi-
tions. Cases 5 and 6 had two active constraints with g1 having Lagrange multiplier value 

g1=−2x1−x2+4≤0

g2=−x1−2x2+4≤0

x1*=43,  x2*=43,  u1*=29,  u2*=29

x1*=43, x2*=43

f(x*)=29

−2d1−d2=0, −d1−2d2=0
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of zero; however, only the constraint with positive multiplier needs to be considered in 
Eq. (5.11). The sufficiency Theorem 5.2 requires only constraints with ui > 0 to be considered 
in calculating the feasible directions for use in Eq. (5.12). Therefore, only the g2 constraint 
needs to be included in the check for sufficiency conditions. Thus, we see that all the three cases 
have the same sufficiency check.

We need to calculate Hessians of the cost function and the second constraint:

∇ =












∇ = × 











f g
b d

d bd
bd b

0 1
1 0

,
(2.25 10 ) 2

2
2 2

2

5

3 3

2

2

	
(a)

Since bd = (1.125 ×105), ∇2g2 becomes

∇ =
×

×



















−

−
g b

d

2

2
(1.125 10 )

(1.125 10 )
2

2
2

2
5 1

5 1
2

	

(b)

The Hessian of the Lagrangian is given as

L f u g b

d

0 1
1 0

2(56, 250)

2
(1.125 10 )

(1.125 10 )
2

2 2
2

2
2

2
5 1

5 1
2

∇ = ∇ + ∇ = 





+
×

×



















−

−

	

(c)

L b

d

(2.25 10 )
2

2
(2.25 10 )

2

5

2

5

2

∇ =

×

×



















	

(d)

Since the determinant of ∇2L is 0 for bd = (1.125 × 105), the matrix is only positive semidefi-
nite. Therefore, the Strong Sufficiency Theorem 5.3 cannot be used to show the sufficiency 
of x*. We must check the sufficiency condition of Eq. (5.12). In order to do that, we must find 
directions y (since d is used as a design variable, we use y instead of d) satisfying Eq. (5.11). 
The gradient of g2 is given as

∇ =
− × − ×







g

b d bd
(2.25 10 )

,
(2.25 10 )

2

5

2

5

2
	

(e)

The feasible directions y at the point bd = (1.125 × 105) are given by ∇g2
Ty = 0, as

+ = = −
b

y
d

y
d
b

y
1 1

0, or y1 2 2 1
	

(f)

∇2f=0110,  ∇2g2=(2.25×105)b3d32d
2bdbd2b2

∇2g2=22b2(1.125×105)−1(1.125×105)−12d2

∇2L=∇2f+u2∇2g2=0110+2(56,250)2b2(
1.125×105)−1(1.125×105)−12d2

∇2L=(2.25×105)b222(2.25×105)d2

∇g2=−(2.25×105)b2d, −(2.25×10
5)bd2

1by1+1dy2=0, or y2=−dby1
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Therefore, vector y is given as y = (1, −d/b)c, where c = y1 is any constant. Using ∇2L and y, 
Q of Eq. (5.12) is given as

Q Ly y 0T 2= ∇ =	 (g)

Thus, the sufficiency condition of Theorem 5.2 is not satisfied. The points satisfying 
bd = (1.125 × 105) are not isolated local minimum points. This is, of course, true from Fig. 3.11. 
Note, however, that since Q = 0, the second-order necessary condition of Theorem 5.1 is satis-
fied for Case 3. Theorem 5.1 cannot be used to check the second-order necessary conditions 
for solutions to Cases 5 and 6 since there are two active constraints for this two-variable prob-
lem; therefore, there are no nonzero y vectors.

It is important to note that this problem does not satisfy the conditions for a convex pro-
gramming problem and all of the points satisfying KKT conditions do not satisfy the suf-
ficiency condition for an isolated local minimum. Yet all of the points are actually global 
minimum points. Two conclusions can be drawn from this example:

1.	 Global minimum points can be obtained for problems that cannot be classified as 
convex programming problems. We cannot show global optimality of a point un-
less we find all of the local minimum points in the closed and bounded feasible set 
(the Weierstrass Theorem 4.1).

2.	 If second-order sufficiency condition is not satisfied, the only conclusion we can draw 
is that the candidate point is not an isolated local minimum. It may have many local 
optima in the neighborhood, and they may all be actually global minimum points.

5.5  DUALITY IN NONLINEAR PROGRAMMING

Given a nonlinear programming problem, there is another nonlinear programming prob-
lem closely associated with it. The former is called the primal problem, and the latter is called 
the dual problem. Under certain convexity assumptions, the primal and dual problems have 
the same optimum objective function values and therefore, it is possible to solve the primal 
problem indirectly by solving the dual problem. As a by-product of one of the duality theo-
rems, we obtain the saddle point necessary conditions.

Duality has played an important role in the development of optimization theory and numer-
ical methods. Development of the duality theory requires assumptions about the convexity of the 
problem. However, to be broadly applicable, the theory should require a minimum of convexity 
assumptions. This leads to the concept of local convexity and to the local duality theory.

In this section, we will present only the local duality. The theory can be used to develop 
computational methods for solving optimization problems. We will see in chapter: More on 
Numerical Methods for Unconstrained Optimum Design, that it can be used to develop the 
so-called augmented Lagrangian methods.

5.5.1  Local Duality: Equality Constraints Case

For sake of developing the local duality theory, we consider the equality-constrained prob-
lem first.

Q=yT∇2Ly=0
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Problem E
Find an n-vector x to

Minimize

f x( )	 (5.13)

subject to

h i px( ) 0; 1 toi = =	 (5.14)

f(x)

hi(x)=0;  i=1 to p

Later on we will extend the theory to both equality- and inequality-constrained problems. 
The theory we are going to present is sometimes called the strong duality or Lagrangian duality. 
We assume that functions f and hi are twice continuously differentiable. We will first define 
a dual function associated with Problem E and study its properties. Then we will define the 
dual problem associated with Problem E.

To present the duality results for Problem E the following notation is used.
The Lagrangian function:

L f v h fx v x x v h( , ) ( ) ( ) ( )
i

p

i i
1

i∑= + = +
=	

(5.15)

The Hessian of the Lagrangian function with respect to x:

L f
v

h
H x v

x
x

x x
( , )

( )
x

i

p

i
i

2

2

2

2
1

2

2∑=
∂
∂

=
∂

∂
+

∂
∂=	

(5.16)

The gradient matrix of equality constraints:

h

x
N j

i n p

=
∂
∂











×	
(5.17)

In these equations, v is the p-dimensional Lagrange multiplier vector for the equality con-
straints.

Let x* be a local minimum of Problem E that is also a regular point of the feasible set. Then 
there exists a unique Lagrange multiplier *iυ  for each constraint such that the first-order nec-
essary condition is met:

L f
v

hx v
x

x
x

x
x

( *, *)
0, or

( *) * ( *)
0i

i

p
i

1
∑∂

∂
=

∂
∂

+
∂

∂
=

=	
(5.18)

For development of the local duality theory, we make the assumption that the Hessian 
of the Lagrangian function Hx(x*, v*) at the minimum point x* is positive definite. This 
assumption guarantees that the Lagrangian of Eq. (5.15) is locally convex at x*. This also sat-
isfies the sufficiency condition for x* to be an isolated local minimum of Problem E. With 

L(x,v)=f(x)+∑i=1p υihi=f(x)+(vh)

Hx(x,v)=∂2L∂x2=∂2f(x)∂x2+∑i=1p υi∂2hi∂x2

N=∂hj∂xin×p

υi*

∂L(x*,v*)
∂x=0, or ∂f(x*)∂x+∑i=1pυi*∂hi(x-

*)∂x=0
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this assumption, the point x* is not only a local minimum of Problem E, it is also a local 
minimum for the unconstrained problem:

L f v h
x

x v
x

xminimize ( , * ) or minimize ( ) *i i
i

p

1
∑+






=	
(5.19)

where v* is a vector of Lagrange multipliers at x*. The necessary and sufficient conditions 
for the aforementioned unconstrained problem are the same as for the constrained Problem 
E (with Hx(x*, v*) being positive definite). In addition for any v sufficiently close to v*, the 
Lagrange function L(x, v) will have a local minimum at a point x near x*. Now we will estab-
lish the condition that x(v) exists and is a differentiable function of v.

The necessary condition at the point (x, v) in the vicinity of (x*, v*) is given as

L f
v

h fx v
x

x
x x

0
x
x

Nv 0
( , ) ( )

, or
( )

i
i

p
i

1
∑∂

∂
=

∂
∂

+
∂
∂

=
∂

∂
+ =

=	
(5.20)

Since Hx(x*, v*) is positive definite, it is nonsingular. Also because of this positive defi-
niteness, Hx(x, v) is positive definite in the vicinity of (x*, v*) and thus nonsingular. This is 
a generalization of a theorem from calculus: If a function is positive at a point, it is positive in a 
neighborhood of that point. Note that Hx(x, v) is also the Jacobian of the necessary conditions 
of Eq. (5.20) with respect to x. Therefore, Eq. (5.20) has a solution x near x* when v is near 
v*. Thus, locally there is a unique correspondence between v and x through a solution to the 
unconstrained problem:

L f v h
x

x v
x

xminimize ( , ) or minimize ( ) i i
i

p

1
∑+











=	
(5.21)

Furthermore, for a given v, x(v) is a differentiable function of v (by the implicit functions 
theorem of calculus).

Dual Function
Near v*, we define the dual function φ(v) by the equation

L f v hv
x

x v
x

x( ) minimize ( , ) or minimize ( ) i i
i

p

1
∑φ = +











=	
(5.22)

where the minimum is taken locally with respect to x near x*.

Dual Problem

v
vmaximize ( )φ

	
(5.23)

∅(v)=minimizexL(x,v)     or     min
imizexf(x)+∑i=1pυihi

maximizev ∅(v)

With this definition of the dual function we can show that locally the original constrained 
Problem E is equivalent to unconstrained local maximization of the dual function φ(v) with 

minimizexL(x,v*)    or    minimizexf(x)+∑i=1pυi*hi

∂L(x,v)∂x=∂f(x)∂x+∑i=1pυi∂hi∂x
=0  or  ∂f(x)∂x+Nv = 0

minimizexL(x
,v)     or     minimizexf(x)+∑i=1pυihi



	 5.5  Duality in nonlinear programming	 223

I.  The Basic Concepts

respect to v. Thus, we can establish equivalence between a constrained problem in x and an 
unconstrained problem in v. To establish the duality relation, we must prove two lemmas.

LEMMA 5.1
The gradient of the dual function φ(v) is given as

φ∂
∂

=
v

v
h x v

( )
( ( ))

	
(5.24)

Proof
Let x(v) represent a local minimum for the Lagrange function

= +L fx v x v h( , ) ( ) ( )i	 (5.25)

Therefore, the dual function can be explicitly written from Eq. (5.22) as

φ = +fv x v v h x v( ) [ ( ( )) ( ( ( )))]i	 (5.26)

where x(v) is a solution of the necessary condition in Eq. (5.20).
Now, differentiating φ(v) in Eq. (5.26) with respect to v, and using the fact that x(v) is a differen-

tiable function of v, we get

φ φ φ∂
∂

=
∂

∂
+

∂
∂

∂
∂

= +
∂

∂
∂
∂

Lx v
v

v
v

v
v x

h x v
x v

v x
( ( )) ( ) x( )

( ( ))
( )

	
(5.27)

where x v
v
( )∂

∂
 is a p × n matrix. But ∂L/∂x in Eq. (5.27) is zero because x(v) minimizes the Lagrange 

function of Eq. (5.25). This proves the result of Eq. (5.24).

∂∅(v)∂v=h[x(v)]

L(x,v)=f(x)+(vh)

∅(v)=f[x(v)]+vh[x(v)]

∂∅[x(v)]∂v=∂∅(v)∂v+∂x(v)∂v∂
∅∂x=h[x(v)]+∂x(v)∂v∂L∂x∂x(v)∂v

Lemma 5.1 is of practical importance because it shows that the gradient of the dual func-
tion is quite simple to calculate. Once the dual function is evaluated by minimization with 
respect to x, the corresponding h(x), which is the gradient of φ(v), can be evaluated without 
any further calculation.

LEMMA 5.2
The Hessian of the dual function is given as

H
v

v
N H x N

( )
[ ( )]xv

2

2
T 1φ

=
∂

∂
= − −

	
(5.28)

Proof
Differentiate Eq. (5.24) with respect to v to obtain

φ
=

∂
∂

∂
∂









=
∂

∂
=

∂
∂

H
v

x v
v

h x v
v

x v
v

N
( ( )) ( ( )) ( )

v
	

(5.29)

Hv=∂2
∅(v)∂v2=−NT[Hx(x)]−1N

Hv=∂∂v∂∅[x(v)]∂v=∂h[x(v)]∂v
=∂x(v)∂vN
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Since [Hx(x)]−1 is positive definite, and since N is of full column rank near x, we have Hv(v), 
a p × p matrix (Hessian of φ(v)), to be negative definite. This observation and the Hessian of 
φ(v) play a role in the analysis of dual methods.

To calculate x v
v
( )∂

∂
, we differentiate the necessary condition of Eq. (5.20) with respect to v to 

obtain

+
∂

∂
=N

x v
v

H x 0
( )

( )x
T

	
(5.30)

Solving for x v
v
( )∂

∂
 from Eq. (5.30), we get

x v
v

N H x
( )

[ ( )]T
x

1∂
∂

= − −

	
(5.31)

Substituting Eq. (5.31) into Eq. (5.29) and using the fact that h(x(v)) does not depend explicitly 
on v, we obtain the result of Eq. (5.28), which was to be proved.

∂x(v)∂v

NT+∂x(v)∂vHx(x)=0

∂x(v)∂v

∂x(v)∂v=−NT[Hx(x)]−1

THEOREM 5.4

Local Duality Theorem
For Problem E, let

x* be a local minimum.
x* be a regular point.
v* be the Lagrange multipliers at x*.
Hx(x*, v*) be positive definite.

Then for the dual problem
Maximize

v( )φ	 (5.32)

has a local solution at v* with x* = x(v*). The maximum value of the dual function is equal to the 
minimum value of f (x); that is,

fv x( *) ( *)φ =	 (5.33)

Proof
Solution of the necessary conditions in Eq. (5.20) gives x = x(v) for use in the definition of the dual 

function φ(v). Therefore at v*, x* = x(v*). Now, at v*, we have Lemma 5.1:

φ∂
∂

= =
v
v

h x 0
( *)

( )
	

(a)

Also, by Lemma 5.2, the Hessian of φ(v) is negative definite. Thus, v* satisfies the first-order 
necessary and second-order sufficiency conditions for an unconstrained maximum point of φ(v).

∅(v)

∅(v*)=f(x*)

∂∅(v*)∂v=h(x)=0
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EXAMPLE 5.7 SOLUTION TO THE DUAL PROBLEM
Consider the following problem in two variables; derive the dual of the problem and solve it:
Minimize

= −f x x1 2	 (a)

subject to

− + =x x( 3) 51
2

2
2	 (b)

Solution
Let us first solve the primal problem using the optimality conditions. The Lagrangian for the 

problem is given as

L x x v x x[( 3) 5]1 2 1
2

2
2= − + − + −	 (c)

The first-order necessary conditions are

x x v(2 6) 02 1− + − =	 (d)

x x v2 01 2− + =	 (e)

Together with the equality constraint in Eq. (b), these equations have a solution:

x x v f* 4, * 2, * 1, * 81 2= = = = −	 (f)

The Hessian of the Lagrangian function is given as

H x v( *, *) 2 1
1 2x = −

−




	

(g)

Since this is a positive definite matrix, we conclude that the solution obtained satisfies second-
order sufficiency conditions, and therefore, is an isolated local minimum.

Since Hx(x*, v*) is positive definite, we can apply the local duality theory near the solution point. 
Define a dual function as

Lv
x

x v( ) minimize ( , )φ =
	

(h)

f=−x1x2

(x1−3)2+x22=5

L=−x1x2+υ[(x1−3)2+x22−5]

−x2+(2x1−6)υ=0

−x1+2x2υ=0

x1*=4, x2*=2, υ*=1, f*=−8

Hx(x*,v*)=2−1−12

∅(v)=minimizexL(x,v)

Substituting v* in the definition of φ(v) in Eq. (5.26), we get

φ = +
= +
=

f
f

f

v x v v h x v
x v h x

x

( *) [ ( ( *)) ( * ( ( *)))]
[ ( *) ( * ( *))]

( *)

i
i

	

(b)

which was to be proved.

∅(v*)=f[x(v*)]+{v*h[x(v*)]}=f(x
*)+[v*h(x*)]=f(x*)
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Solving Eqs. (d) and (e), we get x1 and x2 in terms of v, provided that

v4 1 02 − ≠	 (i)

and

x
v

v
x

v
v

12
4 1

,
6

4 1
1

2

2 2 2
=

−
=

−	
(j)

Substituting Eqs. (j) into Eq. (c), the dual function of Eq. (h) is given as

v
v v v

v
( )

4 4 80
(4 1)

3 5

2 2
φ =

+ −
−	

(k)

which is valid for v ≠ ±
1
2

. This φ(v) has a local maximum at v* = 1. Substituting v = 1 in Eqs. (j), we 

get the same solution as in Eqs. (f). Note that φ(v*) = − 8, which is the same as f * in Eq. (f).

5.5.2  Local Duality: The Inequality Constraints Case

Consider the equality/inequality-constrained problem.

Problem P
In addition to the equality constraints in Problem E, we impose inequality constraints:

g i mx( ) 0; 1 toi ≤ =	 (5.34)

The feasible set S for Problem P is defined as

|S h i p g j mx x{x ( ) 0, 1 to ; ( ) 0, 1 to }i j= = = ≤ =	 (5.35)

The Lagrangian function is defined as

L f v h u g

f u j m

x v u x

x v h u g

( , , ) ( )

( ) ( ) ( ); 0, 1 to

i i
i

p

j j
j

m

j

1 1

i i

∑ ∑= + +

= + + ≥ =
= =

	

(5.36)

The dual function for Problem P is defined as

L u j mv u
x

x v u( , ) minimize ( , , ); 0, 1 tojφ = ≥ =
	

(5.37)

The dual problem is defined as

φ ≥ =u j mv u v umaximize
, ( , ); 0, 1 toj

	
(5.38)

gi(x)≤0;  i=1 to m

S={x|hi
(x)=0,  i=1 to p;  gj(x)≤0, j=1 to m}

L(x,v,u)=f(x)+∑i=1pυihi+∑
j=1mujgj =f(x)+(vh)+(ug);

uj≥0, j=1 to m

∅(v,u)=minimizexL(x,v,u);  uj≥
0,  j=1 to m

maximizev,u∅(v,u);  uj≥0,  j=
1 to m

4υ2
−1≠0

x1=12υ24υ2
−1,  x2=6υ4υ2

−1

∅(υ)=4υ+4υ3
−80υ5(4υ2

−1)2

12
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THEOREM 5.5

Strong Duality Theorem
Let the following apply:

x* be a local minimum of Problem P.
x* be a regular point.
Hx(x*, v*, u*) be positive definite.
v*, u* be the Lagrange multipliers at the optimum point x*.

Then v* and u* solve the dual problem that is defined in Eq. (5.38) with f (x*) = φ(v*, u*) and 
x* = x(v*, u*).

If the assumption of the positive definiteness of Hx(x*, v*) is not made, we get the weak 
duality theorem.

THEOREM 5.6

Weak Duality Theorem
Let x be a feasible solution for Problem P and let v and u be the feasible solution for the dual 

problem that is defined in Eq. (5.38); thus, h i px( ) 0, 1 toi = = , and g u j mx( ) 0 and 0, 1 toj j≤ ≥ = . 
Then

fv u x( , ) ( )φ ≤	 (5.39)

Proof
By definition

since ui ≥ 0, gi(x) ≤ 0, and uigi = 0 for i = 1 to m; and hi(x) = 0, i = 1 to p.

hi(x)=0, i=1 to pgj(x)≤ 0 and uj ≥ 0, j=1  to m

∅(v,u)≤f(x)

Lv u
x

x v u( , ) minimize ( , , )φ = ∅(v,u)=minimizexL(x,v,u)

= + +f
x

x v h u gminimize [ ( ) ( ) ( )]i i
=minimizex[f(x)+(vh)+(ug)]

≤ + + ≤f fx v h u g x[ ( ) ( ) ( )] ( )i i
≤[f(x)+(vh)+(ug)]≤f(x)

From Theorem 5.5, we obtain the following results:

1.	 Minimum [f (x) with x ∈ S] ≥ maximum [φ(v, u) with ui ≥ 0, i = 1 to m].
2.	 If f (x*) = φ(v*, u*) with ui ≥ 0, i = 1 to m and x* ∈ S, then x* and (v*, u*) solve the primal 

and dual problems, respectively.
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3.	 If Minimum [f (x) with x ∈ S] = −∞, then the dual is infeasible, and vice versa (ie, if dual is 
infeasible, the primal is unbounded).

4.	 If Maximum [φ(v, u) with ui ≥ 0, i = 1 to m] = ∞, then the primal problem has no feasible 
solution, and vice versa (ie, if primal is infeasible, the dual is unbounded).

LEMMA 5.3

Lower Bound for Primal Cost Function
For any v and u with ui ≥ 0, i = 1 to m

fv u x( , ) ( *)φ ≤	 (5.40)

Proof
φ(v, u) ≤ maximum φ(v, u); ui ≥ 0, i = 1 to m

= + + ≥ =







f u i mv u x
x v h u gmaximize

,
minimize [ ( ) ( ) ( )]; 0, 1 toii i

∅(v,u)≤f(x*)

=maximizev,uminimizex[f(x)+(
vh)+(ug)];ui≥0,  i=1 to m

{ }= + + ≥ =f u i mv u x v u v h u gmaximize
, ( ( , )) ( ) ( ) ; 0, 1 toii i=maximizev,uf[x(v,u)]+(vh)+(u

g);  ui≥0, i=1 to m
f fx v u v h u g x( ( *, *)) ( * ) ( * ) ( *)i i= + + =f[x(v*,u*)]+(v*h)+(u*g)=f(x*)

Lemma 5.3 is quite useful for practical applications. It tells us how to find a lower bound 
on the optimum primal cost function. The dual cost function for arbitrary vi , i = 1 to p and 
ui ≥ 0, i = 1 to m provides a lower bound for the primal cost function. Also for any x ∈ S, f (x) 
provides an upper bound for the optimum cost function.

Saddle Points
Let L(x, v, u) be the Lagrange function. L has a saddle point at x*, v*, u* subject to ui ≥ 0, 

i = 1 to m if

L L Lx v u x v u x v u( *, , ) ( *, *, *) ( , *, *)≤ ≤	 (5.41)

holds for all x near x* and (v, u) near (v*, u*) with ui ≥ 0 for i = 1 to m.

L(x*,v,u)≤L(x*v*,u*)≤L(x,v*,u*)

THEOREM 5.7

Saddle Point Theorem
For Problem P let all functions be twice continuously differentiable and let L(x, v, u) be defined as

= + + ≥ =L f u j mx v u x v h u g( , , ) ( ) ( ) ( ); 0, 1 toji i	 (5.42)L(x,v,u)=f(x)+(vh)+(ug);             u
j≥0,  j=1  to m  
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See Bazarra et al. (2006) for proof of Theorem 5.7.

EXERCISES FOR CHAPTER 5

5.1	 Answer true or false.
1.	 A convex programming problem always has a unique global minimum point.
2.	 For a convex programming problem, KKT necessary conditions are also sufficient.
3.	 The Hessian of the Lagrange function must be positive definite at constrained 

minimum points.
4.	 For a constrained problem, if the sufficiency condition of Theorem 5.2 is violated, 

the candidate point x* may still be a minimum point.
5.	 If the Hessian of the Lagrange function at x*, ∇2L(x*) is positive definite, the optimum 

design problem is convex.
6.	 For a constrained problem, the sufficient condition at x* is satisfied if there are no 

feasible directions in a neighborhood of x* along which the cost function reduces.
5.2	 �Formulate the problem of Exercise 4.84. Show that the solution point for the problem is 

not a regular point. Write KKT conditions for the problem, and study the implication 
of the irregularity of the solution point.

5.3	 Solve the following problem using the graphical method:
Minimize f (x1, x2) = (x1 − 10)2 + (x2 − 5)2

subject to x1 + x2 ≤ 12, x1 ≤ 8, x1 − x2 ≤ 4
	 	 Show that the minimum point does not satisfy the regularity condition. Study the 

implications of this situation.

Solve the following problems graphically. Check necessary and sufficient conditions for candidate 
local minimum points and verify them on the graph for the problem.

5.4	 Minimize f (x1, x2) = 4x1
2 + 3x2

2 − 5x1x2 − 8x1

subject to x1 + x2 = 4
5.5	 Maximize F (x1, x2) = 4x1

2 + 3x2
2 − 5x1x2 − 8x1

subject to x1 + x2 = 4
5.6	 Minimize f (x1, x2) = (x1 − 2)2 + (x2 + 1)2

subject to 2x1 + 3x2 − 4 = 0
5.7	 Minimize f (x1, x2) = 4x1

2 + 9x2
2 + 6x2 − 4x1 + 13

subject to x1 − 3x2 + 3 = 0

Let L(x*, v*, u*) exist with ≥ =u i m0, 1 toi
* . Also let Hx(x*, v*, u*) be positive definite. Then x* sat-

isfying a suitable constraint qualification is a local minimum of Problem P if and only if (x*, v*, u*) 
is a saddle point of the Lagrangian; that is,

L L Lx v u x v u x v u( *, , ) ( *, *, *) ( , *, *)≤ ≤	 (5.43)

for all x near x* and all (v, u) near (v*, u*), with ui ≥ 0 for i = 1 to m.

u1*≥0,  i=1 to m

L(x*,v,u)≤L(x*,v*,u*)≤L(x,v*,
u*)
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5.8	 Minimize f (x) = (x1 − 1)2 + (x2 + 2)2 + (x3 − 2)2

subject to 2x1 + 3x2 − 1 = 0
	 x1 + x2 + 2x3 − 4 = 0

5.9	 Minimize f (x1, x2) = 9x1
2 + 18x1x2 + 13x2

2 − 4
subject to x1

2 + x2
2 + 2x1 = 16

5.10	 Minimize f (x1, x2) = (x1 − 1)2 + (x2 − 1)2

subject to x1 + x2 − 4 = 0
5.11	 Minimize f (x1, x2) = 4x1

2 + 3x2
2 − 5x1x2 − 8

subject to x1 + x2 = 4
5.12	 Maximize F (x1, x2) = 4x1

2 + 3x2
2 − 5x1x2 − 8

subject to x1 + x2 = 4
5.13	 Maximize F (x1, x2) = 4x1

2 + 3x2
2 − 5x1x2 − 8

subject to x1 + x2 ≤ 4
5.14	 Minimize f (x1, x2) = 4x1

2 + 3x2
2 − 5x1x2 − 8

subject to x1 + x2 ≤4
5.15	 Maximize F (x1, x2) = 4x1

2 + 3x2
2 − 5x1x2 − 8x1

subject to x1 + x2 ≤ 4
5.16	 Minimize f (x1, x2) = (x1 − 1)2 + (x2 − 1)2

subject to x1 + x2 ≥ 4
	 x1 − x2 − 2 = 0

5.17	 Minimize f (x1, x2) = (x1 − 1)2 + (x2 − 1)2

subject to x1 + x2 = 4
	 x1 − x2 − 2 ≥ 0

5.18	 Minimize f (x1, x2) = (x1 − 1)2 + (x2 − 1)2

subject to x1 + x2 ≥ 4
	 x1 − x2 ≥ 2

5.19	 Minimize f (x, y) = (x − 4)2 + (y − 6)2

subject to 12 ≥ x + y
	 x ≥ 6, y ≥ 0

5.20	 Minimize f (x1, x2) = 2x1 + 3x2 − x1
3 − 2x2

2

subject to x1 + 3x2 ≤ 6
	 5x1 + 2x2 ≤ 10
	 x1, x2 ≥ 0

5.21	 Minimize f (x1, x2) = 4x1
2 + 3x2

2 − 5x1x2 − 8x1

subject to x1 + x2 ≤ 4
5.22	 Minimize f (x1, x2) = x1

2 + x2
2 − 4x1 − 2x2 + 6

subject to x1 + x2 ≥ 4
5.23	 Minimize f (x1, x2) = 2x1

2 − 6x1x2 + 9x2
2 − 18x1 + 9x2

subject to x1 + 2x2 ≤ 10
	 4x1 − 3x2 ≤ 20; xi ≥ 0; i = 1, 2

5.24	 Minimize f (x1, x2) = (x1 − 1)2 + (x2 − 1)2

subject to x1 + x2 − 4 ≤ 0
5.25	 Minimize f (x1, x2) = (x1 − 1)2 + (x2 − 1)2

subject to x1 + x2 − 4 ≤ 0
	 x1 − x2 − 2 ≤ 0
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5.26	 Minimize f (x1, x2) = (x1 − 1)2 + (x2 − 1)2

subject to x1 + x2 − 4 ≤ 0
	 2 − x1 ≤ 0

5.27	 Minimize f (x1, x2) = 9x1
2 − 18x1x2 + 13x2

2 − 4
subject to x1

2 + x2
2 + 2x1 ≥ 16

5.28	 Minimize f (x1, x2) = (x1 − 3)2 + (x2 − 3)2

subject to x1 + x2 ≤ 4
	 x1 − 3x2 = 1

5.29	 Minimize f (x1, x2) = x1
3 − 16x1 + 2x2 − 3x2

2

subject to x1 + x2 ≤ 3
5.30	 Minimize f (x1, x2) = 3x1

2 − 2x1x2 + 5x2
2 + 8x2

subject to x1
2 − x2

2 + 8x2 ≤ 16
5.31	 Minimize f (x, y) = (x − 4)2 + (y − 6)2

subject to x + y ≤ 12
	 x ≤ 6
	 x, y ≥ 0

5.32	 Minimize f (x, y) = (x − 8)2 + (y − 8)2

subject to x + y ≤ 12
	 x ≤ 6
	 x, y ≥ 0

5.33	 Maximize F (x, y) = (x − 4)2 + (y − 6)2

subject to x + y ≤ 12
	 6 ≥ x
	 x, y ≥ 0

5.34	 Maximize F (r, t) = (r − 8)2 + (t − 8)2

subject to 10 ≥ r + t
	 t ≤ 5
	 r, t ≥ 0

5.35	 Maximize F (r, t) = (r − 3)2 + (t − 2)2

subject to 10 ≥ r + t
	 t ≤ 5
	 r, t ≥ 0

5.36	 Maximize F (r, t) = (r − 8)2 + (t − 8)2

subject to r + t ≤ 10
	 t ≥ 0
	 r ≥ 0

5.37	 Maximize F (r, t) = (r − 3)2 + (t − 2)2

subject to 10 ≥ r + t
	 t ≥ 5
	 r, t ≥ 0

5.38	 �Formulate and graphically solve Exercise 2.23 of the design of a cantilever beam 
using hollow circular cross-section. Check the necessary and sufficient conditions 
at the optimum point. The data for the problem are P = 10 kN; l = 5 m; modulus of 
elasticity, E = 210 GPa; allowable bending stress, σa = 250 MPa; allowable shear stress, 
ta = 90 MPa; and mass density, r = 7850 kg/m3; 0 ≤ Ro ≤ 20 cm, and 0 ≤ Ri ≤ 20 cm.
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5.39	 �Formulate and graphically solve Exercise 2.24. Check the necessary and sufficient 
conditions for the solution points and verify them on the graph.

5.40	 �Formulate and graphically solve Exercise 3.28. Check the necessary and 
sufficient conditions for the solution points and verify them on the graph.

Find optimum solutions for the following problems graphically. Check necessary and sufficient 
conditions for the solution points and verify them on the graph for the problem.

5.41	 �A minimum weight tubular column design problem is formulated in Section 2.7 
using mean radius R and thickness t as design variables. Solve the problem by 
imposing an additional constraint R/t ≤ 50 for the following data: P = 50 kN, 
l = 5.0 m, E = 210 GPa, σa = 250 MPa, and r = 7850 kg/m3.

5.42	 �A minimum weight tubular column design problem is formulated in Section 2.7 
using outer radius Ro and inner radius Ri as design variables. Solve the problem by 
imposing an additional constraint 0.5(Ro + Ri)/(Ro − Ri) ≤ 50. Use the same data as 
in Exercise 5.41.

5.43	 Solve the problem of designing a “can” formulated in Section 2.2.
5.44	 Exercise 2.1

*5.45	 Exercise 3.34
*5.46	 Exercise 3.35
*5.47	 Exercise 3.36
*5.48	 Exercise 3.54

5.49	 Answer true or false.
1.	 Candidate minimum points for a constrained problem that do not satisfy second-

order sufficiency conditions can be global minimum designs.
2.	 Lagrange multipliers may be used to calculate the sensitivity coefficient for 

the cost function with respect to the right side parameters even if Theorem 4.7 
cannot be used.

3.	 Relative magnitudes of the Lagrange multipliers provide useful information for 
practical design problems.

5.50	 �A circular tank that is closed at both ends is to be fabricated to have a volume of 
250p m3. The fabrication cost is found to be proportional to the surface area of 
the sheet metal needed for fabrication of the tank and is $400/m2. The tank is to 
be housed in a shed with a sloping roof which limits the height of the tank by 
the relation H ≤ 8D, where H is the height and D is the diameter of the tank. The 
problem is formulated as minimize f (D, H) = 400(0.5p D2 + p DH) subject to the 
constraints

π π=D H
4

2502 , and H ≤ 8D. Ignore any other constraints.
1.	 Check for convexity of the problem.
2.	 Write KKT necessary conditions.
3.	 Solve KKT necessary conditions for local minimum points. Check sufficient 

conditions and verify the conditions graphically.
4.	 What will be the change in cost if the volume requirement is changed to 255p m3 in 

place of 250p m3?
5.51	 �A symmetric (area of member 1 is the same as area of member 3) three-bar truss 

problem is described in Section 2.10.

π4D2H=250π
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1.	 Formulate the minimum mass design problem treating A1 and A2 as design variables.
2.	 Check for convexity of the problem.
3.	 Write KKT necessary conditions for the problem.
4.	 Solve the optimum design problem using the data: P = 50 kN, u = 30°, r = 7800 kg/m3, 

σ a = 150 MPa. Verify the solution graphically and interpret the necessary conditions 
on the graph for the problem.

5.	 What will be the effect on the cost function if σa is increased to 152 MPa?

Formulate and solve the following problems graphically; check necessary and sufficient conditions 
at the solution points; verify the conditions on the graph for the problem and study the effect of varia-
tions in constraint limits on the cost function.

5.52	 Exercise 2.1
5.53	 Exercise 2.3
5.54	 Exercise 2.4
5.55	 Exercise 2.5
5.56	 Exercise 2.9
5.57	 Exercise 4.92
5.58	 Exercise 2.12
5.59	 Exercise 2.14
5.60	 Exercise 2.23
5.61	 Exercise 2.24
5.62	 Exercise 5.41
5.63	 Exercise 5.42
5.64	 Exercise 5.43
5.65	 Exercise 3.28
5.66	 Exercise 3.34

*5.67	 Exercise 3.35
*5.68	 Exercise 3.36
*5.69	 Exercise 3.39
*5.70	 Exercise 3.40
*5.71	 Exercise 3.41
*5.72	 Exercise 3.46
*5.73	 Exercise 3.47
*5.74	 Exercise 3.48
*5.75	 Exercise 3.49
*5.76	 Exercise 3.50
*5.77	 Exercise 3.51
*5.78	 Exercise 3.52
*5.79	 Exercise 3.53
*5.80	 Exercise 3.54
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