Powertrain Component Modeling

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © 2019 Computational Design Lab. All rights reserved.

CONTENTS

- Powertrain Library
- Clutch
- Engine
- Gear / Transmission
- Drag Force
- Driver Controller
- Assignment

CAE

POWERTRAIN LIBRARY

Library tree

Search:

Name

4

Description

fluid data

Library Items - Powertrain/All

- Electrochemistry Components
- Fuel Cell
 - 🛒 Powertrain
 - 🝥 tr_fluid_data
 - 🔺 🚞 All
 - 🛞 tr_fluid_data
 - 📋 zeroforcesource
 - 🔔 zerospeedsource
 - Zerotorquesource
 - 🛄 zeroomegasource
 - 👌 torquecon
 - 🗄 omegacon
 - 🖕 rotary2signal1
 - 🖕 rotary2signal2
 - 🎙 masscon
 - 🔹 zeromfsource
 - shaft

fluid d															
zero f	ø	æ:	d zerofor…	ernsn…	Zerotor…	Zeroom…	E I		(≋⊢)	(≋⊢)	Ê	¢ zeromf…		Ĩ	
zero l		tr_fluid	LOIDIOI	Loloop	2010(01	20100111		omega…	rotary2s…	rotary2s…	masscon	Loronn	shaft	L link	
zero t	Î	Ē			<u>+11</u> 1.1↓_1.1	222 000 222	.		. +	<u>n I</u>			<u>n I.</u>		
zero a	l link4ports	univers…	clearan…	freewheel		reducer	gear_3p	gear_3p…	gear_4p	idle_ge…	half_sv…	synchr…	idle_ge…	gear_4p	
null to	<u>al</u>	<u>nl]+-</u>	<u>al</u>	<u>al</u> .+-	-⊐+⊐- -√‡	-			j =t	JTL	<u>j ľ</u>	<u></u>	J.		
null to	idle_ge…	idle_ge…	idle_ge…	idle_ge…	dear_lo	bevel_g…	planetq	planetq	planets…	planets…	planetri…	planetri···	- 관립 ravigne…	TLLT dif	
conve	1	ħ				Ť	Ť	m	I		j.	h	m		
conve	diff2port	diftrb	center	lpart_ro…	2parts_r···	band_br…	band_br…	nulti_di…	nulti_di…	multi_di…	multi_di…	main_cl···	main_cl···	DMF	
]]	->™			*		ļ.		878)78					
zeru i rotaru	Lindexati		dynami…	converter	convert		reducerv	reducer…	seal	seal_th	journalb…	journalb…	bearing	bearing_th	
iiiiai v											<u>¢</u>	Â	部		
	↑ IEI← bearingl…	↑ IEII← bearingl…	seal4ports	s seal4po…	journalb…	journalb…	bearing…	bearing…	↑ IEI ← bearing…	ti≣i← bearing…	eontact	J ball fork	LT	TORK2SIG…	
				<u>afdanan</u> s	<u></u>		÷)î⊧	ê							
	TORK5por…	circular…	torqueli	rack2	screw_nut	Ψ	cam2	car2	veh1D	veh1D	veh1D	trai1D_1ax	trai1D_2ax	trai1D_3ax	
	1000				Ô		â		₩		ЛÅ	Ē	Ŕ	<u> </u>	
	veh2D	veh2D	veh2D	veh2D	2Dfarce	pimtoza		wheel t	adhere	Road	<u>IF</u>	国 I I I I I I I I I I I I I		duparni	
	Ĥ		1	Å	1junctio		th plug	A land		(Eq.	Eq			
	duparoi			ů,		dupami	arthiað	th_temp…	3dto 1 do	modal	shaft_ei1	shaft_ei2	link el	Toor Source	
		Figines	engines	engmo… ≑≞Ĩ		uynami…							IIIIK_EI	gear_op…	
		<u>T</u>		- "											

CLUTCH

$$F_{fric} = F_{dyn} \times \tanh\left(2 \times \frac{\omega_{rel}}{d\omega}\right)$$

Parameters of 2parts_rot_friction_new [FR2R000-1]		
Title	Value	Unit
signal input: 1 fraction (0,1) of max, 2 normal force N 3 friction torque	1	
- option 1: maximum Coulomb (dynamic) friction torque	100	l Nm
 option 2: Coulomb (dynamic) friction coefficient option 2: diameter on which friction acts rotary stick velocity threshold 	0, 1 100 1	null mm rev/min

Parameters of signal03 [UD00-1]				
🛛 🛃 🛛 🕢				
Title	Value	Unit		
number of stages	3			
cyclic	no			
time at which duty cycle starts	0	s		
output at start of stage 1	0	null		
output at end of stage 1	0	null		
duration of stage 1	3	s		
output at start of stage 2	0	null		
output at end of stage 2	1	null		
duration of stage 2	1	s		
output at start of stage 3	1	null		
output at end of stage 3	1	null		
uration of stage 3	1e+06	s		

J1, J2 parameter 입력 clutch, act. profile parameter 입력

클러치 모델 구성

Run 및 J1, J2 속도 확인 (Run Parameters에서 Print interval 0.001로 setting)

CAE

CLUTCH

CLUTCH

CAE

CLUTCH

Min step size:

auto

전체 system 구성 የrad/s → RPM 변경 parameter 입력 Run 및 J1, J2 속도 확인 (Solver Parameters에서 Max step size 0.001로 변경)

- Simscape Multibody

CAE

ENGINE

이전에 구성한 clutch model에서 Act. profile 부 분 변경 (입력으로 받도록..)

clutch subsystem 생성

T1 🕽

T2)

GEAR

GEAR

rigid shaft 모델 구성 (기존

TRANSMISSION

Rotary Mechanical Node

전체 모델 구성

TRANSMISSION

Copyright © 2019 Computational Design Lab. All rights reserved.

2-speed TM

Engine RPM

Copyright © 2019 Computational Design Lab. All rights reserved.

CAE

DRAG FORCE

$$F_{air} = \frac{1}{2} C_d A_{fr} \rho_{air} V_{veh}^2$$
$$F_{roll} = \mu_r m_{body} g$$
$$F_c = m_{body} g \sin \theta_{grad}$$

$$F_{acc} = ma = J_{eq} \alpha_{whl} R_{tire}$$

powertrain library 내 vehicle model 제공

longitudinal외 vertical, pitch현상 같이 표현 (입력변수 많음, 생략)

Real parameters

	Title	Variable name	Unit	Default value
1	carbody mass (including engine block)	mvehi	kg	1500
2	carbody pitch inertia (including engine block)	J	kgm**2	800
3	total unsprung mass at front	smassF	kg	40
4	total unsprung mass at rear	smassR	kg	40
5	X-position of carbody COG (Grid Frame, including engine block)	xcgp	mm	1000
6	Z-position of carbody COG (Grid Frame, including engine block)	zcgp	mm	250
7	X-position of rear wheel axis (Grid Frame)	xe	mm	2400
8	Z-position of rear wheel axis (Grid Frame)	ze	mm	0
9	Cx - drag coefficient in longitudinal direction	Cx	null	0.3
10	Cz - drag coefficient in vertical direction	Cz	null	0
11	Cm - drag coefficient for pitch	Cm	null	0
12	Sx - frontal area	Sx	m**2	1
13	air density	rhoair	kg/m**3	1.226
14	X-position of engine COG (Grid Frame)	Xeng	mm	1000
15	Z-position of engine COG (Grid Frame)	Zeng	mm	250
16	pitch inertia of engine at engine COG	Jeng	kgm**2	50
17	engine mass	Meng	kg	120
18	X-position of the COR (Grid Frame)	Xrefg	mm	0
19	Z-position of the COR (Grid Frame)	Zrefg	mm	0
20	Z-position of front wheels centers (Road Frame)	Zo	m	0.3
21	windage coefficient in longitudinal direction	rwvehx	N/(m/s)**2	0.6
22	windage coefficient in vertical direction	rwvehz	N/(m/s)**2	0
23	windage coefficient for pitch	rwvehy	N/(m/s)**2	0

DRAG FORCE

DRAG FORCE

🍟 Run 및 결과 확인(20 s)

Copyright © 2019 Computational Design Lab. All rights reserved.

Title	Value		Unit
🝘 dummy state variable for estimati…		0	1/s
🛞 integral part		0	null
controller type	8	PID	
limit output 🛛 🎬	8	ΠO	
proportional gain		1	null
integral gain 🛛 🤍		0	null
derivative gain		0	null
time constant for first order lag used t \cdots		0,001	null

2 요구 속도, 실제 속도 확인 error값 확인

Kp=1, Ki=0, Kd=0

Copyright © 2019 Computational Design Lab. All rights reserved.

FULL VEHICLE MODEL

ASSIGNMENT

Electric Power System Modeling : Battery & Simple Motor (by Simulink)

1. Reference Model (AMESim)

1 T motor = 100 Nm (2) $J_motor = 100 \text{ kgm}^2$

Battery		F	(
ameters of drv_battery_2 [DRVBAT03-1]			
		1	
le	Value	Unit 2	2
ø potential at port 2	122	V 3	
e state of charge at port 4	50	% [1
number of cells in series per battery bank	1	F	
number of battery banks in parallel	1		
discontinuity bandling	I activo	t	
tables denendencies	state of charge (SOC)	7	Ì
rated capacity of the battery	108.3	Ah 8	
voltage time constant	0.5	s c	
filename for open circuit voltage (for one cell) [\cdots	CAE/ocv.data		1
filename for internal resistance (for one cell) [\cdots]	CAE/resistance.data	1 P	
		- 1	ł

80

Resistance						
Format: 1D Table [🛅 되						
	X1	γ				
1	0	0,075				
2	10	0,065				
3	20	0,057				
4	30	0,056				
5	40	0,053				
6	50	0,052				
7	60	0,051				
8	70	0,05				
9	80	0,05				
10	90	0,05				
11	100	0,05				

Resistance

Motor

Parameters of drv_electricmotortherm [DRVELMT0A-1]

3 🔤 💁 🥑		
Title	Value	Unit
motor torque at port 2	0	Nm
data type for electric motor modeling	constant values	
time constant to determine the torque	0, 1	s
maximum power	15000	W
maximum torque	150	Nm
mean efficiency	1	null
maximum rotary velocity	8000	rev/min

 $R_{in}(SOC)$

Copyright © 2019 Computational Design Lab. All rights reserved.

ASSIGNMENT

2. SOC calculation

$$V_{bat} = V_{OCV} - R_{in}I_{bat}$$

- V_{hat} : battery volatage [V]
- V_{OCV} : open circuit voltage [V]
- R_{in} : equivalent internal resistance [Ω]

※ Result (Simulation Time : 100 s)

 I_{hat} : battery current [A]

Motor Tq. = 100 (-)

$$SOC = SOC_{ini} - \frac{100}{C_{nom}} \int I_{bat} dt$$

SOC : state of charge [%] C_{nom} : rated capacity [As]

$$W_{motor} = T\omega = VI$$
 (without losses)

nom

Mechanical Energy : $W = T\omega$ Electrical Energy : W = VI

Unit

99.9 rad/

	•→ TÇ=		
	Title	🕘 Value	U
\square	input voltage	117.486	۷
+ . –	input current	85.0314	А

rotor relative rotary velocity

\rightarrow \sim		
Title	🕘 Value	Unit
potential at port 1	0	٧
current at port 1	85.0314	A
potential at port 2	117.486	٧
current at port 2	-85.0314	A
open circuit voltage at port 3	121.892	٧
state of charge at port 4	48.9248	%
depth of discharge	51.0752	%
charge used by the load	1.16448	Ah

Mechanical Energy : $W_{mec} = Tw = 100 \times 99.9 = 9990 W$ Electrical Energy : $W_{elec} = VI = 117.49 \times 85.03 = 9990 W$ SOC: $SOC = SOC_{initial} - \int I \, dt \bullet \frac{100}{C_{nom}} [\%]$ $= 50 - 4192.02 \frac{100}{108.3 \times 3600} = 48.925 \%$