Solid Mechanics (plane stress/strain)

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © 2019 Computational Design Lab. All rights reserved.

- Stiffness matrix of Turner triangle
- 2D plane stress model
 - ✓ Kirsh's problem
- Quarter model

PLANE STRESS

PLANE STRESS

The plane stress variant of the 2D interface is useful for analyzing thin in-plane loaded plates. For a state of plane stress, the out-of-plane components of the stress tensor are zero.

Figure 14-2: Plane stress models plates where the loads are only in the plane; it does not include any out-of-plane stress components.

The 2D interface for plane stress allows loads in the x and y directions, and it assumes that these are constant throughout the material's thickness, which can vary with x and y. The plane stress condition prevails in a thin flat plate in the xy-plane loaded only in its own plane and without any z direction restraint.

PLANE STRAIN

PLANE STRAIN

The plane strain variant of the 2D interface that assumes that all out-of-plane strain components of the total strain ε_z , ε_{yz} , and ε_{xz} are zero.

Figure 14-3: A geometry suitable for plane strain analysis.

Loads in the x and y directions are allowed. The loads are assumed to be constant throughout the thickness of the material, but the thickness can vary with x and y. The plane strain condition prevails in geometries, whose extent is large in the z direction compared to in the x and y directions, or when the z displacement is in some way restricted. One example is a long tunnel along the z-axis where it is sufficient to study a unit-depth slice in the xy-plane.

$$\begin{cases} \varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \nu \left(\sigma_{y} + \sigma_{z} \right) \right] \\ \varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - \nu \left(\sigma_{z} + \sigma_{x} \right) \right] \xleftarrow{G = \frac{E}{2(1+\nu)}} \\ \varepsilon_{z} = \frac{1}{E} \left[\sigma_{z} - \nu \left(\sigma_{x} + \sigma_{y} \right) \right] \end{cases} \begin{cases} \gamma_{yy} = \frac{1}{G} \tau_{yz} \\ \gamma_{zx} = \frac{1}{G} \tau_{zx} \end{cases}$$
plane stress $\left(\sigma_{zz} = \sigma_{xz} = \sigma_{yz} = 0 \right)$: $\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} = \frac{E}{1-\nu^{2}} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \begin{bmatrix} e_{xx} \\ e_{yy} \\ 2e_{xy} \end{bmatrix}$
plane strain $\left(e_{zz} = e_{xz} = e_{yz} = 0 \right)$: $\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} = \frac{E}{(1+\nu)(2-\nu)} \begin{bmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & 0 & \frac{1}{2}(1-2\nu) \end{bmatrix} \begin{bmatrix} e_{xx} \\ e_{yy} \\ 2e_{xy} \end{bmatrix}$

CAE

- <u>Stiffness matrix of Turner triangle</u>
- 2D plane stress model
 - ✓ Kirsh's problem
- Quarter model

TURNER TRIANGLE (1)

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} E_{11} & E_{12} & E_{13} \\ E_{12} & E_{22} & E_{23} \\ E_{13} & E_{23} & E_{33} \end{bmatrix} \begin{bmatrix} e_{xx} \\ e_{yy} \\ 2e_{xy} \end{bmatrix} = \mathbf{E} \mathbf{e}$$

$$\mathbf{K}^{e} = A h \mathbf{B}^{T} \mathbf{E} \mathbf{B} = \frac{h}{4A} \begin{bmatrix} y_{23} & 0 & x_{32} \\ 0 & x_{32} & y_{23} \\ y_{31} & 0 & x_{13} \\ 0 & x_{13} & y_{31} \\ y_{12} & 0 & x_{21} \\ 0 & x_{21} & y_{12} \end{bmatrix} \begin{bmatrix} E_{11} & E_{12} & E_{13} \\ E_{12} & E_{22} & E_{23} \\ E_{13} & E_{23} & E_{33} \end{bmatrix} \begin{bmatrix} y_{23} & 0 & y_{31} & 0 & y_{12} & 0 \\ 0 & x_{32} & 0 & x_{13} & 0 & x_{21} \\ x_{32} & y_{23} & x_{13} & y_{31} & x_{21} & y_{12} \end{bmatrix}.$$

CAE

TURNER TRIANGLE (2)

$$E_{0} = 60, v = 0.25, h = 1$$

$$E_{\text{plane stress}} = \begin{bmatrix} 64 & 16 & 0\\ 16 & 64 & 0\\ 0 & 0 & 24 \end{bmatrix} \quad E_{\text{plane strain}} = \begin{bmatrix} 72 & 24 & 0\\ 24 & 72 & 0\\ 0 & 0 & 24 \end{bmatrix}$$

 $\mathbf{K}\mathbf{e}_{\text{plane stress}} = \begin{bmatrix} 11 & 5 & -10 & -2 & -1 & -3 \\ 5 & 11 & 2 & 10 & -7 & -21 \\ -10 & 2 & 44 & -20 & -34 & 18 \\ -2 & 10 & -20 & 44 & 22 & -54 \\ -1 & -7 & -34 & 22 & 35 & 15 \\ 3 & -21 & 18 & -54 & -15 & 75 \end{bmatrix} \quad \mathbf{K}\mathbf{e}_{\text{plane strain}} = \begin{bmatrix} 12 & 6 & -12 & 0 & 0 & -6 \\ 6 & 12 & 0 & 12 & -6 & -24 \\ -12 & 0 & 48 & -24 & -36 & 24 \\ 0 & 12 & -24 & 48 & 24 & -60 \\ 0 & -6 & -36 & 24 & 36 & -18 \\ -6 & -24 & 24 & -60 & -18 & 84 \end{bmatrix}$

CAE

ENVIRONMENT SETTING

 Itome Definitions Geometry Materials Physics Mesh Study Results Developer Science Studies Sold Pre-Tension Eigenfrequency Frequency-Domain Frequency-Domain Modal Linear Buckling Moda Reduced Order Model Moda Reduced Order Model Moda Reduced Analysis, Eigenfrequency Prestressed Analysis, Frequency Domain Frequency Domain Frequency Domain Mode Reduced National In the Stationary Study is used the compute the steady flow and pressure fields. In chemical species transport, it is used to compute the steady flow and pressure fields. In chemical species transport, it is used to compute the steady flow and pressure fields. In chemical species transport, it is used to compute the steady flow and pressure fields. In chemical composition at equilibrium of a reacting system. It is used to compute the temperature solutions, such as a number of load cases, or to track the nonlinear response to a slowly varying load.
elect Study complexe transformer image: Stationary
Ided study: Stationary ided physics interfaces: Solid Mechanics (solid) Physics Physics Idel Not Concel

Dimension : 2D
 Physics :
 Structural Mechanics
 → Solid Mechanics
 Study : Stationary

Done 클릭

DISCRETIZATION

Solid Mechanics 클릭

Discretization 메뉴에서 Displacement field를 Linear로 변경

GEOMETRY CREATION

Bezier Polygon을 이용하여 삼각형 기하형상 생성 Seg. 1 : (0,0),(2,2) Seg. 2 : (2,2),(3,1)

MATERIAL PROPERTY

Linear Elastic Material 클릭

물성치 입력 E: 60 mu: 0.25 rho : 0

Free Triangular 클릭

MESH

Free Triangular 마우스 우클릭

Distribution 클릭

Table 1

0

-6

-36

24

36

-18

0.0000 -6.0000

-6.0000 -24.000

-6

-24

24

-60

-18

84

STIFFNESS MATRIX

- Stiffness matrix of Turner triangle
- <u>2D plane stress model</u>
 - ✓ Kirsh's problem
- Quarter model

CAE

KIRSCH'S PROBLEM: THEORY

Infinite plate containing a circular hole (Kirsh, G. (1898), V.D.I., 42, 797-807)

for r = R:

$$\begin{aligned} \sigma_r &= 0\\ \sigma_\theta &= \sigma \left(1 - 2\cos 2\theta \right) \\ \sigma_{r\theta} &= 0 \end{aligned} \right\} \rightarrow \begin{cases} \max: \ \sigma_\theta &= 3\sigma \ @ \ \theta = \frac{\pi}{2}, \frac{3\pi}{2} \\ \min: \ \sigma_\theta &= -\sigma \ @ \ \theta = 0, \pi \end{aligned}$$

stress concentration factor = 3 independent of *R* solution applicable to finite plates with width > 4R

Consider portion of plate within concentric circle of radius $R' \gg R$ so that stress field is not perturbed by hole (Saint-Venant's Principle)

stress field at
$$r = R'$$
 (Mohr's cirle):
$$\begin{cases} \sigma_r = \frac{\sigma}{2} (1 + \cos 2\theta) \\ \sigma_{r\theta} = -\frac{\sigma}{2} \sin 2\theta \end{cases}$$

solution:
$$\begin{cases} \sigma_r = \frac{\sigma}{2} \left(1 - \frac{R^2}{r^2} \right) + \frac{\sigma}{2} \left(1 + 3\frac{R^4}{r^4} - 4\frac{R^2}{r^2} \right) \cos 2\theta \\ \sigma_{\theta} = \frac{\sigma}{2} \left(1 + \frac{R^2}{r^2} \right) - \frac{\sigma}{2} \left(1 + 3\frac{R^4}{r^4} \right) \cos 2\theta \\ \sigma_{r\theta} = -\frac{\sigma}{2} \left(1 - 3\frac{R^4}{r^4} + 2\frac{R^2}{r^2} \right) \sin 2\theta \end{cases}$$

KIRSCH'S PROBLEM: FEM

- 2D approximation
 - Plane stress
 - Plane stain
- Material Properties
 - $E = 200 \times 10^9$
 - v = 0.3
- Element Properties
 - Thickness = 1?
- Loads: $\sigma_0 = 1$
- BCs: none

CAE

Structural Mechanics → Solid Mechanics Study : Stationary

ENVIRONMENT SETTING

Image: Note of the second s	Developer Y is used when field variables do not change over nagnetics, it is used to compute static electric or ell as direct currents. In heat transfer, it is used to ature field at thermal equilibrium. In solid to compute deformations, stresses, and strains at mical species transport, it is used to compute a direct currents. In heat unafter, its used to ature field as birect transfer, it is used to compute e the chemical composition at equilibrium of a compute several solutions, such as a number of load nonlinear response to a slowly varying load.	Dir Ph Str → Stu Do	nension : 2D ysics : uctural Mechar Idy : Stationa ne 클릭
C Physics			
? Help 🗴 Cancel 🗹 Done			
776 MB 926 MB			
		1	

Copyright © 2019 Computational Design Lab. All rights reserved.

PLANE STRESS

DISCRETIZATION

Discretization Displacement field를 Linear로 변경

GEOMETRY CREATION

GEOMETRY CREATION

Copyright © 2019 Computational Design Lab. All rights reserved.

CAE

GEOMETRY CREATION

Geometry 오른쪽 클릭 → Booleans and Partitions → Difference 클릭

CAE

GEOMETRY CREATION

GEOMETRY CREATION

위쪽 Geometry tab에서 line 메뉴를 이용

왼쪽 마우스 클릭으로 선분 4개 생성(오른쪽 클릭: 완료)

MATERIAL PROPERTY

BOUNDARY CONDITION

사각형 내부 4개 변을 Roller 조건으로 입력

LOADING CONDITION

Boundary Load 생성

⁹ 오른쪽 두 변에 x 방향 1 입력 (단위는 N/m²임)

LOADING CONDITION

Boundary Load 생성

오른쪽 두 변에 x 방향 -1 입력 (단위는 N/m²임)

MESH

MESH

Mesh 우클릭 → Statistics 클릭

요소 개수, DOF, Quality 분포 정보 등을 보여줌

Copyright © 2019 Computational Design Lab. All rights reserved.

2D/3D BAD ASPECT RATIO ELEMENT

- "thin" structures modeled as continuous bodies
 - Elongated or "skinny" element
- Aspect ratio
 - Ratio between its largest and smallest dimension
 - > 3: caution
 - > 10: alarm

MESH

Mesh 우클릭 → Plot 빨간색에 가까운 요소는 정삼각형에 가까운 요소 (Quality가 1에 가까움) 파란색에 가까운 요소는 정삼각형과 먼 요소 (Quality가 1에서 멀어짐) compute를 클릭하여 해석 수행

POST-PROCESSING

Results → Stress(solid) 클릭 Color Legend에서 Show maximum and minimum values 체크

2 Surface 클릭후 Expression을 "solid.sx"(normal stress)로 변경 후 plot

최대 수직 응력은 원에 접하 는 부분에서 약 2.59 Pa

- Expression
- Expression:
- solid.sx
- .

MESH REFINEMENT

MESH REFINEMENT

Copyright © 2019 Computational Design Lab. All rights reserved.

CAE

QUADRILATERAL ELEMENT

Copyright © 2019 Computational Design Lab. All rights reserved.

- Stiffness matrix of Turner triangle
- 2D plane stress model
 - ✓ Kirsh's problem
- Quarter model

CAE

SYMMETRY CONDITION

PLANE STRESS

DISCRETIZATION

Discretization Displacement field를 Linear로 변경

GEOMETRY CREATION

¼ 모델 기하형상 생성

길이 20의 정사각형에서 반경 2.5인 원을 뺌

Copyright © 2019 Computational Design Lab. All rights reserved.

MATERIAL PROPERTY

BOUNDARY CONDITION

사각형 왼쪽과 아래 변에 Roller 조건으로 입력

LOADING CONDITION

RESULT

Mesh 생성 후 해석 Full model결과와 비교

응력, 자유도 수 확인

ASSIGNMENT

2. [Stress concentration] The following flat bar with hole has a thickness of 1 m. (left side is fixed. Set the

2016년 기말고사 2번 문제(40점)

element type following discretization option.)+

※ Full Model 해석조건

(1) Compute the maximum normal stress(<u>solid.sx</u>) with r = 0.5 m. Check the stress by mesh dependency applying free triangular and quad elements(linear). Plot the graph as <u>doof</u> vs stress changing mesh size with two cases.(mesh option : normal ~ extremely fine) (15 pts).

- (2) Compute the value of K changing the <u>radius(0.2</u> ~ 0.5 m). Compare the value of K on table with computing result from FEM. (mesh option : quad & extremely fine) (15 pts)+^j
- (3) Construct the quarter model and check the maximum stress with r = 0.5 m. Compare the quarter model with full model. (10 pts)⁴