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Classification (2)
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What is a Finite Element?

• Archimedes’ problem (circa 250 BC): rectification of 
the circle as limit of inscribed regular polygons
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Physical FEM
model-based simulation of physical systems

Model updating
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Mathematical FEM
numerical approximation to mathematical problems
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Synergy of Physical and Mathematical FEM

(intermediate levels omitted)
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Idealization Process for a Simple Structure
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Physical Interpretation

• Breakdown (disassembly, tearing, partition, 
separation, decomposition) of structural system into 
components (elements) and reconstruction by the 
assembly process

• Mechanical response of an element is characterized 
in terms of a finite number of degrees of freedom
– DOF: values of the unknown functions as a set of node 

points
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Mathematical Interpretation

• Numerical approximation of a boundary value 
problem by Ritz-Galerkin discretization with functions 
of local support

• geometry of Ω is only approximated by that of ∪Ω(e)

• unknown function (or functions) is locally 
approximated over each element by an interpolation 
formula
– shape functions: states of the assumed unknown function(s) 

determined by unit node values
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• Divide the solution domain into simply shaped 
regions or elements

• Develop an approximate solution for the PDE for 
each element

• Generate total solution by linking together, or 
“assembling,” the individual solutions taking care to 
ensure continuity at the interelement boundaries
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Finite Element Method
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Discretization
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Element Equations

• Must choose an appropriate function with unknown 
coefficients that will be used to approximate the 
solution.

• Evaluation of the coefficients so that the function 
approximates the solution in an optimal fashion

• Choice of Approximation Functions:
– For one dimensional case the simplest case is a first-order 

polynomial:

• Obtaining an Optimal Fit of the Function to the 
Solution
– Most common approaches are the direct approach, the 

method of weighted residuals, and the variational approach
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• Mathematically, the resulting element equations will 
often consists of a set of linear algebraic equations 
that can be expressed in matrix form:
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an element property or stiffness matrix

a column vector of unknowns at the nodes

a column vector reflecting the effect of any external influences applied at the nodes
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