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General Concepts

« Derivative(or gradient)-based search methods
— estimate an initial design
— improve it iteratively, until optimality conditions are satisfied

Unconstrained optimization

One-dimensional or line Multidimensional problems
search problems To find points x* to minimize
To find a scalar o™ to minimize a function f(x) = f(x4, Xo, ..., X,)

a function f()
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Why Numerical Method ?

e Analytical method — Numerical method

« # of design variables and constraints can be large.
— Necessary conditions — a large number of equations

— Functions for the design problem (cost and constraint) can
be highly nonlinear.

e Cost and/or constraint functions can be implicit in
terms of design variables.

o Search for the general purpose code through the
Internet to minimize developing your own code
— Appendix B, https://neos-guide.org/
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Advantages of Numerical Optimization

 Reduce the design time

— When the same computer program can be applied to many
design projects

* Provide a systematized logical design procedure

« Deal with a wide variety of design variables and
constraints

* Yield some design improvement
* Not biased by intuition or experience in engineering

 Require a minimal amount of human-machine
Interaction
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Limitations of Numerical Optimization

* Increased computational time as the number of
design variables increases (ill-conditioned?)

* No stored experience or intuition

« Misleading results if the analysis program is not
theoretically precise

 Difficulty in dealing with discontinuous functions and
highly nonlinear problems

« Seldom be guaranteed that the optimization algorithm
will obtain the global optimum design

« Significant reprogramming of analysis routines for
adaptation to an optimization code
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Nonlinear Optimization

« Unlike for linear problems, a global optimum for a
nonlinear problem cannot be guaranteed, except for
special cases, e.g., if you know the space is unimodal,
or convex, or monotonicity exists

 Two standard heuristics that most people use:
— Find local extrema starting from widely varying starting
points of variables and then pick the most extreme of these
extrema

— Perturb a local extremum by taking a finite amplitude step
away from it, and then see whether your routine returns you
to a better point or “always” to the same one

— Question: How would you “automate” a search for a global
extremum?
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Basic Steps in Nonlinear Optimization

 Inits simplest form, a numerical search procedure
consists of four steps when applied to unconstrained
minimization problem:

— (1) Selection of an initial design in the n-dimensional space,
where n is the number of design variables

— (2) A procedure for the evaluation of the objective function at
a given point in the design space

— (3) Comparison of the current design with all of the
preceding designs

— (4) A rational way to select a new design and repeat the
process

— Constrained optimization requires step for evaluation of
constraints as well. Same applies for evaluating multiple
objective functions
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Nonlinear Optimization Process

 Most design tasks seek to find a perturbation to an
existing design which will lead to an improvement.
Thus we seek a new design which is the old design
plus a change
— Xnew = Xold + X
e Optimization algorithms apply a two step process :
— XK+ = XK + o d®
— You have to provide an initial design X©

— The optimization will then determine a search direction d®)
that will improve the design

— How far we can move in direction d® — one-dimensional
search to determine the scalar o, to improve the design
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General Algorithm

reasonable starting design x©@ , k=0

compute a search direction d®

A

calculate a step size o,

Calculate a new design x**D = x® + ¢, d® | k = k+1
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Descent Direction

« Desirable direction of design change in the iterative
process: directions of descent for the cost function

e Descent condition

F(x% )< £(x®)

X6 = x4 g g

F(x® 4+, d® )< £(x®)

linear Taylor series expansion

£ (X )+ e, (VE(x®)-d® )< £(x®)
a, (Vf (x("))-d(k))< 0 [e >0]

Vi (x)-d% <0

vt (x)

X +Xp )

Ex. f(x)=x7—xX, +2x," —2x, +¢€'
d = (1,2)at the point (0,0) is a decent direction?
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Gradients Evaluation (1)

 Finite Differences
— Forward difference

' f(x,) 2 ' fa)-f(x)  f7(x)
f(Xi+l): f(Xi)+f (Xi)(xi+1h_xi)+ ol (Xi+lh_xi) toooo f (Xi): h + > h+-.

— Backward difference

' f(x,) 2 ' fx)=f(xq), f'(x)
f(xi—l): f(xi)+ f (Xi)(xi—l_xi)+T(Xi—l_Xi) +eeo f (Xi): 0 + > h+-..

~h ) -h -

o(h)
— Central difference
« Errord # of function evaluationT
e Perturbation?
« If the function is not too nonlinear, h=0.01x;|

)= 100+ 00— x e 0o, o T e

3 U Y
f (Xi—l): f (Xi )+ f ’(Xi )(Xi—l =X )+¥(Xi—l =X )2 + f ";)f!Xi)(Xi—l -X )3 e
o 1) £ =200 ()L s ) HalT00) o) ZHEEPEE
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Gradients Evaluation (2)

e Automatic Differentiation

— Computer code for evaluating the function can be broken
down into elementary arithmetic operations (chain rule)

— ADIFOR, ADOL-C
« Symbolic Differentiation

— Algebraic specification for the function is manipulated by
symbolic manipulation tools

— Mathematica, Maple, Macsyma

« Usefulness of derivatives
— Algorithms for optimization
— Post-optimal sensitivity analysis
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A Good Algorithm

* Robust: algorithm must be reliable for general design applications
and must theoretically converge to the solution point starting from any
given point

* General: should not impose restrictions on the model’s constraints
and objective functions

« Accurate: ability to converge to precise mathematical optimum point
IS Important, though it may not be required in practice

« [Easy to use: by both experienced and inexperienced users. Should
not have problem dependent tuning parameters

« Efficient: the number of repeated analysis should be kept to a
minimum. 1) fast rate of convergence requiring fewer iterations 2)
least number of calculations within one iteration
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Classification of Unconstrained Optimization

 One-dimensional unconstrained optimization: line search
— Golden-section search
— Quadratic interpolation

e Multidimensional unconstrained optimization
— Nongradient or Direct methods
— Gradient or Descent methods

* You often must choose between algorithms which need only
evaluations of the objective function or methods that also require
the derivatives of that function

» Algorithms using derivatives are generally more powerful, but do not
always compensate for the additional calculations of derivatives

* Note that you may not be able to compute the derivatives
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One-dimensional Unconstrained Optimization

Function of a single variable
— “roller coaster”-like function: multimodal

Bracketing method

— Golden-section search
— Quadratic interpolation
Open method

— Newton method: f'(x) =0

| flo) 4 f,(‘") o Maximum

Root

fx)=0
Minimum Fx) >0

Roots and Optima

— Guess and search for a point on a function
» Root location: zeros of a function or functions
» Optimization: either the minimum or the maximum
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One-Dimensional Search

— Assume that the desirable direction d® has been found

(XD ) £ (x4 0d®)= ()

— f(0)=f(x®) @a =0 : current value of the cost function

— If x® is not a minimum point,

[F(e)=]f (<)< £x9 e F(0)] > F(e)< F(0)

— negativeslope @a =0 — f'(0)<0

dX(k+1)
da

_ (k+1) T (\, (k+1)
e e

a=0 ‘azO
= Vf (x(") ) d® <0
— descent direction confirmed!!!
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Step Size Determination (1)

e Analytical method
— If d® is a descent direction, then a must be a positive scalar
— Find o such that f(«) is minimized

(necessary condition :
of (o) of (X(k+l)) _ of T (X(k+1)) g kD

< ox oa OX da
v (x%).g® —o
2
sufficient condition : 0 af (02[") >0
L o

» Gradient of the cost function at the new point is orthogonal to the
search direction at the k-th iteration

Ex. f(x)=3x"+2xX, +2x,” + 7 at the point (1,2),
step size o to minimize f(x)in the givend = (-1,-1)?
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e Numerical method

— Consider only unimodal functions
» Existence of a minimum / uniqueness in the interval of interest

— Not an unimodal function?

Step Size Determination (2)

* Only a local minimum closest to the starting point

— Interval of uncertainty in which the minimum lies

|l =, -, <¢

— Interval reducing methods (zero order)

Optimization Techniques

— Equal Interval Search
— Golden Section Search
— Polynomial Interpolation

« Step 1: initial interval of uncertainty (bracketing)
» Step 2: refinement of the interval of uncertainty

1 I : [
Al ‘ B! Gl
ot o= 0o a= o
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Equal Interval Search

3

< bracketing > (Restart
f(qo)< f((q+1)0) >, =(q-1)5 and o, =(q+1)5 ; = {ro(r <<1)
| =2ro

| =a,-a, =20

J

— ® o dependent: inefficient bracketing
— Alternatives: two points «, , ¢, (1/3, 21/3)
fla,)< fla,) > =a, and a =q,

| > 1'=21/3
fla,)> fla,)>a =, and o/ :au}_) ~ /

A f(e)
f(ex) A
A
\\/
1
1 I
1 I
A T
] : O B :+—>r1——)-‘+——>1—<———| ' ((lu—(l,)/B
[ 1 | : I
] '
A iy it agly a : ! l o
1 1 1 ! 1 » ] 1 - i -
626 /‘ ({ \ (7 o as oy oG 0y G Oy
o

(q-18" o5 (910
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Golden Section (1)

— One of the league of the "infinite, non recurring decimal" number
constants of mathematics: Pi (3.141592653589) and e (2.71828182846)
— Golden Section provides the answer to the question...
» "Which rectangle shape is just right, neither too wide or too narrow?"

— (1) a straight line (or a rectangle) is divided into two unequal parts in
such a way, that the ratio of the smaller to the greater part is the same as
that of the greater part to the whole figure (AC.CB=AB:AC)

AB =1, AC =X

AC _ AB X =£—>x2+x—1=0—>x=

= —> =0.61803...
CB AC 1-x X

—1+\/§
2
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Golden Section (2)

— (2) The reciprocal of the Golden Section (0.61803398875) is

1.61803398875. 1
—=X+1
X
— (3) If a Golden Rectangle is cut so a square and a rectangle

remains, the new rectangle will also be Golden.

Regular Pentagon

0.61803
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Fibonacci Sequence

 Fibonaccian numbers: 1,1, 2, 3,5, 8, 13, 21, 34, 55, ...
— In the study of rabbit reproductions

Number of
Rabbits

O New offspring (matures O e ) —me== 13

Mature rabbit (delivers offspring and is mature
®
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Golden Section Search (1)

e Variable Interval Search Method

e 1) Initial bracketing of minimum
— Rapid initial bracketing with large span (r > 1)
— r=1.618: golden ratio

()
“ —>1.618_*F2+1( 1—>0618jasn—>oo
n-1 n
. :
§5(1618 q=012,... =0 2 . 3 ‘
f(aq_1)< f(a )and f(a )< f(a ) 0 526185 52360 or 9472 ~

gq-2
|l =a,—a, = 25 (1.618)' -> 5(1.618)' =2.618(1.618)" "5
j=0 j=0
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Golden Section Search (2)

« 2) Reduction of interval of uncertainty
— Two points o, = 0.382, ¢, = 0.618I : how?
(a

)
> I >
' 2 < 7l >« (1= ———
7 :(1—r)l —>7°4+7-1=0 o o
O Oy
_l_|_\/§ <« (1= 1)/ > 7 >
—>T= =0.618
©) ! : :
< I >
MI 0[' ("(U
b
_ ] 11’ < (1—17)I" >
- ;= Qg how?

» Only one additional function evaluation is required

| =2.618(1.618)""'s
a,=a,+0.382l =q,,+(1.618)" 5 =¢,,
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Golden Section Search (3)

(al = Q) Oy g Oy = au) from bracketing
{aa =, +0.3821 =,

a, = o, +0.6181 < new point

ral = q,
()< f (ay) sy |9 = +0382(% —t)
a, =0,
kaU :ab
(OCI —a,
a, =,
f f a0, N
(aa)> (ab) <ab :aa+0.618(au —aa)
a, =Q,
a =
f a, —f(a)> I a
( ) ( b) {au:ab
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Pseudocode for the golden-section algorithm

FUNCTION Gold {xlow, xhigh, maxit., es, fx) FLSE
R = (505 — 1)2 xu = xl () Extremum
X = xlow: xu = xhigh x] = x2 e Eliminate (maximum)
2 e —
I
I
= i |
- i - 4 | |
i X I I
) 1 I I I
| 4 | I l
L y I I I
F fl > 2 THEN F fl > 2 THEN X, d——x, 57
i‘ { = —\‘2 == (I -‘-“
f X (a)
ALl =
p Jx)
Fx =
MO T
i
) I
: 1 [
5 7 = — AUS ( I ( : : :
o f2 THEN 1 [ I
= : ter = moxit L
X2 = XxI END DO X X X Y-
¥ LoIagd = |I-'\,F:yf * f
£f2 = fl END Gold Old x, Old x,
fl = fi(x1) {a) Maximization (b)

{Axa =X —X, =X +R(X, =% )%, +R(X, =% )=(2R-1)(x, —% ) =0.236(x, — X )
AXp = Xy — X = X, —[x, +R(%, =% )| =(1-R) (%, —%)=0.382(x, - %)

L1 %x100% = 0. 382 L1 %100%

- (1-R)I2—
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Polynomial Interpolation (1)

 Many function evaluations ®
— Approximate function — explicit minimum point

e Quadratic curve fitting: a@)=a +aa+a,a’
— known: f(a,), f(oy), f(a,); unknown: a,, a4, a,

fla)

\\N.t___ "\q(a)

Quadratic
approximation to f(a)

‘ -
(e} o, o o,
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Polynomial Interpolation (2)

a, —a a; —Q

a, =
a, — 4,

( 1 {f(%)—f(an) f(ai)—f(au)}
fo)-f(a)

b —>1{a, = —a,(a +a,)
o, —a,

a, +a,o +a,0° = f (o) ]
)

a, +a,o +a,0° = f (¢

2 _
8 +aa, +a,0,” = f(a,)] 8 = f ()-8, —a,a.

— 2 —
dq(“):oﬁaz_ 4 : d q(0[)>0—>2a >0
> 2
da 2&2 dO[

(e, e, ) from bracketing

[ ()< (@)@
o, <a—> 1 B B
\f(ai)>f(a):a,,a,au
J
(f(a, a):a
o> ] (o)< f(a):a,a, 0,
k \f(ai)>f(§):a,,§,ai
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Example 10.3

f (a):2—4a+e“
§=05|f(5)<f(0)]
£=00011(=q,—-q)<¢]

o =1.386511, f (o) =0.454823

« # of function evaluation
— Equal interval search : 37
— Golden section search : 22
— Polynomial interpolation : 5
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