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General Concepts

• Derivative(or gradient)-based search methods 
– estimate an initial design 
– improve it iteratively, until optimality conditions are satisfied 
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Why Numerical Method ?

• Analytical method  Numerical method
• # of design variables and constraints can be large.

– Necessary conditions  a large number of equations
– Functions for the design problem (cost and constraint) can 

be highly nonlinear.

• Cost and/or constraint functions can be implicit in 
terms of design variables.

• Search for the general purpose code through the 
internet to minimize developing your own code
– Appendix B, https://neos-guide.org/
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Advantages of Numerical Optimization

• Reduce the design time
– When the same computer program can be applied to many 

design projects

• Provide a systematized logical design procedure
• Deal with a wide variety of design variables and 

constraints
• Yield some design improvement
• Not biased by intuition or experience in engineering
• Require a minimal amount of human-machine 

interaction
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Limitations of Numerical Optimization

• Increased computational time as the number of 
design variables increases (ill-conditioned?)

• No stored experience or intuition
• Misleading results if the analysis program is not 

theoretically precise
• Difficulty in dealing with discontinuous functions and 

highly nonlinear problems
• Seldom be guaranteed that the optimization algorithm 

will obtain the global optimum design
• Significant reprogramming of analysis routines for 

adaptation to an optimization code
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Physical Problem
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Optimization Process
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Nonlinear Optimization

• Unlike for linear problems, a global optimum for a 
nonlinear problem cannot be guaranteed, except for 
special cases, e.g., if you know the space is unimodal, 
or convex,  or monotonicity exists

• Two standard heuristics that most people use:
– Find local extrema starting from widely varying starting 

points of variables and then pick the most extreme of these 
extrema

– Perturb a local extremum by taking a finite amplitude step 
away from it, and then see whether your routine returns you 
to a better point or “always” to the same one

– Question: How would you “automate” a search for a global 
extremum?
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Basic Steps in Nonlinear Optimization

• In its simplest form, a numerical search procedure 
consists of four steps when applied to unconstrained 
minimization problem:
– (1) Selection of an initial design in the n-dimensional space, 

where n is the number of design variables
– (2) A procedure for the evaluation of the objective function at 

a given point in the design space
– (3) Comparison of the current design with all of the 

preceding designs
– (4) A rational way to select a new design and repeat the 

process
– Constrained optimization requires step for evaluation of 

constraints as well. Same applies for evaluating multiple 
objective functions
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Nonlinear Optimization Process

• Most design tasks seek to find a perturbation to an 
existing design which will lead to an improvement. 
Thus we seek a new design which is the old design 
plus a change
– Xnew = Xold + X

• Optimization algorithms apply a two step process :
– X(k+1) = X(k) + k d(k)

– You have to provide an initial design X(0)

– The optimization will then determine a search direction d(k)

that will improve the design
– How far we can move in direction d(k)  one-dimensional 

search to determine the scalar k to improve the design
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General Algorithm

reasonable starting design x(0) , k = 0

compute a search direction d(k)

converge ?

calculate a step size k

Calculate a new design x(k+1) = x(k) + k d(k) , k = k+1

stopY

N
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Descent Direction

• Desirable direction of design change in the iterative 
process: directions of descent for the cost function

• Descent condition
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Gradients Evaluation (1)

• Finite Differences
– Forward difference

– Backward difference

– Central difference
• Error # of function evaluation
• Perturbation?
• If the function is not too nonlinear, ixh 01.0

                  

 



hO

iii
i

h

ii
i

h

iiiii hxf
h

xfxfxfxxxfxxxfxfxf 








 
 2!2

12
111

                  

 



hO

iii
i

h

ii
i

h

iiiii hxf
h

xfxfxfxxxfxxxfxfxf 








 







 2!2
12

111

              

              

               2113
11

3
1

2
111

3
1

2
111

23
2

!3!2

!3!2

hO
h

xfxfxfhxfxfhxfxf

xxxfxxxfxxxfxfxf

xxxfxxxfxxxfxfxf

ii
i

i
iii

h

ii
i

h

ii
i

h

iiiii

h

ii
i

h

ii
i

h

iiiii




























































Optimization Techniques Numerical Methods for Unconstrained Optimum Design - 14

Gradients Evaluation (2)

• Automatic Differentiation
– Computer code for evaluating the function can be broken 

down into elementary arithmetic operations (chain rule)
– ADIFOR, ADOL-C

• Symbolic Differentiation
– Algebraic specification for the function is manipulated by 

symbolic manipulation tools
– Mathematica, Maple, Macsyma

• Usefulness of derivatives
– Algorithms for optimization
– Post-optimal sensitivity analysis
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A Good Algorithm

• Robust: algorithm must be reliable for general design applications 
and must theoretically converge to the solution point starting from any 
given point

• General: should not impose restrictions on the model’s constraints 
and objective functions

• Accurate: ability to converge to precise mathematical optimum point 
is important, though it may not be required in practice

• Easy to use: by both experienced and inexperienced users. Should 
not have problem dependent tuning parameters

• Efficient: the number of repeated analysis should be kept to a 
minimum. 1) fast rate of convergence requiring fewer iterations 2) 
least number of calculations within one iteration
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Classification of Unconstrained Optimization

• One-dimensional unconstrained optimization: line search
– Golden-section search
– Quadratic interpolation

• Multidimensional unconstrained optimization
– Nongradient or Direct methods
– Gradient or Descent methods

• You often must choose between algorithms which need only 
evaluations of the objective function or methods that also require 
the derivatives of that function

• Algorithms using derivatives are generally more powerful, but do not 
always compensate for the additional calculations of derivatives

• Note that you may not be able to compute the derivatives
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One-dimensional Unconstrained Optimization

• Function of a single variable
– “roller coaster”-like function: multimodal

• Bracketing method
– Golden-section search
– Quadratic interpolation

• Open method
– Newton method: f’(x) = 0

• Roots and Optima
– Guess and search for a point on a function

• Root location: zeros of a function or functions
• Optimization: either the minimum or the maximum
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One-Dimensional Search

– Assume that the desirable direction d(k) has been found

– : current value of the cost function
– If x(k) is not a minimum point,
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Step Size Determination (1)

• Analytical method
– If d(k) is a descent direction, then  must be a positive scalar
– Find  such that f() is minimized

• Gradient of the cost function at the new point is orthogonal to the 
search direction at the k-th iteration
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Step Size Determination (2)

• Numerical method
– Consider only unimodal functions

• Existence of a minimum / uniqueness in the interval of interest
– Not an unimodal function?

• Only a local minimum closest to the starting point 
– Interval of uncertainty in which the minimum lies

– Interval reducing methods (zero order)
• Step 1: initial interval of uncertainty (bracketing)
• Step 2: refinement of the interval of uncertainty

– Equal Interval Search
– Golden Section Search
– Polynomial Interpolation

  luI
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Equal Interval Search

–   dependent: inefficient bracketing
– Alternatives: two points a , b (I/3, 2I/3)
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Golden Section (1)

– One of the league of the "infinite, non recurring decimal" number 
constants of mathematics: Pi (3.141592653589) and e (2.71828182846) 

– Golden Section provides the answer to the question...
• "Which rectangle shape is just right, neither too wide or too narrow?"

– (1) a straight line (or a rectangle) is divided into two unequal parts in 
such a way, that the ratio of the smaller to the greater part is the same as 
that of the greater part to the whole figure (AC:CB=AB:AC)
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Golden Section (2)

– (2) The reciprocal of the Golden Section (0.61803398875) is 
1.61803398875.

– (3) If a Golden Rectangle is cut so a square and a rectangle 
remains, the new rectangle will also be Golden.
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Fibonacci Sequence

• Fibonaccian numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …
– In the study of rabbit reproductions
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Golden Section Search (1)

• Variable Interval Search Method
• 1) Initial bracketing of minimum

– Rapid initial bracketing with large span (r > 1)
– r = 1.618 : golden ratio
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Golden Section Search (2)

• 2) Reduction of interval of uncertainty
– Two points a = 0.382I, b = 0.618I : how?

– a = q-1 : how?
• Only one additional function evaluation is required
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Golden Section Search (3)
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Pseudocode for the golden-section algorithm
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Polynomial Interpolation (1)

• Many function evaluations 
– Approximate function  explicit minimum point

• Quadratic curve fitting:
– known: f(l),  f(i),  f(u); unknown: a0, a1, a2
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Polynomial Interpolation (2)
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Example 10.3

• # of function evaluation
– Equal interval search : 37
– Golden section search : 22
– Polynomial interpolation : 5
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