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Inexact Line Search: Armijo’s Rule

• Line search termination criterion:
• Basic concept

– step size should not be too large or too small 
– sufficient decrease in the cost function value along the 

search direction 
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Inexact Line Search: Wolfe Conditions

• Sufficient-decrease condition + curvature condition
– Small values for α
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Inexact Line Search: Goldstein Test

• somewhat similar to Armijo’s rule
• Newton-type methods, but not quasi-Newton methods
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Multidimensional Unconstrained Optimization

Direct Search Methods Indirect(Descent) Methods
 Random search method
 Univariate method
 Pattern search method
– Powell’s method
 Simplex method 
 Simulated Annealing (SA)
 Genetic Algorithm (GA)

 Steepest descent (Cauchy) method
 Conjugate gradient method

– Fletcher-Reeves
– Polak-Rebiere
 Newton’s method
 Marquardt’s method
 Quasi-Newton methods

– DFP (Davidon-Fletcher-Powell)
– BFGS(Broydon-Fletcher-Goldfarb-Shanno)



Optimization Techniques Numerical Methods for Unconstrained Optimum Design - 37

Properties of Gradient Vector

– The gradient vector of a function f @ the point x* is 
orthogonal (normal) to the tangent plane for the surface 
f=const.

– Gradient represents a direction of maximum rate of increase 
for the function f at the point x* .

– The maximum rate of change of f(x) at any point x* is the 
magnitude of the gradient vector
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Steepest Descent Method (1)

• Cauchy’s Method (1847), first-order method
• Steepest descent direction : 

– satisfy 

• One-dimensional search :

•  simple & robust (convergence guaranteed)
•  slow rate of convergence

– Orthogonal path, condition # of the Hessian

•  inefficient: no previous information is used
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Steepest Descent Algorithm
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Steepest Descent Method (2)

• Scaling of design variables
– Accelerate the rate of convergence
– For a p.d. quadratic function with a unit condition number

• Converge in only one iteration
– Unscale the transformed design variables
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Conjugate Gradient Method (1)

• Conjugate Gradient Direction: Modification of SDM 
– Not orthogonal to each other
– Cut diagonally through the orthogonal steepest descent 

directions
– Orthogonal w.r.t. a symmetric and p.d. A :

– Satisfies descent condition
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Conjugate Gradient Method (2)

• Assumption: exact line search
– Quadratic function: Fletcher & Reeves(1964)
– More general function: Polak-Rebiere (1969)

•  Simple & Fast Convergent Rate
• n iterations for n design variables (p.d. quadratic form)

• Restart every (n+1) iterations for computational 
stability
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Conjugate Gradient Method (3)

• Consider the problem of minimizing a quadratic 
function
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Polak-Rebiere (1969)
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Fletcher-Reeves (1964)
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Conjugate Gradient Algorithm

0 ,0 ,)0(  kx

  )1()()(  k
k

kk f dxd 

 )()( minimize  to Calculate kk
k f dx  

1 ,)()()1(  kkk
k

kk dxx 

  ? )(  kf x )(* kxx Yes

No  
  2)1(

2)(






k

k

k
f

f

x

x




Optimization Techniques Numerical Methods for Unconstrained Optimum Design - 47

Example 10.5+6
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Newton’s Method

• Optimality criteria for second-order Taylor series

• Descent direction?

• Quadratic rate of convergence 
• Second-order derivative : high cost  
• No guaranteed convergence unless H is p.d. 
• Memoryless method (no use of previous data) 
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Modified Newton’s Algorithm
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- Introduce the step length parameter
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Example 11.8
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Marquardt Modification

• Marquardt (1963)
– Steepest descent method: far away from the solution
– Newton method: near the solution point

– When  is large, 
• steepest descent direction:

– As  is reduced (step size is increased), 
• Newton direction:

– If the direction does not reduce the cost function, then  is increased 
(step size is reduced)

   xd fk  1)(

 xHd fk  1)(

   xIHd fk  1)( 



Optimization Techniques Numerical Methods for Unconstrained Optimum Design - 52

Marquardt’s Algorithm (1)

040.1 ,0 ,0 , )0()0(  Ek x

     )(1)()()(   , kkkk xfIHdxH 


1 ,5.0 )()(  kkkk 

  ? )(  kf x )(* kxx Yes

No

   ? )()()( kkk ff xdx 

)()( 2 kk  

Yes

No



Optimization Techniques Numerical Methods for Unconstrained Optimum Design - 53

Marquardt’s Algorithm (2)

• Advantages
– Simplicity
– Descent property
– Excellent convergence rate near x*

– Absence of a line search

• Disadvantages
– Need to calculate H(k)

– Solve the linear equation set
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Quasi-Newton Method

• No learning process
– Steepest Descent Method: Convergent, but Slow
– Newton’s Method: Fast, but Expensive

• Use of previous information, speed up the convergence !
– Approximate Hessian (or its inverse) matrix by 1st-order 

derivatives preserving symmetry and positive definiteness

• Variable Metric Method
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DFP Method (1)

• Davidon (1959)  Fletcher and Powell (1963)
– Approximate inverse of Hessian matrix

• For a quadratic objective, directions of the conjugate gradient method
– One of the most powerful algorithm for general function
–  need to store the NN matrix A
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DFP Method (2)
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BFGS Method (1)

• Broyden-Fletcher-Goldfarb-Shanno (1981)
– Direct update the Hessian matrix
– Most popular and effective
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BFGS Method (2)
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Remarks

• DFP and BFGS methods have theoretical properties 
that guarantee
– Superlinear (fast) convergence rate
– Global convergence under certain conditions

• Duals of each other: s  y, H  A
• Both methods could fail for nonlinear problems,

– DFP is highly sensitive to inaccuracies in line searches.
– Both methods can get stuck on a saddle point.
– Update of Hessian becomes “corrupted” by round-off and 

other inaccuracies.
• All kinds of “tricks” such as scaling and 

preconditioning exist to boost the performance of the 
methods
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Gradient-Based Methods

Method Direction

Steepest 
Descent

Conjugate 
Gradient

Newton’s

Quasi-Newton
DFP:

BFGS:
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Rate/Order of Convergence

• Algorithm has p order of convergence if

– Linear convergence rate: p = 1, β  1
• Steepest Descent Method

– Superlinear convergence: p = 1, β = 0
• Quasi-Newton Method

– Quadratic convergence: p = 2
• Newton’s Method
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