| No., q          | Trial step, $\alpha$                                 |                                                     | Function value, $f(\alpha)$                         |                           |                                                     |
|-----------------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------|-----------------------------------------------------|
| Phase I: Initia | l Bracketing of                                      | Minimum.                                            |                                                     |                           |                                                     |
| 1. $\alpha = 0$ | 0.000000                                             |                                                     |                                                     | 3.000000                  |                                                     |
| 2. $q = 0$      | $\alpha_0 = \delta =$                                | $0.500000 \leftarrow \alpha_l$                      |                                                     | 1.648721                  |                                                     |
| 3. $q = 1$      | $\alpha_1 = \sum_{j=0}^1 \delta(1.618)^j = 1.309017$ |                                                     | 0.466464                                            |                           |                                                     |
| 4. <i>q</i> = 2 | $\alpha_2 = \sum_{j=0}^2 \delta_j^2$                 | $\delta(1.618)^j = 2.6180$                          | $34 \leftarrow \alpha_n$                            | 5.236610                  |                                                     |
| Iteration No.   | $\alpha_l; [f(\alpha_l)]$                            | $\boldsymbol{\alpha}_a; [f(\boldsymbol{\alpha}_a)]$ | $\boldsymbol{\alpha}_b; [f(\boldsymbol{\alpha}_b)]$ | $\alpha_u; [f(\alpha_u)]$ | $I = \boldsymbol{\alpha}_u - \boldsymbol{\alpha}_l$ |
| Phase II: Red   | ucing Interval o                                     | of Uncertainty                                      |                                                     |                           |                                                     |
| 1               | 0.500000<br>[1.648721]↓                              | 1.309017<br>[0.466 464] レ                           | 1.809017<br>[0.868376] ↘                            | 2.618034<br>[5.236610]    | 2.118034                                            |
| 2               | 0.500000<br>[1.648721]                               | 1.000000<br>✔ [0.718282]                            | 1.309017<br>✔ [0.466464]                            | 1.809017<br>[0.868376]↓   | 1.309017                                            |
| 3               | 1.000000<br>[0.718282]                               | 1.309017<br>[0.466 464]                             | 1.500000<br>[0.481689]                              | 1.809017<br>[0.868376]    | 0.809017                                            |
| _               | _                                                    | _                                                   | _                                                   | _                         | _                                                   |
| _               | _                                                    | _                                                   | _                                                   | _                         | _                                                   |
| 16              | 1.385438<br>[0.454824]                               | 1.386031<br>[0.454823]                              | 1.386398<br>[0.454823]                              | 1.386991<br>[0.454824]    | 0.001553                                            |
| 17              | 1.386031<br>[0.454823]                               | 1.386398<br>[0.454823]                              | 1.386624<br>[0.454823]                              | 1.386991<br>[0.454823]    | 0.000960                                            |

**TABLE 10.1** Golden Section Search for  $f(\alpha) = 2 - 4\alpha + e^{\alpha}$  of Example 10.3

 $\alpha^* = 0.5(1.386398 + 1.386624) = 1.386511; f(\alpha) = 0.454823.$ 

*Note*: New calculation for each iteration is shown as boldfaced and shaded; the arrows indicate direction of data transfer to the subsequent row/iteration.

#### Inexact Line Search: Armijo's Rule

- Line search termination criterion:  $\nabla f(\mathbf{x}^{(k+1)}) \cdot \mathbf{d}^{(k)} = 0$
- Basic concept
  - step size should not be too large or too small
  - sufficient decrease in the cost function value along the search direction



### Inexact Line Search: Wolfe Conditions

- Sufficient-decrease condition + curvature condition
  - Small values for  $\boldsymbol{\alpha}$

$$f(\alpha) = f\left(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}\right)$$

$$q(\alpha) = f\left(0\right) + \alpha \left[\rho \underbrace{f'(0)}_{\text{negative}}\right] \rightarrow \begin{cases} \text{sufficient-decrease condition:} f(\alpha) \le q(\alpha) \\ \text{curvature condition:} \\ \frac{\rho \le \beta \le 1}{0 < \rho < 0.5} \Rightarrow f'(\alpha) \ge \beta f'(0) \\ \frac{\beta = 0.9}{\rho = 10^{-4} \sim 10^{-3}} \Rightarrow \left|f'(\alpha)\right| \le \beta \left|f'(0)\right| \Rightarrow \frac{\left|f(\alpha) - f(v)\right|}{\alpha - v} \le \beta \left|f'(0)\right|, \ 0 \le v \le \alpha \\ \text{smaller } \beta, \text{ more accurate } \alpha \rightarrow \begin{cases} \beta = 0.9 : \text{ Newton and quasi-Newton method} \\ \beta = 0.1 : \text{ conjugate gradient method} \end{cases}$$

#### Inexact Line Search: Goldstein Test

- somewhat similar to Armijo's rule
- Newton-type methods, but not quasi-Newton methods



# Multidimensional Unconstrained Optimization

| Direct Search Methods               | Indirect(Descent) Methods                         |
|-------------------------------------|---------------------------------------------------|
| Random search method                | Steepest descent (Cauchy) method                  |
| Univariate method                   | Conjugate gradient method                         |
| Pattern search method               | <ul> <li>Fletcher-Reeves</li> </ul>               |
| <ul> <li>Powell's method</li> </ul> | – Polak-Rebiere                                   |
| Simplex method                      | Newton's method                                   |
| Simulated Annealing (SA)            | Marquardt's method                                |
| Genetic Algorithm (GA)              | Quasi-Newton methods                              |
|                                     | <ul> <li>DFP (Davidon-Fletcher-Powell)</li> </ul> |
|                                     | – BFGS(Broydon-Fletcher-Goldfarb-Shanno)          |

### **Properties of Gradient Vector**

- The gradient vector of a function *f* @ the point *x*<sup>\*</sup> is orthogonal (normal) to the tangent plane for the surface *f*=const.
- Gradient represents a direction of maximum rate of increase for the function f at the point  $x^*$ .
- The maximum rate of change of f(x) at any point  $x^*$  is the magnitude of the gradient vector  $\begin{bmatrix} \partial x_1 & \partial x_2 & \partial x_1 \end{bmatrix}$



$$\mathbf{T} = \begin{bmatrix} \frac{\partial x_1}{\partial s} & \frac{\partial x_2}{\partial s} & \cdots & \frac{\partial x_n}{\partial s} \end{bmatrix}$$
$$\frac{df}{ds} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial s} + \cdots + \frac{\partial f}{\partial x_n} \frac{\partial x_n}{\partial s} = 0$$
$$\frac{df}{dt} = \lim_{\varepsilon \to 0} \frac{f(\mathbf{x} + \varepsilon \mathbf{u}) - f(\mathbf{x})}{\varepsilon}$$
$$= \sum_{i=1}^n u_i \frac{\partial f}{\partial x_i} = (\mathbf{c} \cdot \mathbf{u}) = \mathbf{c}^T \mathbf{u} = \|\mathbf{c}\| \|\mathbf{u}\| \cos \theta$$
$$\max \left| \frac{df}{dt} \right| = \|\mathbf{c}\|$$

Numerical Methods for Unconstrained Optimum Design - 37

# Steepest Descent Method (1)

- Cauchy's Method (1847), first-order method
- Steepest descent direction :  $d = -\nabla f = -\frac{\partial f}{\partial r}$

- satisfy 
$$\nabla f(\mathbf{x}^{(k)}) \cdot \mathbf{d}^{(k)} < 0 \rightarrow - \left\| \nabla f(\mathbf{x}^{(k)}) \right\|^2 < 0$$

- One-dimensional search :  $\frac{df(\mathbf{x}^{(k+1)})}{d\alpha} = \nabla f(\mathbf{x}^{(k+1)}) \cdot \nabla f(\mathbf{x}^{(k)}) = 0$
- ③ simple & robust (convergence guaranteed)
- 🐵 slow rate of convergence
  - Orthogonal path, condition # of the Hessian
- ③ inefficient: no previous information is used

#### **Steepest Descent Algorithm**



# Steepest Descent Method (2)

- Scaling of design variables
  - Accelerate the rate of convergence
  - For a p.d. quadratic function with a unit condition number
    - Converge in only one iteration
  - Unscale the transformed design variables



$$f = x_1^2 + ax_2^2 \rightarrow \nabla^2 f = \begin{bmatrix} 2 & 0 \\ 0 & 2a \end{bmatrix}$$
$$\rightarrow cond(\nabla^2 f) = a$$
$$f = f(\mathbf{x}) \xrightarrow{\mathbf{x} = \mathbf{T}\mathbf{y}} g(\mathbf{y}) = f(\mathbf{T}\mathbf{y})$$
$$\rightarrow \nabla^2 g = \mathbf{T}^T \nabla^2 f \mathbf{T}$$
$$\rightarrow cond(\nabla^2 g) \approx 1$$

# Conjugate Gradient Method (1)

- Conjugate Gradient Direction: Modification of SDM
  - Not orthogonal to each other
  - Cut diagonally through the orthogonal steepest descent directions
  - Orthogonal w.r.t. a symmetric and p.d. A :

$$d^{(i)^{T}}Ad^{(j)} = \begin{cases} a_{jj} & (i = j) \\ 0 & (i \neq j) \end{cases}$$
  
$$d^{(k)} = -\nabla f(\mathbf{x}^{(k)}) + \beta_{k}d^{(k-1)}$$
  
Satisfies descent condition

$$\alpha_{k} \left( \nabla f(\boldsymbol{x}^{(k)}) \cdot \boldsymbol{d}^{(k)} \right) < 0 \rightarrow -\alpha_{k} \nabla f(\boldsymbol{x}^{(k)}) \cdot \nabla f(\boldsymbol{x}^{(k)}) + \alpha_{k} \beta_{k} \underbrace{\nabla f(\boldsymbol{x}^{(k)}) \cdot \boldsymbol{d}^{(k-1)}}_{=0 \text{ (step size condition)}} < 0$$

# Conjugate Gradient Method (2)

- Assumption: exact line search
  - Quadratic function: Fletcher & Reeves(1964)
  - More general function: Polak-Rebiere (1969)
- ③ Simple & Fast Convergent Rate
- *n* iterations for *n* design variables (p.d. quadratic form)

$$\boldsymbol{x}^{(0)} \xrightarrow{\boldsymbol{d}^{(0)}} \boldsymbol{x}^{(1)} \xrightarrow{\boldsymbol{d}^{(1)}} \boldsymbol{x}^{(2)} \cdots \xrightarrow{\boldsymbol{d}^{(n-1)}} \boldsymbol{x}^{(n)}$$

Restart every (n+1) iterations for computational stability

# Conjugate Gradient Method (3)

• Consider the problem of minimizing a quadratic function

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{T} A \mathbf{x} + \mathbf{c}^{T} \mathbf{x} \to \nabla f(\mathbf{x}^{(k)}) = A \mathbf{x}^{(k)} + \mathbf{c}$$
  

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_{k} d^{(k)} \to f(\alpha) = f(\mathbf{x}^{(k)} + \alpha_{k} d^{(k)})$$
  

$$\frac{\partial f(\alpha)}{\partial \alpha} = d^{(k)^{T}} \nabla f(\mathbf{x}^{(k+1)}) = 0$$
  

$$d^{(k)^{T}} \Big[ A(\mathbf{x}^{(k)} + \alpha_{k} d^{(k)}) + \mathbf{c} \Big] = 0 \to \alpha_{k} = -\frac{d^{(k)^{T}} \nabla f(\mathbf{x}^{(k)})}{d^{(k)^{T}} A d^{(k)}}$$
  

$$d^{(k+1)} = -\nabla f(\mathbf{x}^{(k+1)}) + \beta_{k} d^{(k)}$$
  

$$d^{(k+1)^{T}} A d^{(k)} = -\nabla f(\mathbf{x}^{(k+1)})^{T} A d^{(k)} + \beta_{k} d^{(k)^{T}} A d^{(k)} = 0 \to \beta_{k} = \frac{\nabla f(\mathbf{x}^{(k+1)})^{T} A d^{(k)}}{d^{(k)^{T}} A d^{(k)}}$$

**Optimization Techniques** 

### Polak-Rebiere (1969)

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \mathbf{x}^{(k)} + \alpha_{k} \mathbf{d}^{(k)} \rightarrow \mathbf{d}^{(k)} = \frac{\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}}{\alpha_{k}} \rightarrow \mathbf{A} \mathbf{d}^{(k)} = \frac{\mathbf{A} \mathbf{x}^{(k+1)} - \mathbf{A} \mathbf{x}^{(k)}}{\alpha_{k}} = \frac{\nabla f\left(\mathbf{x}^{(k+1)}\right) - \nabla f\left(\mathbf{x}^{(k)}\right)}{\alpha_{k}} \\ \mathbf{d}^{(k)T} \nabla f\left(\mathbf{x}^{(k+1)}\right) &= 0 \rightarrow \mathbf{d}^{(k-1)T} \nabla f\left(\mathbf{x}^{(k)}\right) = 0 \\ \mathbf{d}^{(k)} &= -\nabla f\left(\mathbf{x}^{(k)}\right) + \beta_{k-1} \mathbf{d}^{(k-1)} \rightarrow \mathbf{d}^{(k-1)} = \frac{\mathbf{d}^{(k)} + \nabla f\left(\mathbf{x}^{(k)}\right)}{\beta_{k-1}} \\ \end{bmatrix} \rightarrow \frac{\left[\mathbf{d}^{(k)} + \nabla f\left(\mathbf{x}^{(k)}\right)\right]^{T} \nabla f\left(\mathbf{x}^{(k)}\right)}{\beta_{k-1}} = 0 \\ \rightarrow \mathbf{d}^{(k)T} \nabla f\left(\mathbf{x}^{(k)}\right) = -\nabla f\left(\mathbf{x}^{(k)}\right)^{T} \nabla f\left(\mathbf{x}^{(k)}\right) \\ \alpha_{k} &= -\frac{\mathbf{d}^{(k)T} \nabla f\left(\mathbf{x}^{(k)}\right)}{\mathbf{d}^{(k)T} \mathbf{A} \mathbf{d}^{(k)}} \rightarrow \alpha_{k} = \frac{\nabla f\left(\mathbf{x}^{(k)}\right)^{T} \nabla f\left(\mathbf{x}^{(k)}\right)}{\mathbf{d}^{(k)T} \mathbf{A} \mathbf{d}^{(k)}} \\ \beta_{k} &= \frac{\nabla f\left(\mathbf{x}^{(k+1)}\right)^{T} \mathbf{A} \mathbf{d}^{(k)}}{\mathbf{d}^{(k)T} \mathbf{A} \mathbf{d}^{(k)}} \rightarrow \beta_{k} = \frac{\nabla f\left(\mathbf{x}^{(k+1)}\right)^{T} \left[\nabla f\left(\mathbf{x}^{(k+1)}\right) - \nabla f\left(\mathbf{x}^{(k)}\right)\right]}{\alpha_{k} \mathbf{d}^{(k)T} \mathbf{A} \mathbf{d}^{(k)}} \\ \rightarrow \overline{\beta_{k}} &= \frac{\nabla f\left(\mathbf{x}^{(k+1)}\right)^{T} \left[\nabla f\left(\mathbf{x}^{(k+1)}\right) - \nabla f\left(\mathbf{x}^{(k)}\right)\right]}{\nabla f\left(\mathbf{x}^{(k)}\right)} \end{bmatrix}$$
for more general objective model

**Optimization Techniques** 

Numerical Methods for Unconstrained Optimum Design - 44

### Fletcher-Reeves (1964)

for a quadratic function 
$$\left[\nabla f\left(\mathbf{x}^{(k+1)}\right) - \nabla f\left(\mathbf{x}^{(k)}\right) = \mathbf{A}\left(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\right) = \alpha_{k}\mathbf{A}\mathbf{d}^{(k)}\right],$$
  
 $\nabla f\left(\mathbf{x}^{(k+1)}\right)^{T}\nabla f\left(\mathbf{x}^{(k)}\right) = \nabla f\left(\mathbf{x}^{(k+1)}\right)^{T}\left[-\mathbf{d}^{(k)} + \beta_{k-1}\mathbf{d}^{(k-1)}\right] = -\underbrace{\nabla f\left(\mathbf{x}^{(k+1)}\right)^{T}\mathbf{d}^{(k)}}_{=0 \text{ (exact line search)}} + \nabla f\left(\mathbf{x}^{(k+1)}\right)^{T}\beta_{k-1}\mathbf{d}^{(k-1)}$   
 $= \beta_{k-1}\left[\nabla f\left(\mathbf{x}^{(k)}\right)^{T} + \alpha_{k}\mathbf{d}^{(k)T}\mathbf{A}\right]\mathbf{d}^{(k-1)} = \beta_{k-1}\left[\underbrace{\nabla f\left(\mathbf{x}^{(k)}\right)^{T}\mathbf{d}^{(k-1)}}_{=0 \text{ (exact line search)}} + \alpha_{k}\underbrace{\mathbf{d}^{(k)T}\mathbf{A}\mathbf{d}^{(k-1)}}_{=0 \text{ (conjugacy)}}\right] = 0$   
 $\beta_{k} = \frac{\nabla f\left(\mathbf{x}^{(k+1)}\right)^{T}\left[\nabla f\left(\mathbf{x}^{(k+1)}\right) - \nabla f\left(\mathbf{x}^{(k)}\right)\right]}{\nabla f\left(\mathbf{x}^{(k)}\right)} \rightarrow \beta_{k} = \frac{\nabla f\left(\mathbf{x}^{(k+1)}\right)^{T}\nabla f\left(\mathbf{x}^{(k+1)}\right)}{\nabla f\left(\mathbf{x}^{(k)}\right)}$ 

$$d^{(k)} = -\nabla f\left(x^{(k)}\right) + \left(\frac{\left\|\nabla f\left(x^{(k)}\right)\right\|}{\left\|\nabla f\left(x^{(k-1)}\right)\right\|}\right)^2 d^{(k-1)}$$

#### **Conjugate Gradient Algorithm**



#### Example 10.5+6

$$f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_2x_3$$
$$\mathbf{x}^{(0)} = (2, 4, 10), \ \varepsilon = 0.005$$

line search by golden section:  $\delta = 0.05$ ,  $\varepsilon = 0.0001$ 

| $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_2x_3$ |                                                                     |
|------------------------------------------------------------------|---------------------------------------------------------------------|
| Starting values of design variables                              | 2, 4, 10                                                            |
| Optimum design variables                                         | $8.04787 \hbox{E-} 03, -6.81319 \hbox{E-} 03, 3.42174 \hbox{E-} 03$ |
| Optimum cost function value                                      | 2.47347E-05                                                         |
| Norm of gradient of the cost function at optimum                 | 4.97071E-03                                                         |
| Number of iterations                                             | 40                                                                  |
| Total number of function evaluations                             | 753                                                                 |

TABLE 10.2 Optimum Solution for Example 10.5 with the Steepest–Descent Method

TABLE 10.3 Optimum Solution for Example 10.6 with the Conjugate Gradient Method

| $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_2x_3$ |                               |
|------------------------------------------------------------------|-------------------------------|
| Starting values of design variables                              | 2, 4, 10                      |
| Optimum design variables                                         | 1.01E-07, -1.70E-07, 1.04E-09 |
| Optimum cost function value                                      | -4.0E-14                      |
| Norm of gradient at optimum                                      | 5.20E-07                      |
| Number of iterations                                             | 4                             |

### Newton's Method

• Optimality criteria for second-order Taylor series

$$f(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) + \nabla f^{T}(\mathbf{x})\Delta \mathbf{x} + \frac{1}{2}\Delta \mathbf{x}^{T} \mathbf{H}\Delta \mathbf{x}$$
$$\frac{\partial f}{\partial(\Delta x)} = 0 \Longrightarrow \nabla f(\mathbf{x}) + \mathbf{H}\Delta \mathbf{x} = 0$$
$$\mathbf{d}^{(k)} \equiv \Delta \mathbf{x} = -\mathbf{H}^{-1} \nabla f(\mathbf{x}) \rightarrow \mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \Delta \mathbf{x} \text{ (step length = 1)}$$

- Descent direction?  $\alpha_k (\nabla f(\mathbf{x}^{(k)}) \cdot \mathbf{d}^{(k)}) < 0 \rightarrow -\alpha_k \nabla f(\mathbf{x}^{(k)}) \cdot \mathbf{H}^{-1} \nabla f(\mathbf{x}^{(k)}) < 0$
- Quadratic rate of convergence ③
- Second-order derivative : high cost ⊗
- No guaranteed convergence unless *H* is p.d. ☺
- Memoryless method (no use of previous data) ☺

#### Modified Newton's Algorithm

- Introduce the step length parameter



#### Example 11.8

$$f(\mathbf{x}) = 50(x_2 - x_1^2)^2 + (2 - x_1)^2 \text{ from } \mathbf{x}_0 = (5, -5)$$
  
$$\delta_0 = 0.05$$
  
$$\varepsilon = \begin{cases} 0.00001 \text{ (steepest descent method)} \\ 0.0001 \text{ (modified Newton method)} \end{cases}$$

 TABLE 11.3
 Comparative Evaluation of Three Methods for Example 11.8

| $f(x) = 50(x_2 - x_1^2)^2 + (2 - x_1)^2$ |                  |                    |                 |  |
|------------------------------------------|------------------|--------------------|-----------------|--|
|                                          | Steepest-descent | Conjugate gradient | Modified Newton |  |
| <i>x</i> <sub>1</sub>                    | 1.9941E+00       | 2.0000E+00         | 2.0000E+00      |  |
| <i>x</i> <sub>2</sub>                    | 3.9765E+00       | 3.9998E+00         | 3.9999E+00      |  |
| f                                        | 3.4564E - 05     | 1.0239E-08         | 2.5054E - 10    |  |
| c                                        | 3.3236E-03       | 1.2860E - 04       | 9.0357E-04      |  |
| Number of function evaluations           | 138236           | 65                 | 349             |  |
| Number of iterations                     | 9670             | 22                 | 13              |  |

# Marquardt Modification

- Marquardt (1963)
  - Steepest descent method: far away from the solution
  - Newton method: near the solution point

$$\boldsymbol{d}^{(k)} = -(\boldsymbol{H} + \lambda \boldsymbol{I})^{-1} \nabla f(\boldsymbol{x})$$

- When  $\lambda$  is large,
  - steepest descent direction:  $d^{(k)} = (-1/\lambda) \nabla f(x)$
- As  $\lambda$  is reduced (step size is increased),
  - Newton direction:  $d^{(k)} = -H^{-1}\nabla f(x)$
- If the direction does not reduce the cost function, then  $\lambda$  is increased (step size is reduced)

#### Marquardt's Algorithm (1)



# Marquardt's Algorithm (2)

- Advantages
  - Simplicity
  - Descent property
  - Excellent convergence rate near x<sup>\*</sup>
  - Absence of a line search
- Disadvantages
  - Need to calculate  $H^{(k)}$
  - Solve the linear equation set

$$(\boldsymbol{H} + \lambda^{(k)}\boldsymbol{I})\boldsymbol{d}^{(k)} = -\nabla f(\boldsymbol{x}^{(k)})$$

### **Quasi-Newton Method**

- No learning process
  - Steepest Descent Method: Convergent, but Slow
  - Newton's Method: Fast, but Expensive
- Use of previous information, speed up the convergence !
  - Approximate Hessian (or its inverse) matrix by 1st-order derivatives preserving symmetry and positive definiteness
- Variable Metric Method

$$\boldsymbol{d}^{(k)} = -\boldsymbol{A}^{(k)} \nabla f\left(\boldsymbol{x}^{(k)}\right)$$
$$\boldsymbol{A}^{(k+1)} = \boldsymbol{A}^{(k)} + \boldsymbol{A}_{c}^{(k)} \xrightarrow{\text{as } k \to \infty} \boldsymbol{H}^{-1}$$

# DFP Method (1)

- Davidon (1959)  $\rightarrow$  Fletcher and Powell (1963)
  - Approximate inverse of Hessian matrix
    - For a quadratic objective, directions of the conjugate gradient method
  - One of the most powerful algorithm for general function
  - $\otimes$  need to store the *N*×*N* matrix *A*

$$\begin{aligned} x^{(k+1)} &= x^{(k)} + \alpha_k d^{(k)} \\ d^{(k)} &= -A^{(k)} \nabla f \left( x^{(k)} \right) \\ A^{(k+1)} &= A^{(k)} + \frac{s^{(k)} s^{(k)^T}}{s^{(k)^T} y^{(k)}} - \frac{z^{(k)} z^{(k)^T}}{y^{(k)^T} z^{(k)}} \\ s^{(k)} &= \alpha_k d^{(k)} = x^{(k+1)} - x^{(k)} \\ y^{(k)} &= \nabla f \left( x^{(k+1)} \right) - \nabla f \left( x^{(k)} \right) \\ z^{(k)} &= A^{(k)} y^{(k)} \end{aligned}$$

$$x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$$
  

$$\to \Delta x^{(k)} = -\alpha_k A^{(k)} \nabla f(x^{(k)})$$
  

$$c^{(k)} = \nabla f(x^{(k)})$$
  

$$f(x^{(k+1)}) = f(x^{(k)}) + c^{(k)^T} \Delta x^{(k)}$$
  

$$\Delta f(x^{(k)}) = -\alpha^{(k)} c^{(k)^T} A^{(k)} c^{(k)} < 0$$

### DFP Method (2)



# BFGS Method (1)

- Broyden-Fletcher-Goldfarb-Shanno (1981)
  - Direct update the Hessian matrix
  - Most popular and effective

$$\begin{aligned} x^{(k+1)} &= x^{(k)} + \alpha_k d^{(k)} \\ H^{(k)} d^{(k)} &= -\nabla f \left( x^{(k)} \right) \\ H^{(k+1)} &= H^{(k)} + \frac{y^{(k)} y^{(k)^T}}{y^{(k)^T} s^{(k)}} - \frac{H^{(k)} s^{(k)} s^{(k)^T} H^{(k)}}{s^{(k)^T} H^{(k)} s^{(k)}} \\ &\xrightarrow{s^{(k)} = x^{(k+1)} - x^{(k)} = \alpha_k d^{(k)}}_{H^{(k+1)} = -\alpha_k c^{(k)}} H^{(k+1)} = H^{(k)} + \frac{y^{(k)} y^{(k)^T}}{y^{(k)^T} s^{(k)}} + \frac{c^{(k)} c^{(k)^T}}{c^{(k)^T} d^{(k)}} \\ s^{(k)} &= \alpha_k d^{(k)} = x^{(k+1)} - x^{(k)} \\ y^{(k)} &= c^{(k+1)} - c^{(k)} = \nabla f \left( x^{(k+1)} \right) - \nabla f \left( x^{(k)} \right) \end{aligned}$$

### BFGS Method (2)



# Remarks

- DFP and BFGS methods have theoretical properties that guarantee
  - Superlinear (fast) convergence rate
  - Global convergence under certain conditions
- Duals of each other:  $s \leftrightarrow y$ ,  $H \leftrightarrow A$
- Both methods could fail for nonlinear problems,
  - DFP is highly sensitive to inaccuracies in line searches.
  - Both methods can get stuck on a saddle point.
  - Update of Hessian becomes "corrupted" by round-off and other inaccuracies.
- All kinds of "tricks" such as scaling and preconditioning exist to boost the performance of the methods

### **Gradient-Based Methods**

| Method                | Direction                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Steepest<br>Descent   | $\boldsymbol{d}^{(k)} = -\nabla f(\boldsymbol{x}^{(k)})$                                                                                                                                                                                                                                                                                                      |
| Conjugate<br>Gradient | $\boldsymbol{d}^{(k)} = -\nabla f(\boldsymbol{x}^{(k)}) + \beta_k \boldsymbol{d}^{(k-1)} \text{ where } \beta_k = \left\  \nabla f(\boldsymbol{x}^{(k)}) \right\ ^2 / \left\  \nabla f(\boldsymbol{x}^{(k-1)}) \right\ ^2$                                                                                                                                    |
| Newton's              | $\boldsymbol{d}^{(k)} = -\boldsymbol{H}^{-1} \nabla f\left(\boldsymbol{x}^{(k)}\right)$                                                                                                                                                                                                                                                                       |
| Quasi-Newton          | DFP: $d^{(k)} = -A\nabla f(\mathbf{x}^{(k)})$ where $A^{(k+1)} = A^{(k)} + \frac{s^{(k)}s^{(k)^{T}}}{s^{(k)^{T}}y^{(k)}} - \frac{z^{(k)}z^{(k)^{T}}}{y^{(k)^{T}}z^{(k)}}$<br>BFGS: $H^{(k)}d^{(k)} = -\nabla f(\mathbf{x}^{(k)})$ where $H^{(k+1)} = H^{(k)} + \frac{y^{(k)}y^{(k)^{T}}}{y^{(k)^{T}}s^{(k)}} + \frac{c^{(k)}c^{(k)^{T}}}{c^{(k)^{T}}d^{(k)}}$ |

# Rate/Order of Convergence

• Algorithm has p order of convergence if

$$0 \le \beta = \lim_{k \to \infty} \frac{\left\| x^{(k+1)} - x^* \right\|}{\left\| x^{(k)} - x^* \right\|^p} < \infty$$

 $\beta$ : convergence ratio (asymptotic error constant)

- Linear convergence rate: p = 1,  $\beta \le 1$ 
  - Steepest Descent Method
- Superlinear convergence: p = 1,  $\beta = 0$ 
  - Quasi-Newton Method
- Quadratic convergence: p = 2
  - Newton's Method