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Contents

• Basic concepts
• Linearization of the constrained problem
• Sequential Linear Programming
• Sequential Quadratic Programming

– Search direction, step size

• Constrained steepest-descent method
• Potential constraint strategy
• Other numerical optimization method

– Method of feasible directions
– Gradient projection method
– Generalized reduced gradient method
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Classification

• Primal Method (direct method)
– Search method that works on the original problem directly by 

searching through the feasible region for the optimal solution

• Transformation Method (indirect method): Ch.11.7
– Convert a constrained optimization problem to a sequence of 

unconstrained optimization problems
– Barrier and penalty function methods
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Constrained Optimization Methods

Direct (Primal) Methods Indirect Methods
 Objective and constraint approximation 
methods

– Sequential Linear Programming method
– Sequential Quadratic Programming method
 Gradient Projection Method
 Methods of Feasible Directions
 Generalized Reduced Gradient Method

 Sequential unconstrained 
minimization technique

– Interior penalty function method
– Exterior penalty function method
– Augmented Lagrange multiplier 

method
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Characteristics of  a Constrained Problem (1)

• The constraints may have no effect on the optimum point.
– In most practical problems, it is difficult to identify whether the 

constraints have an influence on the minimum point.

• The optimum (unique) solution occurs on a constraint 
boundary.
– The negative of the gradient must be expressible as a positive 

linear combination of the gradients of the active constraints.
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Characteristics of  a Constrained Problem (2)

– If the objective function has two or more unconstrained local 
minima, the constrained problem may have multiple minima.

– Even if the objective function has a single unconstrained 
minimum, the constraints may introduce multiple local 
minima.
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Basic Concepts (1)

• From feasible starting point (inside the feasible region)
– : Unconstrained stationary pointcheck sufficient condition
– : Moving along a descent direction

• (Assume the optimum is on the boundary of the constraint set)
• Travel along a tangent to the boundary correct to a feasible point
• Deflect the tangential direction, toward the feasible region line search 
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Basic Concepts (2)

• From infeasible starting point
– Correct constraints to reach the constraint boundary same 

as previous steps
– Iterate through the infeasible region to the optimum point
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Basic Concepts (3)

• Numerical algorithm
– Linearization of cost and constraint functions about the 

current design point
– Definition of a search direction determination subproblem

using the linearized functions
– Solution of the subproblem that gives a search direction in 

the design space.
– Calculation of a step size to minimize a descent function in 

the search direction
• Constraint status @ a design point

– Active / Inactive / Violated / Active
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Basic Concepts (4)

• Constraint normalization
– Same tolerance() can be applied
– Exception: divided by zero, undesirable situation(linearnonlinear)

• Descent (merit) function
– A function used to monitor progress toward the minimum
– Cost function + ?

• Convergent algorithm
– Descent function, proper direction, closed and bound feasible set
– Robust method

• Potential constraint strategy (Ch.13.1)
– Numerical algorithms that use gradients of only a subset of the 

constraints
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Sequential Linear Programming

• Basic idea
– Use linear approximation of the nonlinear functions and apply 

standard linear programming techniques
– Repeated process successively as the optimization process
– Major concern: How far from the point of interest are these 

approximations valid? move limits: depend on degree of nonlinearity)

– Some fraction of the current design variables (1~100%)

• Quite powerful and efficient for engineering design
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Linearization
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SLP Algorithm
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<Move limit>
• Bound the linearized subproblem
• Design change w/o line search
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Example 12.1+12.4  4.31
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Example 12.3
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Observations

• Cannot be used as a black box approach for 
engineering design problems
– Trial and error process for the selection of move limits

• May not convergent since no descent function is 
defined and line search is not performed along the 
search direction

• Rate of convergence and performance depend (to a 
large extent) on the selection of the move limits
– Lack of robustness and uncertainty

• Simple conceptually as well as numerically
– Improved designs in practice rather than the precise optimum
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Quadratic Programming Subproblem

• Quadratic cost function + linear constraints
• SLP: linear move limits  quadratic step size constraint
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Example 12.5 (1)
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Example 12.5 (2)
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Solution of QP problems
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Solution for QP problem
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Simplex method for solving QP problem

• Wolfe(1959)Hadley(1964)
– Solve as a linear program using the Phase I simplex method
– Fail to converge when H is positive semidefinite if c  0

• Lemke(1965)
– Complementary pivot method

• Phase I:
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