Contents

- Basic concepts
- Linearization of the constrained problem
- Sequential Linear Programming
- Sequential Quadratic Programming
 - Search direction, step size
- Constrained steepest-descent method
- Potential constraint strategy
- Other numerical optimization method
 - Method of feasible directions
 - Gradient projection method
 - Generalized reduced gradient method

Classification

Find
$$\mathbf{x} = (x_1, ..., x_n)$$
 which minimizes $f(\mathbf{x}) = f(x_1, ..., x_n)$
subject to $\begin{cases} h_i(\mathbf{x}) = h_i(x_1, ..., x_n) = 0; & i = 1, ..., p \\ g_j(\mathbf{x}) = g_j(x_1, ..., x_n) \le 0; & i = 1, ..., m \\ x_{kl} \le x_k \le x_{ku}; & k = 1, ..., n \end{cases}$

- Primal Method (direct method)
 - Search method that works on the original problem directly by searching through the feasible region for the optimal solution
- Transformation Method (indirect method): Ch.11.7
 - Convert a constrained optimization problem to a sequence of unconstrained optimization problems
 - Barrier and penalty function methods

Constrained Optimization Methods

Direct (Primal) Methods	Indirect Methods
 Objective and constraint approximation methods 	 Sequential unconstrained minimization technique
 Sequential Linear Programming method Sequential Quadratic Programming method Gradient Projection Method Methods of Feasible Directions Generalized Reduced Gradient Method 	 Interior penalty function method Exterior penalty function method Augmented Lagrange multiplier method

Characteristics of a Constrained Problem (1)

- The constraints may have no effect on the optimum point.
 - In most practical problems, it is difficult to identify whether the constraints have an influence on the minimum point.
- The optimum (unique) solution occurs on a constraint boundary.
 - The negative of the gradient must be expressible as a positive linear combination of the gradients of the active constraints.

Characteristics of a Constrained Problem (2)

- If the objective function has two or more unconstrained local minima, the constrained problem may have multiple minima.
- Even if the objective function has a single unconstrained minimum, the constraints may introduce multiple local minima.

Basic Concepts (1)

- From feasible starting point (inside the feasible region)
 - $\nabla f = 0$: Unconstrained stationary point->check sufficient condition
 - $-\nabla f \neq 0$: Moving along a descent direction
 - (Assume the optimum is on the boundary of the constraint set)
 - Travel along a tangent to the boundary \rightarrow correct to a feasible point
 - Deflect the tangential direction, toward the feasible region \rightarrow line search

Basic Concepts (2)

- From infeasible starting point
 - Correct constraints to reach the constraint boundary →same as previous steps
 - Iterate through the infeasible region to the optimum point

Basic Concepts (3)

- Numerical algorithm
 - Linearization of cost and constraint functions about the current design point
 - Definition of a search direction determination subproblem using the linearized functions
 - Solution of the subproblem that gives a search direction in the design space.
 - Calculation of a step size to minimize a descent function in the search direction
- Constraint status @ a design point
 - Active / Inactive / Violated / ε –Active

Basic Concepts (4)

- Constraint normalization
 - Same tolerance(ε) can be applied
 - Exception: divided by zero, undesirable situation(linear \rightarrow nonlinear)
- Descent (merit) function
 - A function used to monitor progress toward the minimum
 - Cost function + ?
- Convergent algorithm
 - Descent function, proper direction, closed and bound feasible set
 - Robust method
- Potential constraint strategy (Ch.13.1)
 - Numerical algorithms that use gradients of only a subset of the constraints

$$I_k = [\{j | j = 1 \text{ to } p \text{ for equalities}\} \text{ and } \{i | g_i(\mathbf{x}^{(k)}) + \varepsilon \ge 0, i = 1 \text{ to } m\}]$$

Sequential Linear Programming

- Basic idea
 - Use linear approximation of the nonlinear functions and apply standard linear programming techniques
 - Repeated process successively as the optimization process
 - Major concern: How far from the point of interest are these approximations valid? move limits: depend on degree of nonlinearity)

$$-\Delta_{il}^{(k)} \le d_i \le \Delta_{iu}^{(k)}, \quad i = 1, \dots, n$$

- Some fraction of the current design variables (1~100%)
- Quite powerful and efficient for engineering design

Linearization

min
$$f(\mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}) \cong f(\mathbf{x}^{(k)}) + \nabla f^T(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)}$$

subject to $h_j(\mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}) \cong h_j(\mathbf{x}^{(k)}) + \nabla h_j^T(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)} = 0, \quad j = 1, ..., p$
 $g_j(\mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}) \cong g_j(\mathbf{x}^{(k)}) + \nabla g_j^T(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)} \le 0, \quad j = 1, ..., m$

LP subproblem

$$\min \quad \bar{f} = \sum_{i=1}^{n} \frac{\partial f(\mathbf{x}^{(k)})}{\partial x_{i}} \Delta \mathbf{x}^{(k)} \\ \text{s. t. } \sum_{i=1}^{n} \frac{\partial h_{j}(\mathbf{x}^{(k)})}{\partial x_{i}} \Delta \mathbf{x}^{(k)} = -h_{j}(\mathbf{x}^{(k)}) \\ \sum_{i=1}^{n} \frac{\partial g_{j}(\mathbf{x}^{(k)})}{\partial x_{i}} \Delta \mathbf{x}^{(k)} \leq -g_{j}(\mathbf{x}^{(k)}) \\ \end{bmatrix} \rightarrow \begin{cases} \min \quad \bar{f} = \sum_{i=1}^{n} c_{i}d_{i} \\ \text{s. t. } \sum_{i=1}^{n} n_{ij}d_{i} = e_{j} \\ \sum_{i=1}^{n} a_{ij}d_{i} \leq b_{j} \\ \end{cases} \rightarrow \begin{cases} \min \quad \bar{f} = \mathbf{c}^{T}d \\ \text{s. t. } \sum_{i=1}^{n} n_{ij}d_{i} = e_{j} \\ \sum_{i=1}^{n} a_{ij}d_{i} \leq b_{j} \end{cases} \rightarrow \begin{cases} \min \quad \bar{f} = \mathbf{c}^{T}d \\ \text{s. t. } \sum_{i=1}^{n} a_{ij}d_{i} \leq b_{j} \end{cases} \rightarrow \begin{cases} \min \quad \bar{f} = \mathbf{c}^{T}d \\ \text{s. t. } \sum_{i=1}^{n} a_{ij}d_{i} \leq b_{j} \end{cases} \end{cases}$$

Optimization Techniques

SLP Algorithm

Example 12.1+12.4 ← 4.31

Optimization Techniques

Example 12.3

Minimize
$$f(\mathbf{x}) = x_1^2 + x_2^2 - 3x_1x_2$$

subject to $g_1(\mathbf{x}) = \frac{1}{6}x_1^2 + \frac{1}{6}x_2^2 - 1 \le 0$
 $g_2(\mathbf{x}) = -x_1 \le 0$
 $g_3(\mathbf{x}) = -x_2 \le 0$
@ $\underbrace{\mathbf{x}^{(0)} = (3,3)}_{\text{infeasible}}$ proper move limit?

Observations

- Cannot be used as a black box approach for engineering design problems
 - Trial and error process for the selection of move limits
- May not convergent since no descent function is defined and line search is not performed along the search direction
- Rate of convergence and performance depend (to a large extent) on the selection of the move limits
 - Lack of robustness and uncertainty
- Simple conceptually as well as numerically
 - Improved designs in practice rather than the precise optimum

Quadratic Programming Subproblem

- Quadratic cost function + linear constraints
- SLP: linear move limits \rightarrow quadratic step size constraint \bullet

Optimization Technique

Example 12.5 (1)

Minimize
$$f(x) = 2x_1^3 + 15x_2^2 - 8x_1x_2 - 4x_1$$

subject to $h(x) = x_1^2 + x_1x_2 + 1.0 = 0$
 $g(x) = x_1 - \frac{1}{4}x_2^2 - 1.0 \le 0$

$$\nabla f = (6x_1^2 - 8x_2 - 4, 30x_2 - 8x_1)$$

$$\nabla h = (2x_1 + x_2, x_1)$$

$$\nabla g = (1, -x_2/2)$$

$$\rightarrow \text{ linearize } @(1, 1)$$

$$f(1, 1) = 5$$

$$h(1, 1) = 3 \neq 0 \text{ (violation)}$$

$$g(1, 1) = -0.25 < 0 \text{ (inactive)}$$

$$c = \nabla f = (-6, 22)$$

$$\nabla h = (3, 1)$$

$$\nabla g = (1, -0.5)$$

point A:
$$\mathbf{x}^* = (1, -2), f(\mathbf{x}^*) = 74$$

point B: $\mathbf{x}^* = (-1, 2), f(\mathbf{x}^*) = 78$

Numerical Methods for Constrained Optimum Design - 17

Example 12.5 (2)

< QP subproblem > Minimize $\bar{f} = -6d_1 + 22d_2 + 0.5(d_1^2 + d_2^2)$ subject to $3d_1 + d_2 = -3$ $d_1 - 0.5d_2 \le 0.25$

$$\rightarrow d_1 = -0.5, d_2 = -1.5, \bar{f} = -28.75$$

Optimiza

indificiencia internous for constrained Optimum Design - 18

Solution of QP problems

$$\begin{aligned} \text{Minimize} \quad q(\mathbf{x}) &= \mathbf{c}^T \mathbf{x} + 0.5 \mathbf{x}^T \mathbf{H} \mathbf{x} \\ \text{subject to} \quad \mathbf{A}^T \mathbf{x} \leq \mathbf{b} \to \mathbf{A}^T \mathbf{x} + \mathbf{s} = \mathbf{b} \\ \mathbf{N}^T \mathbf{x} &= \mathbf{e} \\ \mathbf{x} \geq \mathbf{0} \to -\mathbf{x} \leq \mathbf{0} \\ L &= \mathbf{c}^T \mathbf{x} + 0.5 \mathbf{x}^T \mathbf{H} \mathbf{x} + \mathbf{u}^T \left(\mathbf{A}^T \mathbf{x} + \mathbf{s} - \mathbf{b} \right) + \mathbf{v}^T \left(\mathbf{N}^T \mathbf{x} - \mathbf{e} \right) - \zeta^T \mathbf{x} \\ \partial L / \partial \mathbf{x} &= \mathbf{c} + \mathbf{H} \mathbf{x} + \mathbf{A} \mathbf{u} + \mathbf{N} \mathbf{v} - \zeta = 0 \\ \mathbf{A}^T \mathbf{x} + \mathbf{s} - \mathbf{b} &= \mathbf{0} \\ \mathbf{N}^T \mathbf{x} - \mathbf{e} &= \mathbf{0} \\ u_i s_i &= 0; \quad i = 1, \dots, m \\ \zeta_i x_i &= 0; \quad i = 1, \dots, m \\ \varsigma_i, u_i \geq 0; \quad i = 1, \dots, m \\ \zeta_i \geq 0; \quad i = 1, \dots, m \end{aligned}$$

Optimization Techniques

Solution for QP problem

$$\frac{\partial L}{\partial x} = c + Hx + Au + Nv - \zeta = 0 \\ A^{T}x + s - b = 0 \\ N^{T}x - e = 0 \end{cases} \xrightarrow{v=y-z} B_{[(m+n+p)\times 2(m+n+p)]}X = D \\ (m+n+p) \underbrace{ \begin{bmatrix} H_{(n\times n)} & A_{(n\times m)} & -I_{(n\times n)} & 0_{(n\times m)} & N_{(n\times p)} & -N_{(n\times p)} \\ A^{T}_{(m\times n)} & 0 & 0 & I & 0 & 0 \\ N^{T}_{(p\times n)} & 0 & 0 & 0 & 0 & 0 \\ N^{T}_{(p\times n)} & 0 & 0 & 0 & 0 & 0 \\ 2(m+n+p) & 2(m+n+p) & 2(m+n+p) \\ \zeta_{i}x_{i} = 0; \quad i = 1, \dots, m \\ \zeta_{i}x_{i} = 0; \quad i = 1, \dots, m \\ \zeta_{i} \ge 0; \quad i = 1, \dots, m \\ \zeta_{i} \ge 0; \quad i = 1, \dots, n \end{bmatrix} \rightarrow \underbrace{ \begin{bmatrix} X_{i}X_{n+m+i} = 0; & i = 1, \dots, n+m \\ X_{i} \ge 0; & i = 1, \dots, n \\ X_{i} \ge 0; \quad i = 1, \dots, n \end{bmatrix}}_{\zeta_{i} \ge 0; \quad i = 1, \dots, n \end{bmatrix} \rightarrow \underbrace{ \begin{bmatrix} X_{i}X_{n+m+i} = 0; & i = 1, \dots, n+m \\ X_{i} \ge 0; & i = 1, \dots, n \end{bmatrix}}_{\zeta_{i} \ge 0; \quad i = 1, \dots, n \end{pmatrix}$$

Optimization Techniques

Simplex method for solving QP problem

- Wolfe(1959) \rightarrow Hadley(1964)
 - Solve as a linear program using the Phase I simplex method
 - Fail to converge when H is positive semidefinite if $c \neq 0$
- Lemke(1965)
 - Complementary pivot method
- Phase I:

$$BX + \underbrace{Y}_{artificial} = \underbrace{D}_{nonnegative}$$

$$w = \sum_{i=1}^{m+n+p} Y_i = \sum_{i=1}^{m+n+p} D_i - \sum_{j=1}^{2(m+n+p)} \sum_{i=1}^{m+n+p} B_{ij} X_j = w_0 + \sum_{j=1}^{2(m+n+p)} C_j X_j$$

$$\left(\text{where} \quad w_0 = \sum_{i=1}^{m+n+p} D_i, \ C_j = -\sum_{i=1}^{m+n+p} B_{ij} \right)$$