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Classification

Find x = (X,,..., X, )which minimizes f(x)= f(x,...,x )
h.(x)=h(x,,... xn)—O; i=1...,p
subject to< g, (x)=g,(x,. )SO; i=1...,m
Xg <X <X k=1,

 Primal Method (direct method)

— Search method that works on the original problem directly by
searching through the feasible region for the optimal solution

e Transformation Method (indirect method): Ch.11.7

— Convert a constrained optimization problem to a sequence of
unconstrained optimization problems

— Barrier and penalty function methods
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Constrained Optimization Methods

Direct (Primal) Methods

Indirect Methods

» Objective and constraint approximation
methods

— Sequential Linear Programming method

— Sequential Quadratic Programming method
= Gradient Projection Method
= Methods of Feasible Directions
= Generalized Reduced Gradient Method

= Sequential unconstrained
minimization technique
— Interior penalty function method
— Exterior penalty function method

— Augmented Lagrange multiplier
method
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Characteristics of a Constrained Problem (1)

« The constraints may have no effect on the optimum point.

— In most practical problems, it is difficult to identify whether the
constraints have an influence on the minimum point.

e The optimum (unique) solution occurs on a constraint
boundary.

— The negative of the gradient must be expressible as a positive
linear combination of the gradients of the active constraints.
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Characteristics of a Constrained Problem (2)

— If the objective function has two or more unconstrained local
minima, the constrained problem may have multiple minima.

— Even if the objective function has a single unconstrained
minimum, the constraints may introduce multiple local
minima.
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Basic Concepts (1)

 From feasible starting point (inside the feasible region)
— Vf = 0: Unconstrained stationary point—check sufficient condition

— Vf # 0: Moving along a descent direction
* (Assume the optimum is on the boundary of the constraint set)
* Travel along a tangent to the boundary —correct to a feasible point
» Deflect the tangential direction, toward the feasible region —line search

Optimum point

X(k+1) — X(k) +Ax(k)

= x® +akd(k)
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Basic Concepts (2)

 From infeasible starting point

— Correct constraints to reach the constraint boundary —->same
as previous steps

— lIterate through the infeasible region to the optimum point

Optimum point
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Basic Concepts (3)

 Numerical algorithm
— Linearization of cost and constraint functions about the
current design point

— Definition of a search direction determination subproblem
using the linearized functions

— Solution of the subproblem that gives a search direction in
the design space.

— Calculation of a step size to minimize a descent function in
the search direction
e Constraint status @ a design point

— Active / Inactive / Violated / e-Active
e D

Infeasible

~
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Basic Concepts (4)

e Constraint normalization
— Same tolerance(g) can be applied
— EXxception: divided by zero, undesirable situation(linear—nonlinear)

e Descent (merit) function
— A function used to monitor progress toward the minimum
— Cost function + ?

« Convergent algorithm

— Descent function, proper direction, closed and bound feasible set
— Robust method

e Potential constraint strategy (Ch.13.1)

— Numerical algorithms that use gradients of only a subset of the
constraints

I, = [{i|j =1to p for equalities}and {i|g,(x"))+ &> 0,i =1to m|]
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Sequential Linear Programming

 Basic idea

— Use linear approximation of the nonlinear functions and apply
standard linear programming techniques

— Repeated process successively as the optimization process

— Major concern: How far from the point of interest are these
approximations valid? move limits: depend on degree of nonlinearity)

~AW<d <AY i=1...,n
— Some fraction of the current design variables (1~100%)
* Quite powerful and efficient for engineering design
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Linearization

~—

min £ (x® + ax®)z £ (x©)+ vET (x1 Jaxt
subjectto h, (x(k) + Ax®)

o] (x®) + Ax®)
LP subproblem
) — N of X(k) ) ( 3 n )
min  f :Z%Ax(k) min f chidi _
=L | i=L min f=c'd

ij i

Ax(k):—hj(x(k))$—><s.t. Y nd =e; t>3s.t. NTd=e
i=1

Ax®) <~ g, (x®) > a,d, <b, ATd<b
\ = ) \
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SLP Algorithm

x? k=0,¢,¢,

&, constraint feasibility parameter
&, stopping parameter

Evaluate f (x(k) ) h, (X(k) ) 9, (X(k))
of (x) h;(x") og,(x)

and ,
OX, OX, OX.
Define LP subproblem and Solve for d <Move limit>
o » Bound the linearized subproblem
(Select the proper move limit) « Design change w/o line search

'

X =x%

x KD — x (k) L g k)
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Example 12.1+12.4 < 4.31
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Minimize f(x)=x2+x," —3%X,

. 1, 1 ,
subject to g, (X)==x"+=x,°-1<0 5
6 6 Linearized constraint g;(x) =Xy + x,—4=0
_ 4 at the point (1, 1)
gZ(X)_ X <0 =9 =
g;(x)=-x,<0
O - - -
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Example 12.3

Minimize f(x)=x"+X," —3%X,

_ 1 1 Move limit: 20%
subject to gl(x) - Exlz +€X22 ~1=0 Move limit: 100%
9,(X)=-% <0 %
9;(x)=-x, <0 s
@ x'° = (3,3) proper move limit? . e

infeasible

Y
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Observations

e Cannot be used as a black box approach for
engineering design problems
— Trial and error process for the selection of move limits

 May not convergent since no descent function is
defined and line search is not performed along the
search direction

« Rate of convergence and performance depend (to a
large extent) on the selection of the move limits
— Lack of robustness and uncertainty

o Simple conceptually as well as numerically
— Improved designs in practice rather than the precise optimum
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Quadratic Programming Subproblem

Quadratic cost function + linear constraints
 SLP: linear move limits — quadratic step size constraint

A <d. < —>HdH<§—>OSZ £2

min f—zzcidi ( ) \ Feasible
i min f =c'd
s.t. Zn”d,—e j=1...,p s. t. _Nsze (min f=c"d+0.5d"d
Ly ("Xp)T L¢sis.t. N'd=e
Zaljdl_b j:la---’m (né‘l) dgb ATd Sb
. | 05d'd<¢&?)
0.52 (di) <& Strictly convex >
i J Minimum is global and unique

(d,+¢,) +(d, +¢,)" =r? > d.? +¢? +2¢,d, +d,? +¢,% +2¢,d, =r?

1(rz—clz—c2 )=cd, +c,d, += (d +d,’): hypersphere with its center at —c
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Example 12.5 (1)

subjectto h(x)=x"+xx, +1.0=0

g(x)= xl—%xz2 ~-1.0<0

Minimize f(x)=2x’+15x," —8x%X,

—4x,

Optimization Tec.....quw -

f = (6% —8x, — 4,30, -8x,)
Vh=(2x +X,, X,)

Vg =(1-x,/2)

— linearize @(1,1)

f(1,1)=5

h(1,1)=3=0 (violation)
g(1,1)=-0.25<0 (inactive)
c=Vf =(-6,22)

vh=(3,1)

Vg =(1,-0.5)

point A: X" =(1,-2), f(x")=74
pointB: x" =(-1,2), f(x*): 78
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Example 12.5 (2)

< LPsubproblem > < QP subproblem >

Min_imize f =-6d, +22d, Minimize f =-6d, +22d, +0.5(d12 + d22)
subjectto 3d, +d, =-3 subjectto 3d, +d, =3
d, -0.5d, <0.25 d, —0.5d, <0.25

_05<d,,d, <0.5
[move limit : 50% (infeasible) — 100%]

) — d,=-05, d,=-1.5 f =-28.75
— d,=-2/3, d,=-1.0, f =-18

- =3 —‘l‘ /é —é— \\
o / =
/ /

—
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Solution of QP problems

Minimize q(x)=c"x+0.5x"Hx
subjectto A'X<b—>A'xX+s=Db

N'x=¢

X>20—>-—x<0
L:ch+O.5xTHx+uT(ATx+s—b)+vT(NTx—e)—§Tx
oL/ox=c+HX+Au+Nv-¢=0

A'X+s-b=0
N'x-—e=0

us, =0; 1=1...,m
¢x =0; 1=1...,n
s,u>0; 1=1...,m

¢.>0; 1=1...,n
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Solution for QP problem

QE:C+HX+AU+NV—§=O

OX
ATX+S—b=O &L B[(m+n+p)xz(m+n+p)]x =D
N'x—-e=0
-)((nxl)_
" H .y 0 N SN e
(nxn) A(nxm) (nxn) (nxm) (nxp) (nxp) éx
mnep)| Alma) 0 0 | 0 0 S“*” = b
NT(pn) O 0 0 0 0 | y‘"‘x” e |
2(mJ:fn+p) (p1)
| Z(pa)
us, =0; i=1...,m|

é/iXi:O; 1=1...,n & Xixn+m+i:O; i=1....n4+m
%
S' UZO, i:]-a---ym X|201 i:]-,.,2(m+n+ p)

¢ >0; i1=1...,n
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Simplex method for solving QP problem

 Wolfe(1959)—»Hadley(1964)

— Solve as a linear program using the Phase | simplex method
— Fail to converge when H is positive semidefinite if c # 0

 Lemke(1965)

— Complementary pivot method
 Phase I:

Optimization Techniques

BX+ Y = D
- -

artificial nonnegative
variable

m+n+p m+n+p 2(m+n+p)m+n+p 2(m+n+p)

W= ZY—ZD— > ZB”X = W, + Zcx

=1

(Where W, = mi?:)i, C, = —mfpl)?,ijj
i=1 i=1
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