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Descent Function

• Property
– Its value at the optimum point for the optimization problem 

must be the same as that for the original cost function 
– If it is required to reduce, progress will be made towards the 

minimum point for the original problem

• Pshenichny’s descent function (exact penalty function)
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Example 12.7+8
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Constrained Steepest Descent (CSD) Method
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• search direction
– modification of the steepest–descent direction to satisfy constraints 
– direction obtained by projecting the steepest–descent direction on 

to the constraint tangent hyperplane

• observations
– first-order method that can treat equality and inequality constraints 
– converges to a local minimum point starting from an arbitrary point, 

which is feasible or infeasible
– potential constraint strategy in not introduced
– Golden section search (inefficient)  Inexact line search 
– rate of convergence: improved by including second-order 

information in the QP subproblem
– starting point can affect performance of the algorithm 

CSD Algorithm: Some Observations 
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Practical Applications 

• potential constraint strategy to define the QP 
subproblem

• inexact line search
• constrained quasi-Newton methods
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Potential Constraint Strategy

• numerical algorithms that use gradients of only a 
subset of the constraints in the definition of this 
subproblem
– only a subset of the inequality constraints is active at the 

minimum point
– this subset of active constraints is not known a priori and 

must be determined as part of the solution to the problem
– efficiency of the entire iterative process: number of gradient 

evaluations, dimension of the subproblem

• potential constraint index

      migipjjI k
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Example 13.2
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Inexact Step Size Calculation

• Step size determination
– Inaccurate line search (Armijo’s rule)
– Trial step size
– Parameter γ
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Example 13.3  12.8
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Example 13.4  12.4  4.31
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Sequential Quadratic Programming (SQP)

• QP subproblem  curvature information of Lagrange 
function into the quadratic cost function
– Constrained Quasi-Newton Methods
– Constrained Variable Metric(CVM)
– Recursive Quadratic Programming(RQP)

• Gradient of the Lagrange function at the two points 
Approximate Hessian of the Lagrange function

• quite simple and straightforward, but very effective 
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Derivation of QP subproblem
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Quasi-Newton Hessian Approximation

   

     

               
   

   

       

   

   
       

1

1

1
2

3 2
1 2

2

2 1

3

( ) (
( 1) ( )

, , , ,

1            if  0.2  
θ 0.8

   otherwise

θ 1 θ

[BFGS]

k k
k

k k k

k k k k k k k

k k

k k k kT Tk k k k

k k k

k k

k
k k

L L

y yH H






  


 












 


   

 
       

  

  
  

  

 

s d

z H s

y x u v x u v

s y
w w z zs z H H

w y z

s w

( ) ( 1) ( ) ( )

( ) ( ) ( )
) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( 1) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

k k k k
k

k k k
k

s x x dk T k k k T k k k T k k T
H s c k k

k T k k T k k k T k k T k

H s s H y y c cH H
y s s H s y s c d




  
     



Optimization Techniques Numerical Methods for Constrained Optimum Design - 35

(0)
0 1

)
2

(0 ,,  0, 1 , ,   k R   x H I

( )
1 2,   ?k

kV   d * ( )kx xYes

     
     

 

( ) ( ) ( )

( ) ( ) ( )

E

Update the Hessian of the Lagran

valuat

ge functi

e , ,

an

on if

d , ,

0

k k k
j j

k k k
j j

i i i

f h g

g

x x
k

f h

x

  

 





x x x

x x x

( 1) ( ) ( )k k k
k

  x x d

     Define QP subproblem and Solve for and Lagrange multipliers  and k k kd v u

No

1

2

: constraint feasibility parameter
: stopping parameter







( )Obtain  minimize the descent function along k
k d

1

1
kR R

k k
 
 

 Check the necessary condition: max ,k kR R r

SQP Algorithm



Optimization Techniques Numerical Methods for Constrained Optimum Design - 36

Examples

• Example 4.31: KKT conditions
• Example 12.4: SLP
• Example 13.4: CSD
• Example 13.9: SQP
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Descent Functions in SQP

• play an important role in QP methods
• Nondifferentiable vs. differentiable
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Other Numerical Optimization Methods

• Method of Feasible Directions 
• Gradient Projection Method 
• Generalized Reduced Gradient Method 
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Method of Feasible Directions

• Zoutendijk(1960)
• Inequality constrained problem

– Feasible region has an ‘interior’
– Equality constraints? penalty function

• Direction
– Define a linearized subproblem @ the current feasible point

• Step size
– Reduce the cost function as well as maintain feasibility
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Usable-Feasible Direction

      
  0 :direction feasible

,0  :direction usable
)(

)()1()(



 

dx

xxdx
Tk

kkTk

g

fff



Optimization Techniques Numerical Methods for Constrained Optimum Design - 41

FDM: Direction-finding
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Push-off factor

• Nonlinear and convex constraints
– Small move constraints violation
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FDM: Line Search
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Major Shortcomings

• For general problems, there may not exist any 
feasible direction.
– Relax definition of feasibility or allow points to deviate
– Introduce concept of moving along curves rather than 

straight lines

• Feasible direction methods can be subject to 
jamming/zigzagging, that is, it does not converge to a 
constrained local minimum.
– In Zoutendijk’s method, the method for finding a feasible 

direction changes is another constraint
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Gradient Projection Methods

• Rosen(1960)
– Does not require the solution of an auxiliary optimization 

problem to find the usable feasible direction
– Effective for linear constraints

• Determine the direction by projecting the steepest 
descent direction onto the tangent plane

• Major task is to calculate projection matrix P and 
subsequent feasible direction vector d.
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Gradient Projection: Direction

• P projects the vector f(x) onto the intersection of 
all the hyperplanes perpendicular to the vectors 
gj(x), jJ
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Direction-finding
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Gradient Projection: Line Search
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Generalized Reduced Gradient Method

• Elimination of variables using the equality constraints
– One variable can be reduced from the set xi for each of the 

m+p equality constraints
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Reduced Gradient
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GRG: Direction
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GRG: Line Search
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GRG: Correction

– Increased function value
– Bound violation
– Increased constraint violation

       yyyzCxhBy0xhxh dddd oldnew  1
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GRG: Algorithm

– Start with an initial trial vector x0. Specify the design and 
state variables.

• State variable: avoid singularity of the matrix, B / slack variable
• Design variable: lower and upper bound

– Compute the generalized reduced gradient
– Test for convergence
– Determine the search direction
– Find the minimum along the search direction

• Find an estimate for  as the distance to the nearest side 
constraint

• If the vector xnew corresponding to  is found infeasible, znew is 
held constant and ynew is modified
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Remarks

• Closely related to simplex LP method because 
variables are split into basic and non-basic groups.

• From a theoretical viewpoint, the method behaves 
very much like the gradient projection method.

• Like gradient projection method, it can be regarded 
as a steepest descent method applied on the surface 
defined by the active constraints.

• Reduced gradient method seems to be better than 
gradient projection methods.
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Advantages of Primal Methods

• If the process is terminated before reaching the 
solution (practically for nonlinear problems), the 
terminating point is feasible and probably near optimal.

• Guaranteed that if they generate a convergent 
sequence, then the limit point of that sequence must 
be at least a local constrained minimum.

• Do not rely on a special problem structure, such as 
convexity, hence applicable to general NLP.

• Competitive convergence rates, particularly for linear 
constraints
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Disadvantages of Primal Methods

• They require a Phase I procedure to obtain an initial 
feasible point.

• They are all plagued, particularly for problems with 
nonlinear constraints, with computational difficulties 
arising from the necessity to remain within the 
feasible region as the method progresses.

• Some methods can fail to converge for problems with 
inequality constraints unless elaborate precautions 
are taken.


