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Mixed Variables (MV-OPT)

• Discrete variable
– Value assigned from a given set of values
– Plate thickness, material properties, diameter of reinforcing bars

• Integer variable
– Not divisible as fractions, special class of discrete variables
– Number of bolts, number of teeth in a gear

• Linked discrete variable
– Values for a group of parameters

• Binary variable
– Value of 0 or 1

• Treatment
– Large values: variable as continuous and rounding off the 

optimum solution to the nearest integer
– Small values: ?
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Definition of MV-OPT

• extended by defining some of the variables as continuous 
and others as discrete 

• includes integer variable as well as 0–1 variable problems
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Classification of MV-OPT (1)

• Assumption: focus only on the discrete variables 
– continuous variables in the problem can be treated with an appropriate 

continuous variable optimization method 
– if appropriate, a continuous variable is transformed into a discrete variable 

by defining a grid for it 

• MV-OPT 1: Functions Continuous and Differentiable
– plate thickness from specified values and member radii from the ones 

available in the market 

• MV-OPT 2: Functions Nondifferentiable
– design problems where constraints from a design code are imposed 

(experiments and experience)

• MV-OPT 3: Discrete Variables Cannot Have Nondiscrete Values
– number of strands in a prestressed beam or column, the number of teeth 

in a gear, and the number of bolts for a joint 
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Classification of MV-OPT (2)

• MV-OPT 4: Design Variables Linked to Other Parameters
– structural design with members selected from a catalog, material 

selection, and engine-type selection for automotive

• MV-OPT 5: Combinatorial Problems
– traveling salesman problem, design of a bolt insertion sequence, 

a welding sequence, and a member placement sequence 
between a given set of nodes 
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Overview of Solution Concepts 

• Two basic classes
– Enumerative: full enumeration(            )  partial 

enumeration: branch-and-bound type methods (BBM) 
– Stochastic: simulated annealing, genetic algorithms, and 

other such algorithms

• at a discrete optimum point, none of the inequalities 
may be active 

• final solution is affected by how widely separated the 
allowable discrete values are in the sets Di 

• MV-OPT 1 type 
– solve it first using a continuous variable optimization method 
– optimum value: lower bound for a discrete optimum solution 
– requirement of discreteness of design variables represents 

additional constraints 
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Example

• A furniture manufacturer produces lawn chairs and tables. The profit from the 
sale of each chair is $2 and the profit from the sale of a table is $3. Each 
chair weighs four pounds and each table weighs ten pounds. A supply of 45 
pounds of material is available at hand. The labor per chair is four hours and 
the labor per table is also four hours. Only 23 hours of labor is available. 
Determine the number of  chairs and tables for realizing maximum profit.
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Enumeration Tree
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Zero-One Programming (1)

• Variable values: 0 or 1
• Implicit enumeration

– Standard form

– Classification
• Case 1: The point is feasible.
• Case 2: Feasibility is impossible from this branch.
• Case 3: The function cannot be improved from a previous 

feasible value.
• Case 4: Possibilities for feasibility and improvement exist.
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Zero-One Programming (2)

– Case 1~3: branch is fathomed  backtrack
– Case 4: further search
– Fathoming

• systematic procedure to determine whether improvements 
could be obtained by changing the levels of variables in 
succession

• step where a new variable to be brought in is chosen
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Example
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0 1 1 – 3 4 0 8
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1 0 1 1 3 1 7
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(Explicit enumeration: all the possible values are tried)
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Branch and Bound (1)

– Land and Doig (1960)  Dakin (1965)
– Mixed integers problems
– A relaxed linear programming problem is solved at every stage.
– Additional constraints are then imposed.

• (1) The problem has a solution, and the required variables are integers.
• (2) No feasible solution exists.
• (3) The objective function cannot be improved from its value at a 

previous feasible integer solution.
• (4) Some variables have fractional values and the function may be 

improved.
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Branch and Bound (2)

• Procedure
– Solve the MILP by assuming the variables to be continuous

• If all variables have integer values, stop. Otherwise, set fL
– Branch from the node into two new LP problems by adding a 

new constraint until all the nodes are fathomed
• No feasible solution
• All integer feasible solution
• Other solution (f < fU, noninteger variable)

• Dependence
– Choice of noninteger variable for branching

• Variable with the largest fraction
– Selection of node to be branched

• Smallest value of the objective function
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Example
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Example 15.1: only discrete values
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Example 15.2: nondiscrete values
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BBM for General MV-OPT

• practical applications for nonlinear discrete problems 
– Functions: differentiable, design variables: nondiscrete
– large number of discrete design variables  number of 

subproblems (nodes) becomes large

• strategies to reduce the number of nodes
– variable that is used for branching is fixed to the assigned 

value: reduce dimensionality of the subproblem
– early establishment of a good upper bound on the cost is 

important: choose an appropriate variable for branching 
• distance of a continuous variable from its nearest discrete value 
• cost function value when a variable is assigned a discrete value 
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Generalized Knapsack Problem

– The value carrying certain grocery items in a sack is to be 
maximized, subject to the constraint on the total weight.
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