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Integer Programming (IP)

 integer linear programming ILP  problem
0 1 programming problem

Linear problems with discrete variables
Nonlinear discrete problems sequential linearization procedures
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Integer Linear Programming (ILP)

• Linear discrete programming problem

– Integer linear programming
• Zero/one (binary) ILP  Enumeration tree 

• Mixed Integer Linear Programming (MILP)
•  Branch and bound
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Sequential Linear Discrete Programming (1)
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Sequential Linear Discrete Programming (2)
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Example
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Simulated Annealing (SA)

– S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization 
by simulated annealing”, Science, 220, pp.671-680, 1983

– stochastic approach for locating a good approximation to the 
global minimum of a function

– comes from the annealing process in metallurgy
– involves heating and controlled cooling of a material to 

increase the size of its crystals and reduce their defects
– At high temperatures, the atoms become loose from their 

initial configuration and move randomly, perhaps through the 
states of higher internal energy, to reach a configuration 
having absolute minimum energy 

– cooling process needs to be slow, and enough time needs to 
be spent at each temperature, giving more chance for the 
atoms to find configurations of lower internal energy 
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Simulated Annealing (SA)

– 금속의풀림: 고체를녹을때까지가열하고난후그것을완전
한격자상태의결정체가될때까지식히는물리적과정. 이런
과정중에그고체의자유에너지는최소화

– 개선되지않는이웃해로의이동을확률적으로허용
• 지역최적해에머무는것을방지, 이웃해탐색방법의하나

– 물리적어닐링과시뮬레이티드어닐링의관계

어닐링 시뮬레이티드어닐링

물질 최적화문제

물리적상태 가능해

에너지 비용함수

기저상태 최적화

냉각 국부탐색법
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Metropolis Algorithm

– At each iteration, an “atom” is randomly displaced a small amount 
(random move).

– The energy is calculated for each atom and the difference with the 
energy at its original location is calculated.

– Boltzmann(-Gibbs) probability factor                       is calculated.
• T: temperature of the body,  k: Boltsmann’s constant
• E: energy difference between the two atom states

– If E0, then the new location is accepted.
– Otherwise, a random number(z) is generated between 0 and 1.

• If p(E) > z, the higher energy state is accepted.
• Otherwise, the old atom location is retained and the algorithm 

generates a new location.
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SA: Algorithms

Initial design/temperature

Update design

Neighbor design (random move)

Accept/Reject using
Metropolis criterion

Stop ? STOP

Reduce temperature

YesNo

Improve? No

Yes

Nmax?
No

Yes

1  where  0 1K KT rT r   
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SA: Characteristics

– The quality of the final solution is not affected by the initial 
guess, except that the computational effort may increase 
with wrong starting designs.

– Because of the discrete nature of the function and constraint 
evaluation, the convergence or transition characteristics are 
not affected by the continuity or differentiability of the 
functions.

– The convergence is also not influenced by the convexity 
status of the feasible space.

– The design variables need not be positive.
– The method can be used to solve mixed-integer, discrete, or 

continuous problems.
– For problems involving behavior constraints, an equivalent 

unconstrained function is to be formulated.
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Other methods (1)

• Rounding-off  procedure
– first obtain an optimum solution sing a continuous approach 
– Then, using heuristics, the variables are rounded off to their 

nearest available discrete values to obtain a discrete solution 
– main concern: selection of variables to be increased and the 

variables to be decreased

• Dynamic rounding-off algorithm
– round off variables in a sequence rather than all of them at 

the same time 
– choose a design variable that minimizes the Lagrangian and 

remove that variable from the design variable set 
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Other methods (2)

• Neighborhood search method
– When the number of discrete variables is small and each 

discrete variable has only a few choices 
– explicitly enumerate all of the possibilities 

• Methods for linked discrete variables
– For example, choice of materials, framed structural members
– problems with linked variables are discrete and the problem 

functions are not differentiable with respect to them 
– simulated annealing, genetic algorithms and other nature 

inspired methods 
– Two or more algorithms may be combined to develop 

strategies that are more effective than the use of a purely 
discrete algorithm
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Selection of a Method
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Classification


