Integer Programming (1P)

integer linear programming (I1LP) problem _
_ - _ — 0—1 programming problem
Linear problems with discrete variables

Nonlinear discrete problems — sequential linearization procedures

[Minimize f =c"x
Ax<Db
subjectto {x, >0 integer; i=1...,n,
X <% <Xy; i=(ng+1),...,n

.

0i
X, =Y z;d; where z; =0orlforalliandj, > z, =1 i=1...,n,

=1 j

f=c'x— f =ici {izijdij} Zn: C, X,
j=1

i=1 k=nd +1
Ng Gi n
Ax<b—>a | > z,d. [+ D aX <b
j=1 m=1 k=ny +1
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Integer Linear Programming (ILP)

e Linear discrete programming problem

C . T
minimize f (X) =C X Cross-sectional areas of truss
subjectto Ax=Db Ply thickness of laminated composite plate

x. e X, ={d,...d,} iel,
— Integer linear programming
« Zero/one (binary) ILP — Enumeration tree

X. :di1Xi1+'”+di|X“’ wherexi1+--'+xn =1

e Mixed Integer Linear Programming (MILP)
 — Branch and bound
minimize f(x)=c, x+¢,'y
subjectto AX+A,y=D
X. > 0, integer
y; 20
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Sequential Linear Discrete Programming (1)

Minimize
subject to

g,(x)<0, j=1...,m
h(x)=0, k=1...,p

X €y, d ) i=1...,n,
xV<x <x  i=n,+1...,n

Minimize

subject to

Optimization Techniques
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Sequential Linear Discrete Programming (2)

Minimize f(x)~ f(x°)+ ig;(Zy., i— iJ Z a—f_(xa—xio)

-1 j=1 “ng+1 OX;
subjectto  g,(x)~ ( ) Z (Zq:y”d —xj Zn:a—g(xi—xio)go, j=1...,m

o o% 3 i=n +1 OX

n ()~ h(x)+ 3 NSy a x|+ 3 N —x°)=0, k=1....p

‘ i=1 aX| j=1 U I i=ny+1 aXi | | | ’ |

Zq:yij—l 1=1..., N,

j=1

y; =0o0rl, i=1...,n,J=1...,q

xV<x®+ox <x“,  i=n,+1...n

= mixed -integer LP problem (unknowns i xi)
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Optimization Techniques

Example

Minimize (%, %, )=2%"+3%"

subjectto  g(x,, X, ) NP
X%
X, € {0.3,0.7,0.8,1.2,1.5,1.8}

X, €{0.4,0.8,1.1,1.4,1.6}

X(O) _ |:12:|
1.1
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Simulated Annealing (SA)

— S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization
by simulated annealing”, Science, 220, pp.671-680, 1983

— stochastic approach for locating a good approximation to the
global minimum of a function

— comes from the annealing process in metallurgy

— Involves heating and controlled cooling of a material to
iIncrease the size of its crystals and reduce their defects

— At high temperatures, the atoms become loose from their
initial configuration and move randomly, perhaps through the
states of higher internal energy, to reach a configuration
having absolute minimum energy

— cooling process needs to be slow, and enough time needs to
be spent at each temperature, giving more chance for the
atoms to find configurations of lower internal energy
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Simulated Annealing (SA)

- =252 S8 AN E =2 UK Jtgoto o4 = 1248 2HA
ot AAt el Z2EMIE E WAl Aol =& HE. 0l
HE S0 DM MARUUHK=E = Ag

— HEEX 2= 0l=2oi22 0l== HEHLZ A E

L

o NEzIXHHUH HE= A= A, Ololl SHKE2| ofLt

- =c|l& HEE I Al=2dI0IEI=E HEE 2 2 A

Hed AMZd0lEl= HEE
=& S RSl SN
=cl & 2l Jt=ol
=P bl
I M & EX ESESEe),
LH D} E;—:,’—%F/\ﬁ“t:",'

Optimization Techniques Discrete Variable Optimum Design - 24



Metropolis Algorithm

— At each iteration, an “atom” is randomly displaced a small amount
(random move).

— The energy is calculated for each atom and the difference with the
energy at its original location is calculated.
gy 9 AE = £(x¥) -1 (x?)

AE
— Boltzmann(-Gibbs) probability factor p(AE)=e ¥ is calculated.
« T:temperature of the body, k: Boltsmann’s constant
» AE: energy difference between the two atom states
— If AE<O, then the new location is accepted.
— Otherwise, a random number(z) is generated between 0 and 1.
* If p(AE) > z, the higher energy state is accepted.

» Otherwise, the old atom location is retained and the algorithm
generates a new location.
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SA: Algorithms

Initial design/temperature

»
»

A\ 4

Neighbor design (random move)

W No Accept/Reject using
Metropolis criterion

l Yes

A

Update design

l

max *

l Yes

No
N

Reduce temperature T

K+1

No Yes

Stop ? STOP

Optimization Techniques Discrete Variable Optimum Design - 26

=rT, where O0<r<l1

v



SA: Characteristics

— The quality of the final solution is not affected by the initial
guess, except that the computational effort may increase
with wrong starting designs.

— Because of the discrete nature of the function and constraint
evaluation, the convergence or transition characteristics are
not affected by the continuity or differentiability of the
functions.

— The convergence is also not influenced by the convexity
status of the feasible space.

— The design variables need not be positive.

— The method can be used to solve mixed-integer, discrete, or
continuous problems.

— For problems involving behavior constraints, an equivalent
unconstrained function is to be formulated.
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Other methods (1)

 Rounding-off procedure

— first obtain an optimum solution sing a continuous approach

— Then, using heuristics, the variables are rounded off to their
nearest available discrete values to obtain a discrete solution

— main concern: selection of variables to be increased and the
variables to be decreased

e Dynamic rounding-off algorithm

— round off variables in a sequence rather than all of them at
the same time

— choose a design variable that minimizes the Lagrangian and
remove that variable from the design variable set
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Other methods (2)

* Neighborhood search method
— When the number of discrete variables is small and each

discrete variable has only a few choices
explicitly enumerate all of the possibilities

» Methods for linked discrete variables

For example, choice of materials, framed structural members

problems with linked variables are discrete and the problem
functions are not differentiable with respect to them

simulated annealing, genetic algorithms and other nature
inspired methods

Two or more algorithms may be combined to develop
strategies that are more effective than the use of a purely
discrete algorithm
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Selection of a Method

MV-OPT problem Can find feasible  Can find global minimum  Need

Method type solved discrete solution?  for convex problem? gradients?
BBM 1-5 Yes Yes No/Yes
SA 1-5 Yes Yes No
Genetic algorithm 1-5 Yes Yes No
Sequential linearization 1 Yes Yes Yes
Dynamic round-off 1 Yes No guarantee Yes
Neighborhood search 1 Yes Yes Yes

Optimization Techniques
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Classification

R

2 l
Linear programming problems Nonlinear programming problems
|
\! ! R 4 +
All-integer =~ Mixed-integer  Zero-one Polynomial General nonlinear
problem problem problem programming problem
problem
Cutting plane method Cutting plane method i i
Branch-and-bound method Branch-and-bound method All-integer  Mixed integer
Balas method problem problem
N
Generalized penalty function
method

Sequential linear integer
(discrete) programming
method
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