Contents

- Basic concepts of solution methods
- Overview of deterministic methods
 - Covering method, Zooming method, Generalized Descent method / Tunneling method
- Overview of stochastic methods
 - multistart, clustering, control random search, acceptancerejection (A–R), stochastic integration, stochastic zooming, and domain elimination
- Local-Global stochastic methods
- Numerical performance of methods

Basic Concepts (1)

• Definition of global minimum

 $\left[local \text{ minimum if } f(\mathbf{x}^*) \le f(\mathbf{x}) \text{ for all } \mathbf{x} \right]$

A point \mathbf{x}^* is called a $\left\{ \text{in a small feasible neighborhood of the point } \mathbf{x}^* \right\}$

global minimum if $f(\mathbf{x}^*) \le f(\mathbf{x})$ for all \mathbf{x} in the feasible set S

$$S = \left\{ x \mid h_i(\mathbf{x}) = 0, \ i = 1, \dots, p; \ g_j(\mathbf{x}) \le 0, \ j = 1, \dots, m \right\}$$
$$S_b = \left\{ x_i \mid x_{iL} \le x_i \le x_{iU}, \ i = 1, \dots, n \right\}$$

- Assumptions
 - Continuous variables and functions
 - Unconstrained problem only
 - Constraints can be treated implicitly using the penalty or augmented Lagrangian methods
 - Can terminate at infeasible points

Basic Concepts (2)

- Treat or require explicit bound constraints on design variables
- Repeatedly search for local minima in their algorithm
 - robust and efficient software to search for local minima
- Characterization of a global minimum
 - Existence: Weierstrass Theorem guarantees
 - Finding: different matter
 - Local optimum point: KKT necessary conditions
 - no mathematical conditions that characterize a global minimum point, except when the problem can be shown to be convex
 - How do we know that a numerical search process has terminated at a global minimum point? do NOT know
 - Difficult to define a precise stopping criterion

Overview of Methods

- Deterministic methods
 - Exhaustive search over the set S_b
 - Success can be guaranteed for only the function that satisfy certain conditions
 - covering, zooming, generalized descent, and tunneling
- Stochastic methods
 - Variations of pure random search
 - a random point is picked and manipulated or used before the next one is chosen
 - multistart, clustering, control random search, acceptance– rejection (A–R), stochastic integration, stochastic zooming, and domain elimination
 - nature-inspired methods

Deterministic Methods

- Find the global minimum by an exhaustive search over the set S_b
- Absolute guarantee of success?
 - Additional assumptions about the cost function: Lipschitz continuity condition for the function
 - There exists a Lipschitz constant L such that for all **x**, **y** in the set S_b , $|f(\mathbf{x}) f(\mathbf{y})| \le L ||\mathbf{x} \mathbf{y}||$
 - Upper bound on the rate of change of f(x) [Lipschitz constant] can be used in various ways to perform an exhaustive search
 - In practice, difficult to verify whether a function satisfies such a condition for all points in the set S_b
- Finite exact method vs. heuristic method
 - Finite exact method: absolute guarantee that the global minimum will be found in a finite (large) number of steps

Optimization Techniques Heuristic method: only an empirical guarantee

 $A_{\varepsilon} = \left\{ \mathbf{x} \in S \mid \left[f\left(\mathbf{x}\right) - \varepsilon \right] \leq f\left(\mathbf{x}_{G}^{*}\right) \right\}$

Covering Methods

- "cover" the set S_b by evaluating the cost function at all of the points in search for the global minimum
 - to define a mesh of points that may or may not be uniform for evaluating functions
 - mesh density is determined using the Lipschitz constant L
 - mesh points: centers of (hypercubes inscribed in the) hyperspheres
 - upper and lower bounds on the cost function over a subset of S_b are computed by interval arithmetic
 - successively form closer approximations (of given functions) that can be separated into convex and concave terms
 - Initial L(smaller approximation) and ε (larger value) \rightarrow L increase and ε decrease \rightarrow entire covering procedure is repeated until the difference between two consecutive solutions is less than ε
- generally not practical for problems having more than two variables Optimization Techniques

Zooming Method

- designed especially for problems with general constraints
- Reduce the specified target value to "zoom in" on the global minimum
- Basic idea
 - initiate the search for a constrained local minimum from any point
 - problem is redefined that the current solution is eliminated by adding the following constraint: $f(\mathbf{x}) \le \gamma f(\mathbf{x}^*) \text{ where } \begin{cases} 0 < \gamma < 1 \text{ if } f(\mathbf{x}^*) > 0 \\ 0 < \gamma < 1 \text{ or } f(\mathbf{x}^*) > 0 \end{cases}$

$$f(\mathbf{x}) \le \gamma f(\mathbf{x}^*)$$
 where
$$\begin{cases} \gamma < 1 & \text{if } f(\mathbf{x}^*) < 0 \\ \gamma > 1 & \text{if } f(\mathbf{x}^*) < 0 \end{cases}$$

- process continued until no more minimum points can be found
- good alternative to stochastic and other methods
- Limitations
 - As the target level for global minimum of the cost function is lowered, a feasible set for the problem keeps on shrinking → disjointed feasible set

Methods of Generalized Descent (1)

- heuristic deterministic
- Decent steps along search directions (straight line)
 More effective if we follow a curvilinear path in design space
- trajectory methods that generate curvilinear paths in the design space in search of minimum points
 - Trajectory: design history of the cost function from the starting point x(0) to a local minimum point x*

Let the design vector \mathbf{x} be dependent on the parameter t that

monotonically increases along the solution curve $\mathbf{x}(t)$ and is zero at $\mathbf{x}^{(0)}$.

The simplest path from an arbitrary initial point $\mathbf{x}^{(0)}$ to \mathbf{x}^*

 \rightarrow continuous steepest-descent trajectory

$$\dot{\mathbf{x}}(t) = -\nabla f(\mathbf{x}) \dot{\mathbf{x}}(t) = -[\mathbf{H}(\mathbf{x})]^{-1} \nabla f(\mathbf{x})$$
 with $\mathbf{x}(t) = \mathbf{x}^{(0)}$

Optimization Techniques

Methods of Generalized Descent (2)

- generalized descent methods for global optimization
 - extensions of the trajectory methods: solutions for certain second-order differential equations
 - differential equations use the function values and function gradients along the trajectories
 - solution properties: trajectories pass through the majority of the stationary points of the cost function
- two types of generalized descent methods
 - Trajectory methods: modify the differential equation describing the local descent trajectory
 - Penalty methods: apply the standard local algorithm repeatedly to a modified cost function
 - algebraic functions, filled function, and tunneling

Trajectory Methods

- Alternation of descents and ascents
 - descend to a local minimum from a starting point: combination of steepest-descent and Newton's methods
 - get from the local minimum point to a saddle point: eigenvector corresponding to the maximum eigenvalue of the Hessian as the search direction
 - pass through a saddle point: Newton's method
- Golf methods
 - analogous to the mechanics of inertial motion of a particle of mass m moving in a force field

$$m(t)\ddot{\mathbf{x}}(t) \underbrace{-n(t)\dot{\mathbf{x}}(t)}_{\text{dissipating or}} = -\nabla f(\mathbf{x}) \text{ where } m(t) \ge 0 \text{ and } n(t) \le 0$$

nonconservative resistance force

$$\xrightarrow{m(t)=1}{n(t)=0} \ddot{\mathbf{x}}(t) = -\nabla f(\mathbf{x})$$

Tunneling Method (1)

- heuristic generalized descent penalty methods
- Basic idea
 - execute the two phases (local minimization and tunneling) successively until some stopping criterion is satisfied
 - tunneling phase
 - determine a starting point that is different from x* but has a cost function value smaller than or equal to the known minimum

Optimization Te

Tunneling Method (2)

- Characteristics
 - As the tunneling level approaches a global minimum, the number of computations increases because there are fewer roots of the tunneling function
 - This difficulty is similar to the one noted for the zooming method
 - Global descent property
 - local minima obtained by the minimization phase approaches the global minimum in an orderly fashion
 - efficient relative to other methods, especially for problems with a large number of local minima
 - advantage that a point with a smaller cost function value is reached at each and every iteration