Overview of Stochastic Methods (1)

- Two phases: global and local
 - global phase: function is evaluated at a number of randomly sampled points
 - local phase: sample points are manipulated, for example, by local searches, to yield candidate global minima
- Challenge for global optimization algorithms
 - increase their efficiency while maintaining reliability
- Many stochastic methods for global optimization
 - random search, multistart, clustering, controlled random search, simulated annealing, acceptance-rejection (A-R), stochastic integration, genetic, tabu search, and some other nature-inspired methods

Overview of Stochastic Methods (2)

- Based on some variation of pure random search
 - develop stopping criteria
 - develop techniques to approximate the region of attraction for a local minimum point
 - When the search for the local minimum started from a point within a certain region around the minimum converges to the same minimum point
- Characteristics
 - do not offer an absolute guarantee of success
 - probability that a point within a distance ε will be found approaches 1 as the sample size increases
 - algorithm run at different times from the same starting point can generate different design histories and local minima → run several times before the solution is accepted as the global optimum

Pure Random Search Method

- simplest stochastic method for global optimization
- consists only of a global phase
 - Evaluate f(x) at N sample points drawn from a random uniform distribution over the set S_b
 - smallest function value found
- asymptotically guaranteed to converge, in a probabilistic sense, to the global minimum point
- quite inefficient because of the large number of function evaluations
- single start: simple extension
 - single local search is performed (if the problem is continuous) starting from the best point in the sample set at the end of pure random search

Multistart Method

- extension of pure random search: (global + local) phase
 - Step 1: Take a random point $x^{(0)}$ from a uniform distribution over the set S_b
 - Step 2: Start a local minimization procedure from $x^{(0)}$
 - Step 3: Return to step 1 unless a stopping criterion is satisfied
 - local minimum with the smallest function value
- reliable, but not efficient
 - many sample points will lead to the same local minimum
- Stopping Criterion (M = K)
 - local minimum has a fixed probability of being found in each trial
 - Given that M distinct local minima have been found in L searches, the optimal Bayesian estimate of the unknown number of local minima K is given by

$$K = \operatorname{int}\left[\frac{M(L-1)}{L-M-2}\right] \text{ if } L \ge (M+3)$$

Global Optimization - 16

Clustering Method (1)

- remove the inefficiency of the multistart method
 - use the local search procedure only once for each local minimum point
 - random sample points are linked into groups to form clusters
 - Each cluster \rightarrow region of attraction for a local minimum point
- major disadvantage
 - performance depends heavily on the dimension of the problem
- Reduced sample points
 - set of random points \rightarrow regions that are likely to contain local minima
 - Reduction: set of sample points \rightarrow number of components (disjointed)
 - Each component (cluster) \rightarrow at least one local minimum point

 f_q -level set of $f(\mathbf{x})$ or reduced set : $A_q = \{\mathbf{x} \in A_N \mid f(\mathbf{x}) \le f_q\}$

- Concentration: a few steepest-descent steps are applied to every sample point
 - transformed points are not uniformly distributed

Clustering Method (2)

- Four clustering methods
 - density, single linkage, mode analysis, and vector quantization multistart
- Assumptions
 - All local minima of f(x) lie in the interior of S_b
 - Stationary points are isolated
 - Local search is always that of descent
 - The way A_q changes with different samples does not affect analysis
 - each local minimum with a function value smaller than f_q is actually found

Clustering Method (3)

- Density clustering
 - Regions of attraction are approximated by hyperspheres or ellipsoids with centers at local minimum points
 - Reduced sample points are added to clusters based on their distance from the centers (seed point)
 - best-unclustered point is used in a local search procedure to find a local minimum point: new?→seed, otherwise
- Single linkage clustering
 - Points are linked to others in their proximity as opposed to being linked to the clusters' centers or seeds
 - A point is assigned to a cluster if it falls within a critical distance r_k from any point that already belongs to that cluster

Clustering Method (4)

- Mode analysis clustering
 - information at only two points at a time (density, single linkage) → clusters are formed using more information
 - set S_b is partitioned into nonoverlapping, small hypercubic cells that cover S_b entirely
- Vector quantization
 - theories of lattices and vector quantization to form clusters
 - entire space S_b is divided into a finite number of cells (mode analysis) and a code point is associated with each one
 - need not be sample points (centroids of the cells)
 - most suitable code point: smallest function value of a cell
 - Identification of a cluster is done using vector quantization of the reduced sample points

Controlled Random Search (CRS)

Generate N=10(n+1) random points uniformly distributed over S_b . Evaluate the cost function.

Optimization Techniques

Global Optimization - 21

Acceptance–Rejection Methods

- modifications of the multistart algorithm
 - improve its efficiency by using ideas from statistical mechanics
 - tunnel below irrelevant local minima \rightarrow random tunneling
- acceptance phase
 - start local minimization from a randomly generated point even if it has a higher cost function value than that at a previously obtained local minimum
- rejection phase
 - local minimization procedure produces a local minimum that has a higher cost function value than a previously obtained minimum, then the new minimum point is rejected

$$p(\Delta E) = e^{-\frac{\Delta E}{kT}} \leftrightarrow p(\mathbf{x}) = e^{-\frac{\max(0, \left[f(\mathbf{x}) - \overline{f}\right])}{F}}$$

- \overline{f} : estimate of the upper bound of the global minimum
- F: target value for the global minimum

Stochastic Integration

- Introduce suitable stochastic perturbation of the system of equations for the trajectory methods
 - By changing some coefficients in the differential equations, we get different solution processes starting from the same initial point

$$\dot{\mathbf{x}}(t) = -\nabla f(\mathbf{x})$$

$$\rightarrow d\mathbf{x}(t) = -\nabla f(\mathbf{x}) dt + \varepsilon(t) d\mathbf{w}(t)$$
with $\mathbf{x}(t) = \mathbf{x}^{(0)}$
w(t): *n*-dimensional standard Wiener process $\xrightarrow{\text{actual implementation}}$ standard Gaussian distribution $\varepsilon(t)$: real function called the noise coefficient

when $\varepsilon(t) = \varepsilon_0$, probability density function of $\mathbf{x}(t) \to \text{limit density } Ze^{\left[-\frac{2f(\mathbf{x})}{\varepsilon_0^2}\right]}$ as $t \to \infty$ peaks become narrower with a smaller ε_0 $\varepsilon_0 \leftrightarrow \text{target level } F$ that decreases in the simulated annealing method $\varepsilon(t)$ is continuous and suitably tends to zero as $t \to \infty$

Optimization Techniques

Local-Global Stochastic Method (1)

- modification of the multistart procedure but with the ability to learn as the search progresses
- explore the entire feasible domain in a systematic way for the global minimum
 - generation and evaluation of a random point are much cheaper than one local minimization
 - avoids searching near any local minimum point and all of the points leading to it → increase the chance of finding a new local minimum in the unexplored region
 - several sets that contain certain types of points are constructed
 - Set of local minima (S_{*})
 - Set of starting points x⁽⁰⁾ (S₀)
 - Set of rejected points (S_r)

Local-Global Stochastic Method (2)

Domain Elimination Method (1)

Optimization Techniques

Global Optimization - 26

Domain Elimination Method (2)

- Stopping criteria
 - Maximum size of sets (based on the number of design variables and a confidence level parameter)
 - Set of local minima (S_{*}): 10n
 - Set of starting points $x^{(0)}(S_0)$: 40n
 - Set of rejected points (S_r): 40n
 - Number of local minima ≥ (Bayesian estimate for the number of local minima)

Stochastic Zooming Method

- extension of the zooming method
 - as the target level for the cost function grows closer to the global optimum, it becomes difficult to find a feasible point in the set S
 - Eventually, the modified problem needs to be declared infeasible to stop the algorithm
- major difference from domain elimination
 - addition of the zooming constraint
- domain elimination algorithm can be used with some minor modification
 - keep track of the number of local searches (steps 4 and 5) that did not terminate at a feasible minimum point
 - additional stopping criterion: if the cost function value reaches a target value F specified by the user

Operations Analysis of Methods (1)

- Distance between a point and a set of point (checking the proximity of a point to a set)
- \mathbf{x}^{s} : point belonging to one of the sets
- \mathbf{x}^{M} : either a random point or an intermediate point
- (1) hypersphere of either a constant or a variable radius around \mathbf{x}^{s}

point is rejected if $D\left(=\|\mathbf{x}^{S}-\mathbf{x}^{M}\|\right) \le D_{cr}\left(=\alpha\|\mathbf{x}\|$ where $\mathbf{x}=\mathbf{x}^{R}$ or \mathbf{x}^{M} and $0.01 \le \alpha \le 0.2\right)$

(2) hyperprism around \mathbf{x}^{s}

If the proposed point lies inside the hyperprism, it is rejected.

the distance between the two points is not required

Operations Analysis of Methods (2)

- Approximation of the trajectory between a starting point and a local minimum (trajectory approximation)
 - Trajectory: design history from a starting point to the corresponding local minimum point
 - straight line connecting x⁽⁰⁾ and the corresponding x*
 - least squares straight line through several points along the trajectory
 - straight-line segments through selected points along the trajectory
 - a quadratic curve through three points
 - quadratic segments through groups of three points
 - higher-order polynomial or spline approximations
 - Several issues affect the choice of the technique to use
 - number of points needed (which have to be stored), number of operations, accuracy of the approximation

Operations Analysis of Methods (3)

- Distance between a point and a trajectory
 - decision of whether a point x lies near the trajectory
 - Triangle method
 - calculate the internal angle $x^{(0)}-x-x^*$ of the triangle formed by the three points
 - point x is rejected if the angle is larger than a threshold value (150~175°)
 - ellipsoidal body around the line segment x⁽⁰⁾ x*
 - critical offset distance ~ the trajectory's length ~ size of the region of attraction
 - Offset method
 - calculate an offset distance by generating x_bar as a projection of x on the line x⁽⁰⁾ -x*
 - If x_bar lies outside the line segment $x^{(0)} x^*$, then it is accepted
 - cylinder constructed with $x^{(0)} x^*$ as its axis
 - uniform critical distance
 - Truncated cone
- the larger base at x* and the smaller base at x⁽⁰⁾, thus allowing a better Optimization Technic entification of close regions of attraction Global Optimization - 31

Summary of Features of Methods

Method	Can solve discrete problems?	General constraints?	Tries to find all x*?	Phases	Needs gradients?
Covering (D)	No	No	Yes	G	1
Zooming (D)	Yes ¹	Yes	No	L	1
Generalized descent (D)	No	No	No	G	Yes
Tunneling (D)	No	Yes	No	L+G	1
Multistart (S)	Yes ¹	Yes	Yes	L+G	1
Clustering (S)	Yes ¹	Yes	Yes	L+G	1
Controlled random search (S)	Yes	No	No	L+G	No
Acceptance-rejection (S)	Yes ¹	Yes	No	G	No
Stochastic integration (S)	No	No	No	G	No
Genetic (S)	Yes	No	No	G	No
Stochastic zooming (S)	Yes ¹	Yes	No	L+G	1
Domain elimination (S)	Yes ¹	Yes	Yes	L+G	1

Note: *D*, deterministic methods; *S*, stochastic methods; *G*, global phase; *L*, local phase.

¹Depends on the local minimization procedure used.

Performance of Some Methods with Unconstrained Problems

- Methods: covering, A–R, controlled random search (CRS), and simulated annealing (SA)
- 29 unconstrained problems with known global solutions
- one to six design variables and only explicit bounds on the variables
- Results: CRS > A-R > SA > covering
 - Covering: not practical (n>2), difficult to estimate Lipschitz constant
 - A-R: no stopping criterion
 - CRS: not successful to treat general constraints explicitly

Performance of Stochastic Zooming and Domain Elimination Methods (1)

- Methods: stochastic zooming method (ZOOM) and domain elimination (DE), CRS, SA
 - local search: sequential quadratic programming (SQP) method
 - ZOOM: percent reduction of 15% (γ =0.85)
- Ten mathematical programming test problems
 - Four problems had no constraints
 - The number of design variables varied from 2 to 15
 - The total number of general constraints varied from 2 to 29
 - Two problems had equality constraints
 - All problems had 2 or more local minima
 - Two problems had 2 global minima and one had 4
 - One problem had a global minimum of 0
 - Four problems had negative global minimum values

Performance of Stochastic Zooming and Domain Elimination Methods (2)

- Evaluation criteria (averages after five times)
 - Number of random starting points
 - Number of local searches performed
 - Number of iterations used during the local search
 - Number of local minima found by the method
 - Cost function value of the best local minimum (the global minimum)
 - Total number of calls for function evaluations
 - CPU time used
- Results
 - Global solutions: DE(9/10) > ZOOM(7/10)
 - DE found more local minima than ZOOM did (tunnel under some minima)
 - number of function evaluations and CPU time: (CRS >) DE > ZOOM
 - SA: failed six problems, even successful, (3~4)times longer CPU time than DE, more suitable for problems with discrete variables only

Global Optimization of Structural Design Problems

- Six structures \rightarrow 28 test problems
 - 10-bar cantilever truss, 200-bar truss, 1-bay & 2-story frame, 2-bay & 6-story frame, 10-member cantilever frame, 200-member frame
- Objectives: minimize the weight of the structure
- number of design variables: 4~116
 - cross-sectional shape of members to hollow circular tubes or I-sections
 - material from steel to aluminum
- number of stress constraints: 10~600
- number of deflection constraints: 8~675
- number of local buckling constraints: 0~72
- total number of general inequality constraints: 19~1276

Global Optimization of Structural Design Problems

- Results: five runs
 - ZOOM found only one local minimum for all but two problems
 - For most of the problems, the global minimum was found with the first random starting point
 - DE found many local minima for all problems except for one, which turned out to be an infeasible problem
 - CPU times
 - difficult to draw a general conclusion about the relative efficiency of the two methods
 - only the global minimum? ZOOM
 - all or most of the local minima are wanted? DE