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Overview of Stochastic Methods (1)

• Two phases: global and local
– global phase: function is evaluated at a number of randomly 

sampled points
– local phase: sample points are manipulated, for example, by 

local searches, to yield candidate global minima

• Challenge for global optimization algorithms
– increase their efficiency while maintaining reliability

• Many stochastic methods for global optimization
– random search, multistart, clustering, controlled random 

search, simulated annealing, acceptance-rejection (A-R), 
stochastic integration, genetic, tabu search, and some other 
nature-inspired methods
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Overview of Stochastic Methods (2)

• Based on some variation of pure random search
– develop stopping criteria
– develop techniques to approximate the region of attraction 

for a local minimum point
• When the search for the local minimum started from a point 

within a certain region around the minimum converges to the 
same minimum point

• Characteristics
– do not offer an absolute guarantee of success
– probability that a point within a distance ε will be found 

approaches 1 as the sample size increases
– algorithm run at different times from the same starting point 

can generate different design histories and local minima 
run several times before the solution is accepted as the 
global optimum



Optimization Techniques Global Optimization - 15

Pure Random Search Method

• simplest stochastic method for global optimization
• consists only of a global phase

– Evaluate f(x) at N sample points drawn from a random 
uniform distribution over the set Sb

– smallest function value found

• asymptotically guaranteed to converge, in a 
probabilistic sense, to the global minimum point

• quite inefficient because of the large number of 
function evaluations

• single start: simple extension
– single local search is performed (if the problem is 

continuous) starting from the best point in the sample set at 
the end of pure random search
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Multistart Method

• extension of pure random search: (global + local) phase
– Step 1: Take a random point x(0) from a uniform distribution over 

the set Sb

– Step 2: Start a local minimization procedure from x(0)

– Step 3: Return to step 1 unless a stopping criterion is satisfied
– local minimum with the smallest function value

• reliable, but not efficient
– many sample points will lead to the same local minimum

• Stopping Criterion (M = K)
– local minimum has a fixed probability of being found in each trial
– Given that M distinct local minima have been found in L 

searches, the optimal Bayesian estimate of the unknown number 
of local minima K is given by
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Clustering Method (1)

• remove the inefficiency of the multistart method
– use the local search procedure only once for each local minimum point
– random sample points are linked into groups to form clusters
– Each cluster  region of attraction for a local minimum point

• major disadvantage
– performance depends heavily on the dimension of the problem

• Reduced sample points
– set of random points  regions that are likely to contain local minima
– Reduction: set of sample points  number of components (disjointed)

• Each component (cluster)  at least one local minimum point

– Concentration: a few steepest–descent steps are applied to every 
sample point

• transformed points are not uniformly distributed
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Clustering Method (2)

• Four clustering methods
– density, single linkage, mode analysis, and vector quantization multistart

• Assumptions 
– All local minima of f(x) lie in the interior of Sb

– Stationary points are isolated
– Local search is always that of descent
– The way Aq changes with different samples does not affect analysis
– each local minimum with a function value smaller than fq is actually found
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Clustering Method (3)

• Density clustering
– Regions of attraction are approximated by hyperspheres or 

ellipsoids with centers at local minimum points 
– Reduced sample points are added to clusters based on their 

distance from the centers (seed point)
– best-unclustered point is used in a local search procedure to 

find a local minimum point: new?seed, otherwise

• Single linkage clustering
– Points are linked to others in their proximity as opposed to 

being linked to the clusters’ centers or seeds
– A point is assigned to a cluster if it falls within a critical 

distance rk from any point that already belongs to that cluster
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Clustering Method (4)

• Mode analysis clustering
– information at only two points at a time (density, single 

linkage)  clusters are formed using more information
– set Sb is partitioned into nonoverlapping, small hypercubic 

cells that cover Sb entirely

• Vector quantization
– theories of lattices and vector quantization to form clusters
– entire space Sb is divided into a finite number of cells (mode 

analysis) and a code point is associated with each one
• need not be sample points (centroids of the cells)

– most suitable code point: smallest function value of a cell
– Identification of a cluster is done using vector quantization of 

the reduced sample points
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Controlled Random Search (CRS)

Generate N=10(n+1) random points uniformly distributed over Sb. Evaluate the cost function.

Find the worst point xW and the best point xL

Let x(1) = xL. Randomly choose n distinct points x(2), …, x(n+1)

from the remaining (N−1) sample points. 
Determine the centroid xC of the points x(1), …, x(n). 
Compute a new trial point xP = 2xC − x (n+1)

xP is feasible?

xP within the bottom 
(n+1) points?

Local phase
Find local minimum with simplex
Update xP

fP< fW?

xW ← xP

Stopping criterion? stop

No

No

No

No

Global phase



Optimization Techniques Global Optimization - 22

Acceptance–Rejection Methods 

• modifications of the multistart algorithm
– improve its efficiency by using ideas from statistical mechanics
– tunnel below irrelevant local minima  random tunneling

• acceptance phase
– start local minimization from a randomly generated point even if 

it has a higher cost function value than that at a previously 
obtained local minimum

• rejection phase
– local minimization procedure produces a local minimum that 

has a higher cost function value than a previously obtained 
minimum, then the new minimum point is rejected
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Stochastic Integration

• Introduce suitable stochastic perturbation of the 
system of equations for the trajectory methods
– By changing some coefficients in the differential equations, 

we get different solution processes starting from the same 
initial point
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Local-Global Stochastic Method (1)

• modification of the multistart procedure but with the 
ability to learn as the search progresses

• explore the entire feasible domain in a systematic way 
for the global minimum
– generation and evaluation of a random point are much cheaper 

than one local minimization
– avoids searching near any local minimum point and all of the 

points leading to it  increase the chance of finding a new local 
minimum in the unexplored region

– several sets that contain certain types of points are constructed
• Set of local minima (S*)
• Set of starting points x(0) (S0)
• Set of rejected points (Sr)
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Local-Global Stochastic Method (2)

Generate a random point x(0) in the set Sb

Check some rejection criteria based on the proximity of x(0) to one of 
the previous starting points, local minimum points, or rejected points

Satisfied? Add x(0) to the set of rejected points

Add x(0) to the set of starting points
Find a local minimum x*

New local minimum? Add x(0) to the set of rejected points

Add it to the set of local minima
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Domain Elimination Method (1)
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Domain Elimination Method (2)

• Stopping criteria
– Maximum size of sets (based on the number of design 

variables and a confidence level parameter)
• Set of local minima (S*): 10n
• Set of starting points x(0) (S0): 40n
• Set of rejected points (Sr): 40n

– Number of local minima ≥ (Bayesian estimate for the number 
of local minima)
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Stochastic Zooming Method

• extension of the zooming method
– as the target level for the cost function grows closer to the 

global optimum, it becomes difficult to find a feasible point in 
the set S

– Eventually, the modified problem needs to be declared 
infeasible to stop the algorithm

• major difference from domain elimination
– addition of the zooming constraint

• domain elimination algorithm can be used with some 
minor modification
– keep track of the number of local searches (steps 4 and 5) 

that did not terminate at a feasible minimum point
– additional stopping criterion: if  the cost function value 

reaches a target value F specified by the user
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Operations Analysis of Methods (1)

• Distance between a point and a set of point (checking 
the proximity of a point to a set)
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Operations Analysis of Methods (2)

• Approximation of the trajectory between a starting point 
and a local minimum (trajectory approximation)
– Trajectory: design history from a starting point to the 

corresponding local minimum point
• straight line connecting x(0) and the corresponding x*
• least squares straight line through several points along the trajectory
• straight-line segments through selected points along the trajectory
• a quadratic curve through three points
• quadratic segments through groups of three points
• higher-order polynomial or spline approximations

– Several issues affect the choice of the technique to use
• number of points needed (which have to be stored), number of 

operations, accuracy of the approximation
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Operations Analysis of Methods (3)

• Distance between a point and a trajectory
– decision of whether a point x lies near the trajectory
– Triangle method

• calculate the internal angle x(0)−x−x* of the triangle formed by the three points
• point x is rejected if the angle is larger than a threshold value (150~175°)
• ellipsoidal body around the line segment x(0) −x*
• critical offset distance ~ the trajectory’s length ~ size of the region of attraction

– Offset method
• calculate an offset distance by generating x_bar as a projection of x on the 

line x(0) −x*
• If x_bar lies outside the line segment x(0) −x*, then it is accepted
• cylinder constructed with x(0) −x* as its axis
• uniform critical distance

– Truncated cone
• the larger base at x* and the smaller base at x(0), thus allowing a better 

identification of close regions of attraction
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Summary of Features of Methods 
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Performance of Some Methods with 
Unconstrained Problems

• Methods: covering, A–R, controlled random search (CRS), 
and simulated annealing (SA)

• 29 unconstrained problems with known global solutions
• one to six design variables and only explicit bounds on the 

variables
• Results: CRS > A-R > SA > covering

– Covering: not practical (n>2), difficult to estimate Lipschitz constant
– A-R: no stopping criterion
– CRS: not successful to treat general constraints explicitly
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Performance of Stochastic Zooming and 
Domain Elimination Methods (1)

• Methods: stochastic zooming method (ZOOM) and 
domain elimination (DE), CRS, SA
– local search: sequential quadratic programming (SQP) method
– ZOOM: percent reduction of 15% (γ=0.85)

• Ten mathematical programming test problems
– Four problems had no constraints
– The number of design variables varied from 2 to 15
– The total number of general constraints varied from 2 to 29
– Two problems had equality constraints
– All problems had 2 or more local minima
– Two problems had 2 global minima and one had 4
– One problem had a global minimum of 0
– Four problems had negative global minimum values
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Performance of Stochastic Zooming and 
Domain Elimination Methods (2)

• Evaluation criteria (averages after five times)
– Number of random starting points
– Number of local searches performed
– Number of iterations used during the local search
– Number of local minima found by the method
– Cost function value of the best local minimum (the global minimum)
– Total number of calls for function evaluations
– CPU time used

• Results
– Global solutions: DE(9/10) > ZOOM(7/10)

• DE found more local minima than ZOOM did (tunnel under some minima)
– number of function evaluations and CPU time: (CRS >) DE > ZOOM
– SA: failed six problems, even successful, (3~4)times longer CPU time 

than DE, more suitable for problems with discrete variables only
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Global Optimization of Structural Design Problems

• Six structures  28 test problems
– 10-bar cantilever truss, 200-bar truss, 1-bay & 2-story frame, 2-bay & 

6-story frame, 10-member cantilever frame, 200-member frame

• Objectives: minimize the weight of the structure
• number of design variables: 4~116

– cross-sectional shape of members to hollow circular tubes or I-sections
– material from steel to aluminum

• number of stress constraints: 10~600
• number of deflection constraints: 8~675
• number of local buckling constraints: 0~72
• total number of general inequality constraints: 19~1276



Optimization Techniques Global Optimization - 37

• Results: five runs
– ZOOM found only one local minimum for all but two problems

• For most of the problems, the global minimum was found with the 
first random starting point

– DE found many local minima for all problems except for one, 
which turned out to be an infeasible problem

– CPU times
• difficult to draw a general conclusion about the relative efficiency 

of the two methods
– only the global minimum? ZOOM
– all or most of the local minima are wanted? DE

Global Optimization of Structural Design Problems


