Overview of Stochastic Methods (1)

« Two phases: global and local

— global phase: function is evaluated at a number of randomly
sampled points

— local phase: sample points are manipulated, for example, by
local searches, to yield candidate global minima

« Challenge for global optimization algorithms
— increase their efficiency while maintaining reliability

« Many stochastic methods for global optimization

— random search, multistart, clustering, controlled random
search, simulated annealing, acceptance-rejection (A-R),
stochastic integration, genetic, tabu search, and some other
nature-inspired methods
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Overview of Stochastic Methods (2)

« Based on some variation of pure random search
— develop stopping criteria

— develop techniques to approximate the region of attraction
for a local minimum point

* When the search for the local minimum started from a point
within a certain region around the minimum converges to the
same minimum point

* Characteristics
— do not offer an absolute guarantee of success

— probability that a point within a distance ¢ will be found
approaches 1 as the sample size increases

— algorithm run at different times from the same starting point
can generate different design histories and local minima -
run several times before the solution is accepted as the
global optimum
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Pure Random Search Method

» simplest stochastic method for global optimization

consists only of a global phase

— Evaluate f(x) at N sample points drawn from a random
uniform distribution over the set S,

— smallest function value found

« asymptotically guaranteed to converge, in a
probabilistic sense, to the global minimum point

 quite inefficient because of the large number of
function evaluations

* single start: simple extension

— single local search is performed (if the problem is
continuous) starting from the best point in the sample set at
the end of pure random search
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Multistart Method

« extension of pure random search: (global + local) phase

— Step 1: Take a random point x© from a uniform distribution over
the set S,

— Step 2: Start a local minimization procedure from x(©)
— Step 3: Return to step 1 unless a stopping criterion is satisfied
— local minimum with the smallest function value
 reliable, but not efficient
— many sample points will lead to the same local minimum
« Stopping Criterion (M = K)
— local minimum has a fixed probability of being found in each trial

— Given that M distinct local minima have been found in L
searches, the optimal Bayesian estimate of the unknown number
of local minima K is given by

K :int{M (L_l)} if L>(M +3)
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Clustering Method (1)

* remove the inefficiency of the multistart method
— use the local search procedure only once for each local minimum point
— random sample points are linked into groups to form clusters
— Each cluster - region of attraction for a local minimum point

* major disadvantage
— performance depends heavily on the dimension of the problem

 Reduced sample points
— set of random points = regions that are likely to contain local minima

— Reduction: set of sample points = number of components (disjointed)
« Each component (cluster) - at least one local minimum point
f,-level set of f (x) or reduced set: A ={xe A | f(x)< f,}
— Concentration: a few steepest—descent steps are applied to every
sample point
 transformed points are not uniformly distributed
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Clustering Method (2)

* Four clustering methods
— density, single linkage, mode analysis, and vector quantization multistart

« Assumptions
— All local minima of f(x) lie in the interior of S,
— Stationary points are isolated
— Local search is always that of descent
— The way A, changes with different samples does not affect analysis
— each local minimum with a function value smaller than f; is actually found

Optimization Techniques Global Optimization - 18



Clustering Method (3)

* Density clustering

— Regions of attraction are approximated by hyperspheres or
ellipsoids with centers at local minimum points

— Reduced sample points are added to clusters based on their
distance from the centers (seed point)

— best-unclustered point is used in a local search procedure to
find a local minimum point: new?->seed, otherwise
* Single linkage clustering

— Points are linked to others in their proximity as opposed to
being linked to the clusters’ centers or seeds

— A point is assigned to a cluster if it falls within a critical
distance r, from any point that already belongs to that cluster
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Clustering Method (4)

* Mode analysis clustering

— information at only two points at a time (density, single
linkage) = clusters are formed using more information

— set S, is partitioned into nonoverlapping, small hypercubic
cells that cover S, entirely

* Vector quantization

— theories of lattices and vector quantization to form clusters

— entire space S, is divided into a finite number of cells (mode
analysis) and a code point is associated with each one

* need not be sample points (centroids of the cells)
— most suitable code point: smallest function value of a cell

— ldentification of a cluster is done using vector quantization of
the reduced sample points
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Controlled Random Search (CRS)

Generate N=10(n+1) random points uniformly distributed over S,. Evaluate the cost function.

Global phase !
Find the worst point XV and the best point x-
v
Let x(1) = x-. Randomly choose n distinct points x®@), ..., x(0*1)
from the remaining (N-1) sample points.
"| Determine the centroid xC of the points x(, ..., x(M.
Compute a new trial point x? = 2x¢ — x ("*1)

No

xP is feasible?

X" within the bottom
n+1) points?
N

(0]

Local phase

Find local minimum with simplex
Update xP

xW «— xP

No m > stop )
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Acceptance—Rejection Methods

« modifications of the multistart algorithm
— improve its efficiency by using ideas from statistical mechanics
— tunnel below irrelevant local minima - random tunneling

« acceptance phase

— start local minimization from a randomly generated point even if
it has a higher cost function value than that at a previously
obtained local minimum

* rejection phase

— local minimization procedure produces a local minimum that
has a higher cost function value than a previously obtained
minimum, then the new minimum point is rejected

AE max(O,[f(x)—f_]
P(AE)=e " < p(x)=e F

f . estimate of the upper bound of the global minimum
F . target value for the global minimum
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Stochastic Integration

 Introduce suitable stochastic perturbation of the
system of equations for the trajectory methods

— By changing some coefficients in the differential equations,
we get different solution processes starting from the same
initial point

x(t)=-Vf (x)
— dx(t)=-Vf (x)dt+&(t)dw(t)

w (t): n-dimensional standard Wiener process

} with x(t):x(o)

actual implementation

» standard Gaussian distribution

¢(t): real function called the noise coefficient

2f(x)

6'02

when ¢(t) = ¢,, probability density function of x(t) — limit density Ze{_ } ast — oo

peaks become narrower with a smaller &,
g, <> target level F that decreases in the simulated annealing method
¢(t) is continuous and suitably tends to zero ast — o
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Local-Global Stochastic Method (1)

« modification of the multistart procedure but with the
ability to learn as the search progresses

» explore the entire feasible domain in a systematic way
for the global minimum

— generation and evaluation of a random point are much cheaper
than one local minimization

— avoids searching near any local minimum point and all of the
points leading to it = increase the chance of finding a new local
minimum in the unexplored region

— several sets that contain certain types of points are constructed

» Set of local minima (S.)
« Set of starting points x@ (S,)
« Set of rejected points (S,)
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Local-Global Stochastic Method (2)

A

Generate a random point x© in the set S,

Check some rejection criteria based on the proximity of x(© to one of
the previous starting points, local minimum points, or rejected points

) 4

<atis®—» Add x to the set of rejected points

Add x( to the set of starting points
Find a local minimum x*

New local minimum?

Add x© to the set of rejected points

A

Add it to the set of local minima
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Domain Elimination Method (1)

1
( Initialize )

Y
Generate

random point x

l

Is rejection 3  Yes

criterion satisfied?

Update record of
rejected points

Perform local minimization
to find x*

Add x* to set
of local minima

Is stopping

criterion satisfied?
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c, - number of elements in S_, the set of rejected points

C, - number of rejected points that were near S,

c, - number of elements in S, the set of starting points

c, . number of elements in S,, the set of local minimum points

(in or near S, or S, »addx® to S _andc, =¢ +1]
inornearS, -»c, =c¢, +1
(3)+(4): if x® is 4 o >

near a trajectory (a mapping S, — S.)

(—addx" toS, and ¢, =¢, +1
before (5): add x* to S, and setx'® =x* and ¢, = ¢, +1

7 inornearS, —add x" to S, andc, =¢, +1

within (5):if x" is qinornear S, —>c, =c, +1

near a trajectory — add x® to S, and ¢, =¢, +1
—» store the trajectory from x'© to x* — go to (2)
(7):additto S, andc, =c, +1
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Domain Elimination Method (2)

« Stopping criteria
— Maximum size of sets (based on the number of design
variables and a confidence level parameter)

» Set of local minima (S.): 10n
« Set of starting points x© (S;): 40n
+ Set of rejected points (S,): 40n

— Number of local minima = (Bayesian estimate for the number
of local minima)
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Stochastic Zooming Method

« extension of the zooming method

— as the target level for the cost function grows closer to the
global optimum, it becomes difficult to find a feasible point in
the set S

— Eventually, the modified problem needs to be declared
infeasible to stop the algorithm

* major difference from domain elimination
— addition of the zooming constraint

* domain elimination algorithm can be used with some
minor modification

— keep track of the number of local searches (steps 4 and 5)
that did not terminate at a feasible minimum point

— additional stopping criterion: if the cost function value
reaches a target value F specified by the user
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Operations Analysis of Methods (1)

« Distance between a point and a set of point (checking
the proximity of a point to a set)

x° : point belonging to one of the sets
x" : either a random point or an intermediate point
(1) hypersphere of either a constant or a variable radius around x°

point is rejected if D(z [x® —x" H) <D, (=a][x| where x =x" or x" and 0.01< & <0.2)

(2) hyperprism around x°

If the proposed point lies inside the hyperprism, it is rejected.
the distance between the two points is not required
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Operations Analysis of Methods (2)

« Approximation of the trajectory between a starting point
and a local minimum (trajectory approximation)
— Trajectory: design history from a starting point to the
corresponding local minimum point
- straight line connecting x(® and the corresponding x*
least squares straight line through several points along the trajectory
straight-line segments through selected points along the trajectory
a quadratic curve through three points
quadratic segments through groups of three points
higher-order polynomial or spline approximations

— Several issues affect the choice of the technique to use

* number of points needed (which have to be stored), number of
operations, accuracy of the approximation
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Operations Analysis of Methods (3)

» Distance between a point and a trajectory
— decision of whether a point x lies near the trajectory
— Triangle method
« calculate the internal angle x(©—x—x* of the triangle formed by the three points
» point x is rejected if the angle is larger than a threshold value (150~175°)
« ellipsoidal body around the line segment x(© —x*
« critical offset distance ~ the trajectory’s length ~ size of the region of attraction

— Offset method

 calculate an offset distance by generating x_bar as a projection of x on the
line x(©) —x*

« If x_bar lies outside the line segment x(® —x* then it is accepted
« cylinder constructed with x(© —-x* as its axis
 uniform critical distance

— Truncated cone

« the larger base at x* and the smaller base at x(, thus allowing a better
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Summary of Features of Methods

Can solve

discrete General Tries to find Needs
Method problems? constraints? all x*? Phases gradients?
Covering (D) No No Yes G 1
Zooming (D) Yes' Yes No L 1
Generalized descent (D) No No No G Yes
Tunneling (D) No Yes No L+G 1
Multistart (S) Yes' Yes Yes L+G 1
Clustering (S) Yes' Yes Yes L+G 1
Controlled random search (S) Yes No No L+G No
Acceptance-rejection (S) Yes' Yes No G No
Stochastic integration (S) No No No G No
Genetic (S) Yes No No G No
Stochastic zooming (S) Yes' Yes No L+G 1
Domain elimination (S) Yes' Yes Yes L+G 1

Note: D, deterministic methods; S, stochastic methods; G, global phase; L, local phase.
'Depends on the local minimization procedure used.
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Performance of Some Methods with
Unconstrained Problems

« Methods: covering, A—R, controlled random search (CRS),
and simulated annealing (SA)

« 29 unconstrained problems with known global solutions

* one to six design variables and only explicit bounds on the
variables
* Results: CRS > A-R > SA > covering
— Covering: not practical (n>2), difficult to estimate Lipschitz constant
— A-R: no stopping criterion
— CRS: not successful to treat general constraints explicitly
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Performance of Stochastic Zooming and

Domain Elimination Methods (1)

* Methods: stochastic zooming method (ZOOM) and
domain elimination (DE), CRS, SA

local search: sequential quadratic programming (SQP) method
ZOOM: percent reduction of 15% (y=0.85)

* Ten mathematical programming test problems

Four problems had no constraints

The number of design variables varied from 2 to 15

The total number of general constraints varied from 2 to 29
Two problems had equality constraints

All problems had 2 or more local minima

Two problems had 2 global minima and one had 4

One problem had a global minimum of 0

Four problems had negative global minimum values
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Performance of Stochastic Zooming and
Domain Elimination Methods (2)

« Evaluation criteria (averages after five times)
— Number of random starting points
— Number of local searches performed
— Number of iterations used during the local search
— Number of local minima found by the method
— Cost function value of the best local minimum (the global minimum)
— Total number of calls for function evaluations
— CPU time used

 Results

— Global solutions: DE(9/10) > ZOOM(7/10)
» DE found more local minima than ZOOM did (tunnel under some minima)

— number of function evaluations and CPU time: (CRS >) DE > ZOOM

— SA: failed six problems, even successful, (3~4)times longer CPU time
than DE, more suitable for problems with discrete variables only
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Global Optimization of Structural Design Problems

« Six structures - 28 test problems

— 10-bar cantilever truss, 200-bar truss, 1-bay & 2-story frame, 2-bay &
6-story frame, 10-member cantilever frame, 200-member frame

* QObjectives: minimize the weight of the structure

* number of design variables: 4~116
— cross-sectional shape of members to hollow circular tubes or I-sections
— material from steel to aluminum

* number of stress constraints: 10~600

« number of deflection constraints: 8~675

* number of local buckling constraints: 0~72

 total number of general inequality constraints: 19~1276
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Global Optimization of Structural Design Problems

« Results: five runs

— ZOOM found only one local minimum for all but two problems

» For most of the problems, the global minimum was found with the
first random starting point

— DE found many local minima for all problems except for one,
which turned out to be an infeasible problem

— CPU times

« difficult to draw a general conclusion about the relative efficiency
of the two methods

— only the global minimum? ZOOM
— all or most of the local minima are wanted? DE
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