Contents

- Genetic Algorithms (GAa)
- Differential Evolution Algorithm (DEA)
- Ant Colony Optimization (ACO) Algorithm
- Particle Swarm Optimization (PSO) Algorithm

Basic Concept (1)

- optimization algorithms inspired by natural phenomena
 - stochastic programming, evolutionary algorithms, genetic programming, swarm intelligence, evolutionary computation, nature-inspired metaheuristics methods
- general class of direct search methods
 - do not require the continuity or differentiability of problem functions
 - evaluate functions at any point within the allowable ranges for the design variables
- use stochastic ideas and random numbers in their calculations to search for the optimum point
 - executed at different times, the algorithms can lead to a different sequence of designs and a different solution even with the same initial conditions
 - tend to converge to a global minimum point for the function, but there is no guarantee of convergence or global optimality

Optimization Techniques

Nature-Inspired Search Method - 2

 $Minimize f(\mathbf{x}) \text{ for } \mathbf{x} \in S$

Basic Concept (2)

- can overcome some of the challenges that are due to
 - multiple objectives, mixed design variables, irregular/noisy problem functions, implicit problem functions, expensive and/or unreliable function gradients, and uncertainty in the model and the environment
- very general and can be applied to all kinds of problems— discrete, continuous, and nondifferentiable
- relatively easy to use and program since they do not require the use of gradients of cost or constraint functions
- drawbacks of these algorithms
 - require a large amount of function evaluations → use of massively parallel computers
 - no absolute guarantee that a global solution has been obtained \rightarrow execute the algorithm several times and allow it to run longer

Genetic Algorithm (GA)

- Search algorithm based on the mechanics of natural selection and natural genetics subject to Darwin's theory of "survival of the fittest" among string structures
 - Basic operations of natural genetics: reproduction, crossover, mutation
 - Mixed continuous-discrete variables, discontinuous and nonconvex design spaces (practical optimum design problems)
 - Global optimum solution with a high probability
 - J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Mich., 1975
 - D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1983

```
maximize f(\mathbf{x})
subject to l_i \le x_i \le u_i, i = 1, ..., n
```

GA: Terminology

- Gene: each design variable (x)
- Chromosome: group of design variables
- Individual: each design point
- Fitness: how good is the individual?
- Population: group of individuals

Individual

Chromosome [0.00,4.00,2.80,19.0] or [0000010011101101] Fitness 25.8

- Genetic operators: drive the search
 - Selection: select the high fitness individuals, exploit the info
 - Crossover: parents create children, explore the design space
 - Mutation: sudden random changes in chromosomes
 - Inversion: reverse gene sequence (sometimes improve diversity)
- Generation: each cycle of genetic operations

Optimization Techniques

GA: Characteristics

- A population of points is used for starting the procedure instead of a single design point.
 - Size of the population: 2n to 4n (n: # of DVs)
 - Less likely to get trapped at a local optimum
- GAs use only the values of the objective function.
 - No derivatives used in the search procedure
- Design variables are represented as strings of binary variables that correspond to the chromosomes in natural genetics.
 - Naturally applicable for solving discrete and integer programming problems
- The objective function value corresponding to a design vector plays the role of fitness in natural genetics.
- In every new generation, a new set of strings is produced by using randomized parents selection and crossover from the old generation.

• Efficiently explore the new combinations with the available knowledge Optimization Techniques

Design Representation: Schema (1)

- it needs to be encoded (ie, defined)
 - binary encoding, real-number coding, integer encoding
- V-string for a binary string
 - represents the value of a variable
 - the component of a design vector (a gene)
- D-string for a binary string
 - represents a design of the system
 - particular combination of n V-strings (n: number of design variables)
 - genetic string (or a chromosome)

Design Representation: Schema (2)

V-string \Leftrightarrow discrete value of a variable having N_c allowable discrete values let *m* be the smallest integer satisfying $2^m > N_c$

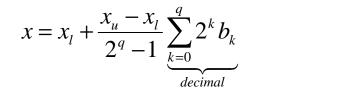
$$j = \sum_{i=1}^{m} ICH(i) 2^{(i-1)} + 1 \text{ where } ICH(i) \text{ : value of the } i\text{ -th digit (either 0 or 1)}$$

when $j > N_c$, $j = INT\left(\frac{N_c}{2^m - N_c}\right)(j - N_c)$
 $n = 3, N_c = 10 \rightarrow m = 4$
 $j \text{ value for three V-strings} \rightarrow \{7, 16, 14\} \rightarrow \{7, 6, 4\}$
 $\begin{bmatrix} x_1 & x_2 & x_3 \\ |0110| & |1111| & |1101| \end{bmatrix}$ 3467 0254 7932 7612 $\frac{0 - 4 \rightarrow 0}{5 - 9 \rightarrow 1}$ > 0011 0010 1100 1100

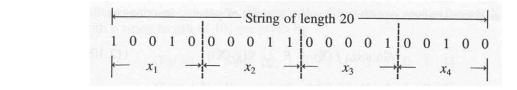
Fitness Function: defines the relative importance of a design

$$F_{i} = (1 + \varepsilon) f_{\max} - f_{i}$$

$$f_{i} : \text{cost function (penalty function value for a constrained problems) for the i-th design}$$


$$f_{\max} : \text{largest recorded cost (penalty) function value}$$

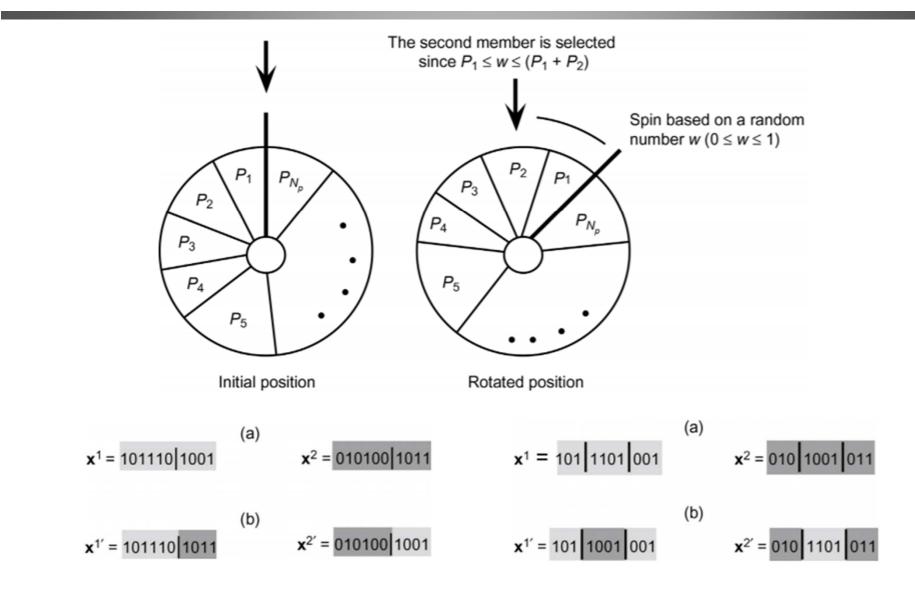
$$\text{Nature-Inspired Search Method - 8}$$


Genetic Operations

Coding and decoding of design variables

binary number : $b_q b_{q-1} \cdots b_2 b_1 b_0$ where $b_k = 0$ or 1

 $2^{q} \ge \frac{x_{u} - x_{l}}{\Lambda x} + 1 \quad (\Delta x : accuracy)$



- Creation of a mating pool (selection)
 - The weaker members are replaced by stronger ones based on the fitness values.
 - Eg., Roulette wheel selection

$$f'_{i} = \frac{f_{i} + C}{D} \quad \text{where } C = 0.1f_{h} - 1.1f_{l}, \ D = \max(1, f_{h} + C)$$
$$S = \sum_{i=1}^{z} f'_{i}(z: \text{population size}), \ \sum_{i=1}^{j-1} f'_{i} \le rS \le \sum_{i=1}^{j} f'_{i}(r: \text{random number}, z \text{ times})$$

Optimization Techniques

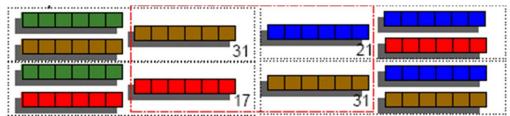
Nature-Inspired Search Method - 9

Example

Maximize
$$f(x_1, x_2) = 21.5 + x_1 \sin(4\pi x_1) + x_2 \sin(20\pi x_2)$$

subject to $-3.0 \le x_1 \le 12.1$
 $4.1 \le x_2 \le 5.8$

binary coding with 5 decimal digits $x_1 : 2^{17} < [12.1 - (-3.0)] \times 10^5 = 151,000 \le 2^{18} \rightarrow q_1 = 18$ $x_2 : 2^{14} < [5.8 - 4.1] \times 10^5 = 17,000 \le 2^{15} \rightarrow q_2 = 15$ chromosome : $\underbrace{000001010100100100100111011111110}_{x_1:18bit \rightarrow 5417}$ $x_2:15bit \rightarrow 24318$ $\Rightarrow \begin{cases} x_1 = -3.0 + 5417 \times \frac{12.1 - (-3.0)}{2^{18} - 1} = -2.68797 \\ x_1 = 4.1 + 24318 \times \frac{5.8 - 4.1}{2^{15} - 1} = 5.36165 \end{cases}$


Reproduction/Selection

- Exploit the available information drive to high fitness region
- Better individuals go to mating pool
- Population of high fitness individuals increased
- Remove low fitness individuals
- Improve the mean fitness
- Roulette wheel
 - Select individuals probabilistically

Individual	Fitness	Probability
	8	0.10
	21	0.27
	31	0.40
	17	0.22
	77	

- Tournament selection
 - Compare two individuals at a time

Nature-Inspired Search Method - 12

Crossover

• Chromosomes are spliced – genes are shared

- Diversify the population explore the design space
- Select parents randomly and mate them probabilistically(c_p)
- Binary crossover

$$\begin{array}{c} x_1{}^1 = 10 \;, \; x_2{}^1 = 11 \;, \; 010 \; \underbrace{101011}_{000111} \;, \; 010 \; 000111 \; y_1{}^1 = \! 08 \;, \; y_2{}^1 = \! 07 \\ x_1{}^2 = 20 \;, \; x_2{}^2 = 07 \;, \; 101 \; \underbrace{000111}_{000111} \;, \; 101 \; 101011 \; y_1{}^2 = \! 22 \;, \; y_2{}^2 = \! 11 \end{array}$$

Real crossover

$$y_i^1 = \alpha_i x_i^1 + \beta_i x_i^2; \qquad y_i^2 = \beta_i x_i^1 + \alpha_i x_i^2$$

$$x_1^1 = 10, x_2^1 = 11; \qquad x_1^2 = 20, x_2^2 = 07$$

$$\alpha_1 = 0.5, \beta_1 = 1.25; \qquad \alpha_2 = 1.5, \beta_2 = -0.75$$

$$y_1^1 = 0.5x_1^1 + 1.25x_1^2 = 30; \qquad y_2^1 = 1.5x_2^1 - 0.75x_2^2 = 11.25$$

$$y_1^2 = 1.25x_1^1 + 0.5x_1^2 = 22.5; \qquad y_2^2 = -0.75x_2^1 + 1.5x_2^2 = 2.25$$

Optimization Techniques

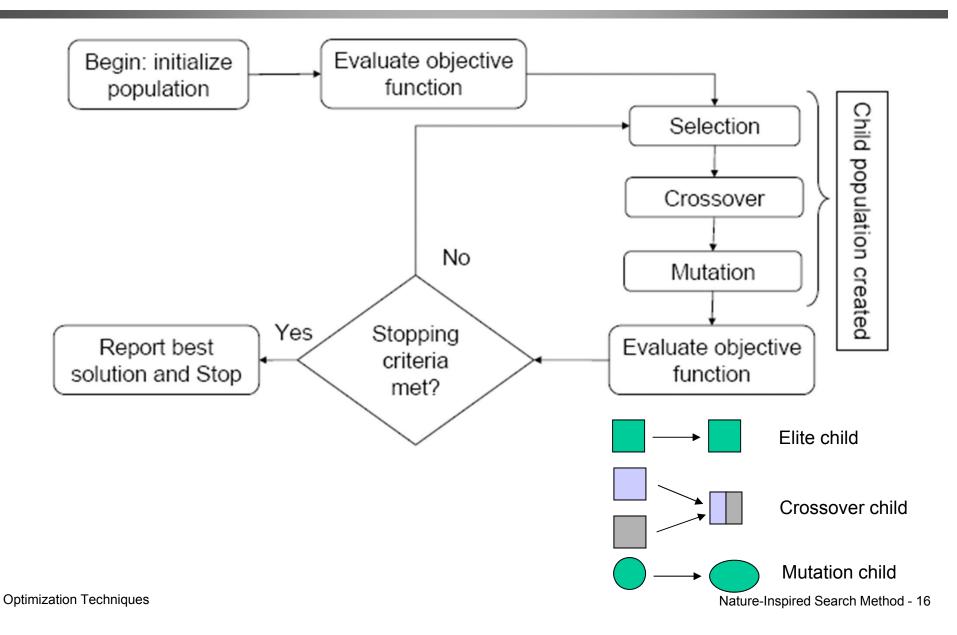
Nature-Inspired Search Method - 13

Mutation / Inversion

- Some genes change randomly
- Sometimes these changes are favorable
- Select genes(bits) probabilistically for mutation(m_p:0.005~0.1)
- Binary mutation

10110111 [x₁=11,x₂=7] → 00110011 [x₁=11,x₂=3]

Real mutation


 $y_i = x_i + \delta \Delta x_i$; $x_2 = 11$; $\Delta x = 1, \delta = 0.5$; $y_i = 11 + 0.5 = 11.5$

• Inversion: seldom used 10110101 $[x_1=11, x_2=5]$ 10011101 $[x_1=9, x_2=13]$

Stopping Criteria

- Number of generations
- Number of function evaluations
- No improvement for a certain number of generations

Flowchart of Simple Genetic Algorithm

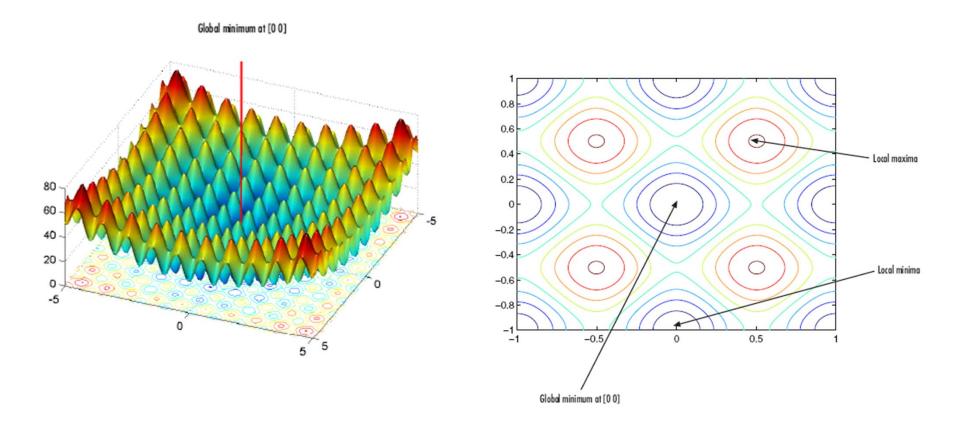
Observations

- Advantages
 - Gaining ground as practical tools
 - Relatively simple and elegant because of their analogy with nature
 - Public domain and commercial codes exist
- Disadvantages
 - A number of control parameters which affect the efficiency of solution
 - Large number of fitness function evaluations
 - Not strictly guarantee the optimality of the solution
 - Unconstrained minimization algorithm \rightarrow penalty function?

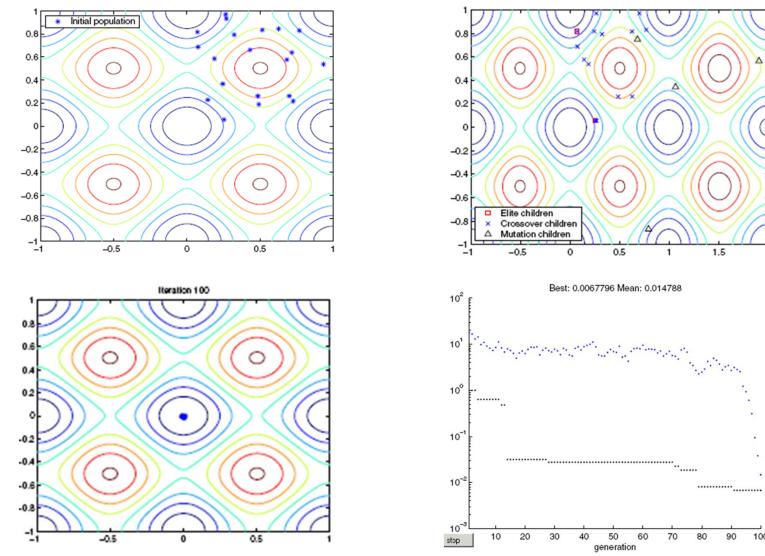
minimize
$$f(\mathbf{x}) + R \sum_{j=1}^{m} \langle g_j(\mathbf{x}) \rangle^2$$

subject to $x_l \le x_i \le x_u$, $i = 1, ..., n$
 $\Rightarrow \text{maximize } F(\mathbf{x}) = F_{\text{max}} - \left[f(\mathbf{x}) + R \sum_{j=1}^{m} \langle g_j(\mathbf{x}) \rangle^2 \right]$

Nature-Inspired Search Method - 17


MATLAB: Genetic Algorithm Toolbox

- [x fval] = ga(@fitnessfun, nvars, options)
- gatool


-	Options:		
Fitness function:			>>
Number of variables:	Population		
Plots	Population type:	Double Vector	
Plot interval: 1	Population size:	20	
F Best fitness F Best individual F Distance	Creation function:	Uniform	
Expectation Genealogy Range			
Score diversity Scores	Initial population:	0	
Stopping	Initial scores:		
Custom function:			
Run solver	Initial range:	[0;1]	
Use random states from previous run		E Contraction of the second seco	
Start Pause Stop			
Current generation:	Selection		
Status and results:	Reproduction		
	Mutation		
	Crossover		
	Migration		
K	Hybrid function	1	
	E Stopping criter	ia	
Final point:	⊡ Output function	1	
		mand window	
۲. () () () () () () () () () (

Rastrigin's Function

 $Ras(\mathbf{x}) = 20 + x_1^2 + x_2^2 - 10(\cos 2\pi x_1 + \cos 2\pi x_2)$

Iteration History

Optimization Techniques

Nature-Inspired Search Method - 20

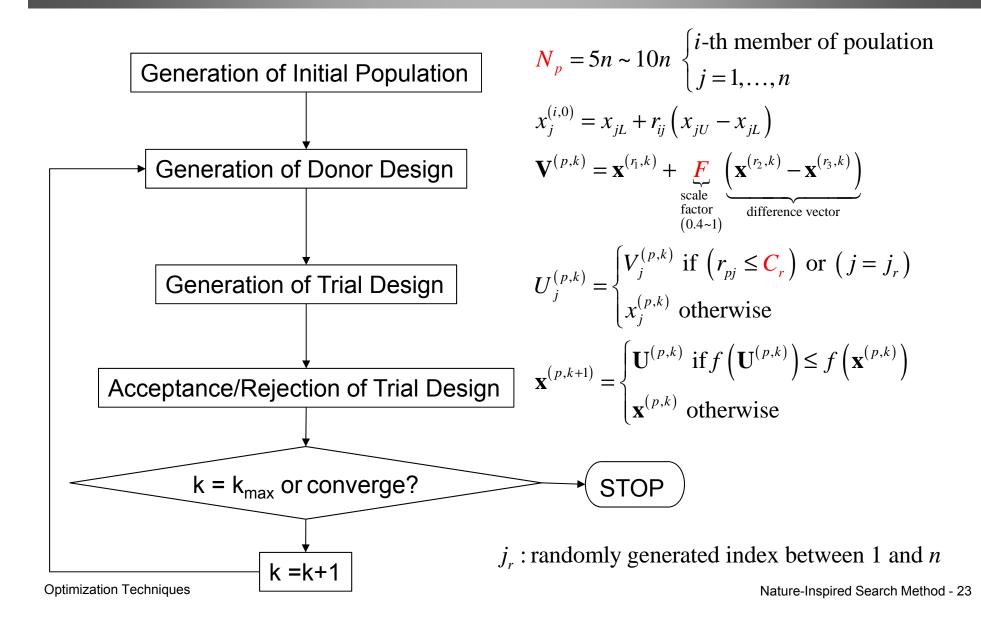
100

Δ

2

Options

options = gaoptimset('option-item', value)


options =

PopulationType: 'doubleVector' PopInitRange: [2x1 double] PopulationSize: 20 EliteCount: 2 CrossoverFraction: 0.8000 MigrationDirection: 'forward' MigrationInterval: 20 MigrationFraction: 0.2000 Generations: 100 TimeLimit: Inf FitnessLimit: -Inf StallGenLimit: 50 StallTimeLimit: 20 TolFun: 1.0000e-006 TolCon: 1.0000e-006 InitialPopulation: [] InitialScores: [] InitialPenalty: 10 PenaltyFactor: 100 PlotInterval: 1 CreationFcn: @gacreationuniform FitnessScalingFcn: @fitscalingrank


Differential Evolution Algorithm (DEA)

- Compared to GAs, DEAs are easier to implement on the computer
- Unlike GAs, they do not require binary number coding and encoding
- Four steps in executing the basic DEA
 - Step 1: Generation of the initial population of designs
 - Step 2: Mutation with difference of vectors to generate a so-called donor design vector
 - Step 3: Crossover/recombination to generate a so-called trial design vector
 - Step 4: Selection, that is, acceptance or rejection of the trial design vector using the fitness function, which is usually the cost function

Differential Evolution Algorithm (DEA)

Example 17.3 DEA

Optimization Techniques

Nature-Inspired Search Method - 24

Ant Colony Optimization (ACO)

- emulates the food searching behavior of ants developed by Dorigo (1992)
- search for an optimal path for a problem represented by a graph based on the behavior of ants seeking the shortest path between their colony and a food source
- class of metaheuristics and swarm intelligence methods
- originally for discrete variable combinatorial optimization problems

ACO Terminology

- Pheromone: pherin (to transport) + hormone (to stimulate)
 - a secreted or excreted chemical factor that triggers a social response in members of the same species
- Pheromone trail
 - ants deposit pheromones wherever they go
 - other ants can smell the pheromones and are likely to follow an existing trail
- Pheromone density
 - when ants travel on the same path again and again, they continuously deposit pheromones on it
 - In this way the amount of pheromones increases and ants are likely to follow paths having higher pheromone densities
- Pheromone evaporation
 - pheromones have the property of evaporation over time
 - if a path is not being traveled by the ants, the pheromones evaporate, and the path disappears over time

Ant Behavior

- Initially ants move from their nest randomly to search for food
- Upon finding it, they return to their colony following the path they took to it while laying down pheromone trails
- If other ants find such a path, they are likely to follow it instead of moving randomly
- The path is thus reinforced, since ants deposit more pheromone on it
- However, the pheromone evaporates over time
- pheromone density is higher on shorter paths than on the longer ones \rightarrow eventually all the ants follow the shortest path

Virtual Ants: Simple Model

 $\underbrace{G}_{\text{graph}} = (N, L) \text{ where } N = \text{node} \begin{cases} n_c : \text{ ant colony} \\ n_f : \text{food source} \end{cases} \text{ and } L = \text{link} \begin{cases} L_1 : \text{ length of } d_1 \\ L_2 : \text{ length of } d_2 \end{cases} (d_1 > d_2)$ virtual pheromone value (τ_i) for *i*th-path (initially set as one): strength of the pheromone trail $n_c \rightarrow n_f$ (finding): selection of the path based on the probability $p_i = \frac{\tau_i}{\tau_1 + \tau_2}$, i = 1, 2 $n_f \rightarrow n_c$ (returning): pheromone reinforcement $\tau_i \leftarrow \tau_i + \frac{Q}{d_i}$ where Q: positive constant evaporation : $\tau_i \leftarrow (1 - \rho) \tau_i$ where ρ : pheromone evaporation rate, $\rho \in (0, 1]$ Colony Colony `0₀0 000 Optimization Techniques Food -Inspired Search Method - 28 Food ood

Traveling Salesman Problem (1)

- classical combinatorial optimization problem
 - traveling salesman is required to visit a specified number of cities (called a tour)
 - The goal is to visit a city only once while minimizing the total distance traveled
- Assumptions
 - While a real ant can take a return path to the colony that is different from the original path depending on the pheromone values, a virtual ant takes the return path that is the same as the original path
 - The virtual ant always finds a feasible solution and deposits pheromone only on its way back to the nest
 - While real ants evaluate a solution based on the length of the path from their nest to the food source, virtual ants evaluate their solution based on a cost function value

Traveling Salesman Problem (2)

- "finding a path from the nest to the food source" to "finding a feasible solution to the TS problem."
- x_j : *j*-th component of the design variable vector **x** (link selected from the *j*-th city) x_{ij} : link between the *i*-th city and the *j*-th city (distance between them) D_i : list of integers corresponding to the cities that can be visited from the *i*-th city

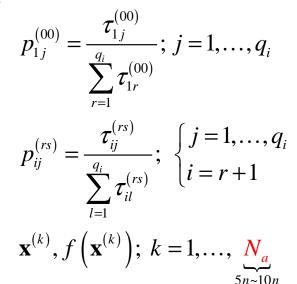
$$D_{1} = \{2,3,4\} \Leftrightarrow \text{feasible links} \{x_{12}, x_{13}, x_{14}\} \rightarrow p_{1j} = \frac{\tau_{1j}}{\tau_{12} + \tau_{13} + \tau_{14}}$$

$$D_{2} = \{3,4\} \Leftrightarrow \text{feasible links} \{x_{23}, x_{24}\} \rightarrow p_{2j} = \frac{\tau_{2j}}{\tau_{23} + \tau_{24}}$$

$$c_{1} \rightarrow c_{2} \rightarrow c_{3} \rightarrow c_{4} \rightarrow c_{1} \Leftrightarrow \mathbf{x} = [x_{12} \quad x_{23} \quad x_{34} \quad x_{41}]$$

$$Optimization Ter$$

Design Optimization (1)


- Problem definition
 - unconstrained discrete variable design optimization problem

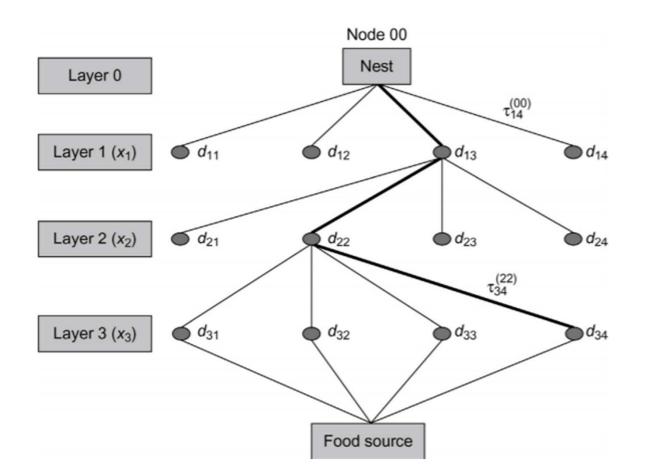
Minimize $f(\mathbf{x})$ $x_i \in D_i = (d_{i1}, \dots, d_{iq_i}) \quad i = 1, \dots n$

- Finding feasible solutions
 - Selection of an initial link
 - Selection of a link from layer R
 - Obtaining feasible solutions for all ants

 $au_{ij}^{(rs)}$: pheromone value for the link from node *rs* to node *ij* $p_{ij}^{(rs)}$: probability of selection of the link from node *rs* to node *ij* $\int r$: layer number (design variable number)

s: allowable value number for the design variable number rOptimization Techniques

Design Optimization (2)


- Pheromone Evaporation
 - Once all of the ants have reached their destination (all of them have found solutions), pheromone evaporation (ie, reduction in the pheromone level) is performed for all links

$$\tau_{ij}^{(rs)} \leftarrow \left(1 - \underbrace{\rho}_{0.4 \sim 0.8}\right) \tau_{ij}^{(rs)} \text{ for all } r, s, i, j$$

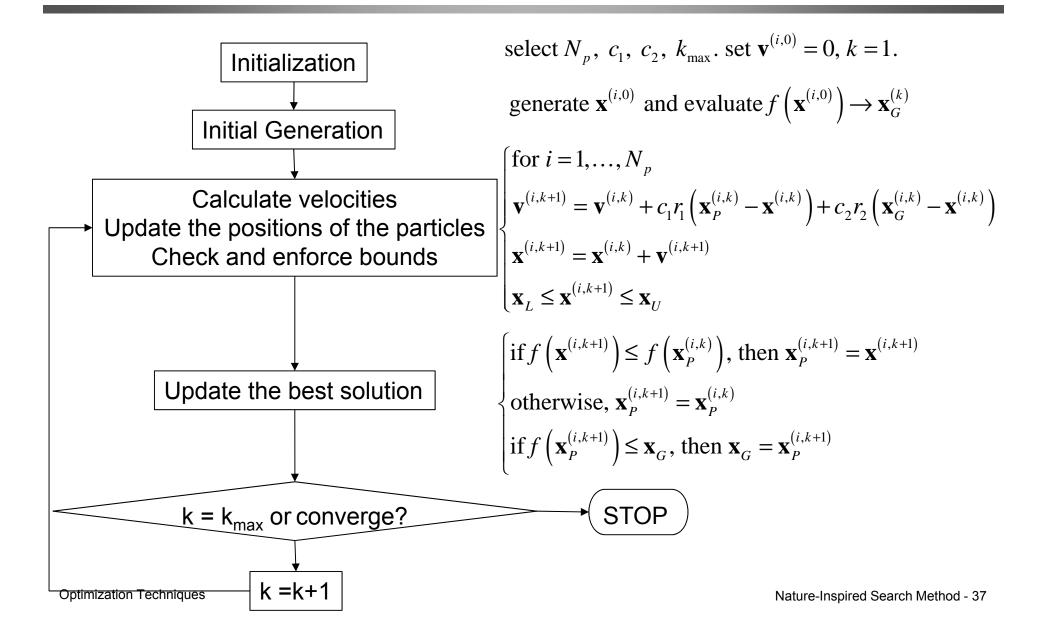
- Pheromone Deposit
 - After pheromone evaporation, the ants start their journey back to their nest, which means that they will deposit pheromone on the return trail

$$\tau_{ij}^{(rs)} \leftarrow \tau_{ij}^{(rs)} + \frac{Q}{f(\mathbf{x}^{(k)})}$$
 for all r, s, i, j belonging to k -th ant's solution

Example 17.4 ACO

Particle Swarm Optimization (PSO)

- population-based stochastic optimization technique, introduced by Kennedy and Eberhart (1995)
- mimics the social behavior of bird flocking or fish schooling
- class of metaheuristics and swarm intelligence methods
- many similarities with evolutionary computation techniques such as GA and DE
 - starts with a randomly generated set of solutions (initial population)
 - An optimum solution is then searched by updating generations
 - fewer algorithmic parameters to specify compared to GAs
 - not use any of the GAs' evolutionary operators (crossover, mutation)
 - not use any of the GAs' evolutionary operators such as crossover and mutation -> easier to implement


Swarm Behavior

- emulate the social behavior of a swarm of animals, such as a flock of birds or a school of fish (moving in search for food)
- an individual behaves according to its limited intelligence as well as to the intelligence of the group
- Each individual observes the behavior of its neighbors and adjusts its own behavior accordingly
- If an individual member discovers a good path to food, other members follow this path no matter where they are situated in the swarm

PSO Terminology

- Particle: identify an individual in the swarm (eg, a bird in the flock or a fish in the school)
- Particle position: refers to the coordinates of the particle ↔ design point
- Particle velocity: The term refers to the rate at which the particles are moving in space ↔ design change
- Swarm leader: particle having the best position ↔ design point having the smallest value for the cost function

Particle Swarm Optimization Algorithm

