Contents

- Problem definition
- Terminology and basic concepts
- Multi-objective genetic algorithms
- Weighted sum method
- Weighted min-max method
- Lexicographic method
- Bounded objective function method
- Goal programming
- Selection of methods

Basic Concepts

Problem Definition

Minimizes $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_k(\mathbf{x}))$ subject to $\begin{cases} h_i(\mathbf{x}) = 0; & i = 1, \dots, p \\ g_j(\mathbf{x}) \le 0; & j = 1, \dots, m \end{cases}$ where $\begin{cases} k : \text{ number of objective functions} \\ p : \text{ number of equality constraints} \\ m : \text{ number of inequality constraints} \end{cases}$

f(x): k-dimensional vector of objective functions

$$S = \left\{ x \mid h_i(\mathbf{x}) = 0, \ i = 1, \dots, p; \ g_j(\mathbf{x}) \le 0, \ j = 1, \dots, m \right\}$$

• Criterion Space and Design Space

Design Space \Leftrightarrow Criterion (Cost) Space

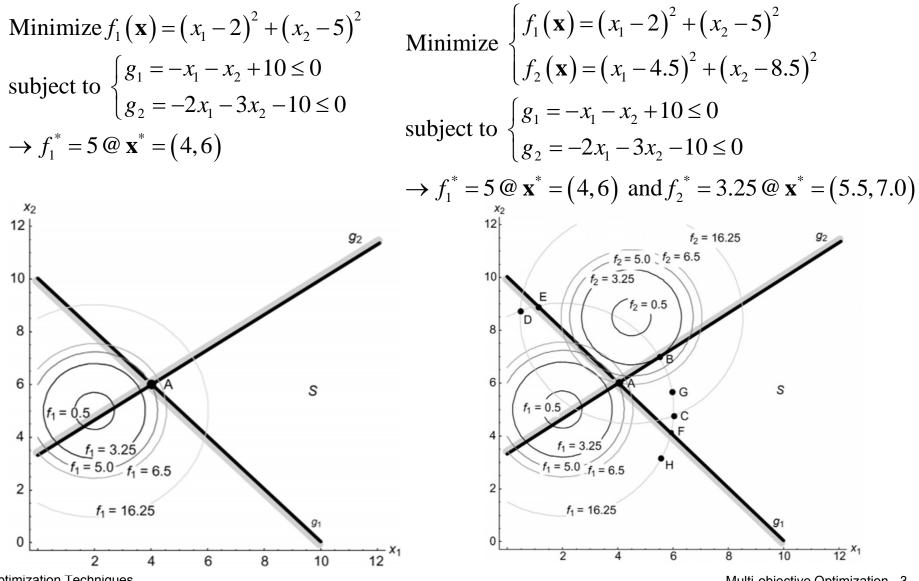
 $g_j(\mathbf{x}) = 0$

S

 q_j attainable set $Z = \{f(\mathbf{x}) | \mathbf{x} \text{ in the feasible set } S\}$

Attainability: a point in the criterion space can be related to a point in the feasible design space (each point in the feasible design space) \xrightarrow{O}_{X} (a point in the criterion space)

Single vs. Two-Objective Optimization (1)

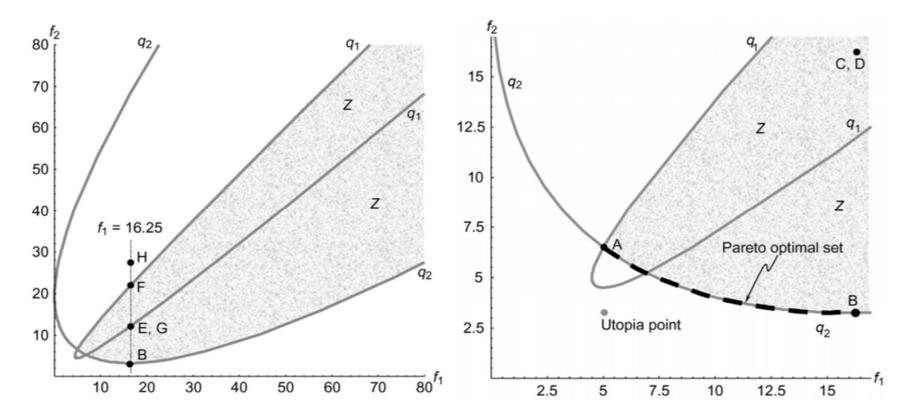


Optimization Techniques

Multi-objective Optimization - 3

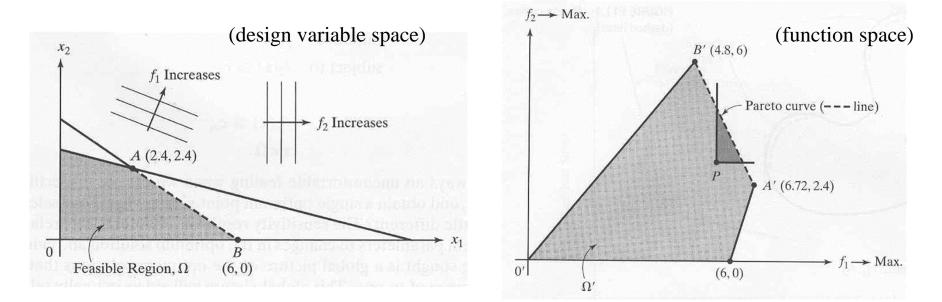
Single vs. Two-Objective Optimization (2)

- for one objective function value, there may be many different feasible design points in the design space S
- how can point E be in the feasible criterion space?



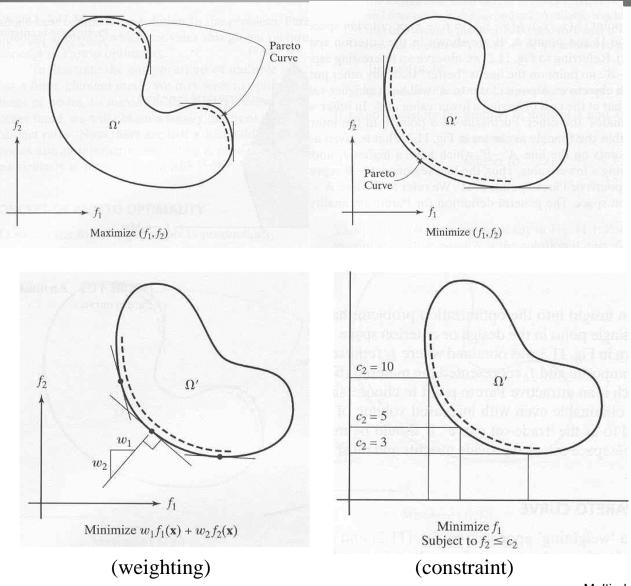
Example

$$\begin{array}{ll} \text{Maximize} & f_1 = 0.8x_1 + 2x_2 \text{ and } f_2 = x_1 \\ \text{subject to} & 2x_1 + 3x_2 \le 12 \\ & x_1 + 4x_2 \le 12 \\ & x_i \ge 0 \end{array} \right\} \rightarrow \begin{cases} f_1^{\max} = 6.72 @ x^* = (2.4, 2.4) \\ f_2^{\max} = 6.00 @ x^* = (6.0, 0.0) \\ f_2^{\max} = (6.0, 0.0) \end{cases}$$



Multi-objective Optimization - 5

Pareto Curves



Optimization Techniques

Multi-objective Optimization - 6

Solution Concepts (1)

- it is not clear what is meant by the minimum of multiple functions that may have opposing characteristics since what decreases the value of one function may increase the value of another
- Pareto optimality (Pareto, 1906)
 - A point x* in the feasible design space S is Pareto optimal if and only if there does not exist another point x in the set S such that $f(x) \le f(x^*)$ with at least one $f_i(x) < f_i(x^*)$ [reduces at least one objective function without increasing another one]
 - Pareto optimal set is always on the boundary of the feasible criterion space Z, it is not necessarily defined by the constraints
 - Z exists even for unconstrained problems: Pareto optimal set is defined by the relationship between the gradients of the objective functions
- weakly Pareto optimal
- "~" such that f(x) < f(x*): there is no point that improves all of the objective functions simultaneously; however, there may be points that improve some of the objectives while keeping others unchanged Multi-objective Optimization 7

Solution Concepts (2)

- Efficiency
 - A point x^{*} in the feasible design space S is efficient if and only if there does not exist another point x in the set S such that $f(x) ≤ f(x^*)$ with at least one $f_i(x) < f_i(x^*)$. Otherwise, x^{*} is inefficient. The set of all efficient points is called the efficient frontier.
- Dominance
 - A vector of objective functions f*=f(x*) in the feasible criterion space Z is nondominated if and only if there does not exist another vector f in the set Z such that f ≤ f*, with at least one f_i < f_i*. Otherwise, f* is dominated.
- Efficiency: points in the design space
- Nondominance: points in the criterion space
- Pareto optimality: both the design and the criterion spaces

Solution Concepts (3)

- Utopia (Ideal) point
 - A point f° in the criterion space is called the utopia point if f_i°
 = min{f_i(x) | for all x in the set S}, i = 1 to k
 - obtained by minimizing each objective function without regard for other objective function
 - general, it is not attainable
- Compromise solution
 - solution that is as close as possible to the utopia point
 - Pareto optimal

$$D(\mathbf{x}) = \left\| f(\mathbf{x}) - f^{\circ} \right\| = \left\{ \sum_{i=1}^{k} \left[f_i(\mathbf{x}) - f_i^{\circ} \right]^2 \right\}^{1/2}$$

Preferences and Utility Functions

- Preferences
 - — infinitely many Pareto optimal solutions → make decisions
 concerning which solution is preferred
 - three approaches to expressing preferences about different objective functions
 - declared before solving the multi-objective optimization problem
 - indicated by interacting with the optimization routine and making choices based on intermediate optimization results
 - calculate the complete Pareto optimal set (or its approximation) and then select a single solution point after the problem has been solved
- Utility function
 - mathematical expression that attempts to model the decision maker's preferences

- Generation of Pareto Optimal Set
 - Some methods always yield Pareto optimal solutions but may skip certain points in the Pareto optimal set → obtain just one solution point
 - Other methods are able to capture all of the points in the Pareto optimal set, but may also provide non-Pareto optimal points → complete Pareto optimal set
- Normalization of Objective Functions

 $\left\{ \max_{1 \le j \le k} f_i(\mathbf{x}_j^*) \text{ where } \mathbf{x}_j^* : \text{ point that minimizes the } j \text{ -th objective function} \right.$

 $f_i^{\max}(\mathbf{x}) = \left\{ \text{absolute maximum value of } f_i(\mathbf{x}) \right\}$

or its approximation based on engineering intuition

Multi-objective Genetic Algorithms

- ability to converge to the Pareto optimal set rather than a single Pareto optimal point
- Niche: group of points that are close together (typically in terms of distance in the criterion space)
- How to
 - evaluate fitness
 - incorporate the idea of Pareto optimality
 - how to determine which potential solution points should be selected (will survive) for the next iteration (generation)
- Selection Strategy
 - Vector-Evaluated GA, Ranking, Pareto Fitness Function, Pareto-Set Filter, Elitist Strategy, Tournament Selection, Niche Techniques

Selection Strategy (1)

- Vector-Evaluated GA
 - minimum of a single-objective function → vertices of the Pareto optimal set
 - for a problem with k objectives, k subsets are created, each with $N_{\rm p}/k$ members
 - does not yield an even distribution of Pareto optimal points
- Ranking
 - give each design a rank based on whether it is dominated in the criterion space
 - Fitness is then based on a design's rank within a population
 - All nondominated points receive a rank of 1
 - points with a rank of one are temporarily removed from consideration, and the points that are nondominated relative to the remaining group are given a rank of 2
 - fitness is determined such that it is inversely proportional to rank

Selection Strategy (2)

Pareto Fitness Function

 $F(\mathbf{x}_{i}) = \max_{j \neq i; j \in P} \left[\min_{1 \le s \le k} \left\{ f(\mathbf{x}_{i}) - f(\mathbf{x}_{j}) \right\} \right]: \text{ maximin fitness function}$

P: set of nondominated points in the current population

- first determine all of the nondominated points before evaluating the fitness of the designs
- nondominated points have negative fitness values
- relatively simple and effective
- Pareto-Set Filter
 - stores two sets of solutions: the current population and the filter (another set of potential solutions, approximate Pareto set)
 - points with a rank of 1 are saved in the filter \rightarrow nondominated check
 - When the filter is full, points at a minimum distance from other points are discarded

Selection Strategy (3)

- Elitist Strategy
 - independently of the ranking scheme
 - user-specified number of points from the tentative set of nondominated solutions are reintroduced into the current population
 - k solutions with the best values for each objective function
- Tournament Selection
 - Two points(candidate points) are compared with each member of tournament (or comparison) set
 - size of the tournament set is prespecified as a percentage of the total population
 - imposes the degree of difficulty in surviving (domination pressure)

Selection Strategy (4)

- Niche Techniques
 - methods for ensuring that a set of designs does not converge to a niche
 - foster an even spread of points (in the criterion space).
 - genetic (or population) drift: a limited number of niches → converge to or cluster around a limited set of Pareto optimal points
 - Fitness sharing: penalize the fitness of points in crowded areas, thus reducing the probability of their survival for the next iteration

Weighted Sum Method

$$U = \sum_{i=1}^{k} w_i f_i(\mathbf{x}) \text{ where } \sum_{i=1}^{k} w_i = 1 \text{ and } \mathbf{w} > 0$$

- Weight determination
 - set w to reflect preferences before the problem is solved
 - systematically alter w to yield different Pareto optimal points (to generate the Pareto optimal set)
- Difficulties
 - satisfactory a priori weight selection does not necessarily guarantee that the final solution will be acceptable; one may have to re-solve the problem with different weights
 - impossible to obtain points on nonconvex portions of the Pareto optimal set in the criterion space
 - varying the weights consistently and continuously may not necessarily result in an even distribution of Pareto optimal points and an accurate, complete representation of the Pareto optimal set

Weighted Min-Max Method

 $U = \max_{i} \left\{ w_{i} \left[f_{i} \left(\mathbf{x} \right) - f_{i}^{\circ} \right] \right\} \rightarrow \begin{cases} \text{minimize } \lambda \\ w_{i} \left[f_{i} \left(\mathbf{x} \right) - f_{i}^{\circ} \right] - \lambda \leq 0; \ i = 1..., k \end{cases}$

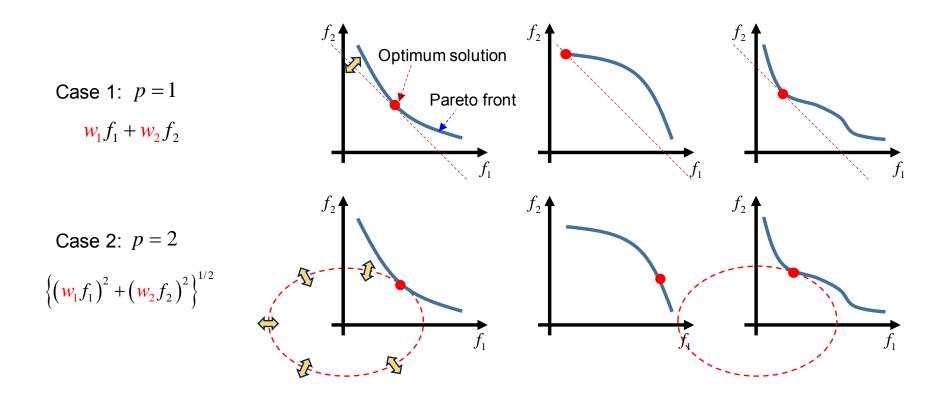
- Advantages
 - Provide a clear interpretation of minimizing the largest difference between $f_i(x)$ and f_i°
 - Provide all of the Pareto optimal points
 - always provides a weakly Pareto optimal solution
 - relatively well suited for generating the complete Pareto optimal set (with variation in the weights)
- Disadvantages
 - requires the minimization of each objective to obtain the utopia point, which can be computationally expensive
 - requires that additional constraints be included
 - not clear exactly how to set the weights when only one solution point is desired

Weighted Global Criterion Method (1)

$$U = \left\{ \sum_{i=1}^{k} \left(w_i \left[f_i \left(\mathbf{x} \right) - f_i^{\circ} \right] \right)^p \right\}^{1/p} \text{ where } \sum_{i=1}^{k} w_i = 1 \text{ and } \mathbf{w} > 0$$
$$P = \left\{ \begin{array}{l} 1: \text{ weighted sum with the objective functions adjusted with the utopia point} \\ 2\left(\mathbf{w} = 1 \right): \text{ distance from the utopia point} \\ \infty \rightarrow U = \max_i \left\{ w_i \left[f_i \left(\mathbf{x} \right) - f_i^{\circ} \right] \right\} \right\} \right\}$$

- increasing the value of p can increase its effectiveness in providing the complete Pareto optimal set → This explains why the weighted min–max approach can provide the complete Pareto optimal set with variation in the weights
- utopia point → z not in Z (aspiration point, reference point, goal, or target point), U (achievement function)
- utopia point, or compromise-programming methods

Weighted Global Criterion Method (2)



Weighted Global Criterion Method (3)

Advantages

- gives a clear interpretation of minimizing the distance from the utopia point (or the aspiration point)
- gives a general formulation that reduces to many other approaches
- allows multiple parameters to be set to reflect preferences
- always provides a Pareto optimal solution when the utopia point is used
- Disadvantages
 - use of the utopia point requires minimization of each objective function, which can be computationally expensive
 - use of an aspiration point requires that it be infeasible in the criterion space in order to yield a Pareto optimal solution
 - setting of parameters is not intuitively clear when only one solution point is desired

Lexicographic Method

for i = 1, ..., k $\begin{cases}
\text{Minimize } f_i(\mathbf{x}) \\
\text{subject to } f_j(\mathbf{x}) \leq f_j(\mathbf{x}_j^*); \quad j = 1, ..., (i-1), \quad i > 1, \quad i = 1, ..., k
\end{cases}$

- preferences are imposed by ordering the objective functions according to their importance or significance, rather than by assigning weights
- Advantages
 - unique approach to specifying preferences
 - does not require that the objective functions be normalized
 - always provides a Pareto optimal solution
- Disadvantages
 - can require the solution of many single-objective problems to obtain just one solution point
 - requires that additional constraints be imposed

Optimization Techniques most effective when used with a global optimization used ptimization - 22

Bounded Objective Function Method

 $\begin{cases} \text{Minimize } f_s(\mathbf{x}) \\ \text{subject to } l_i \leq f_i(\mathbf{x}) \leq \varepsilon_i; \quad i = 1, \dots, k, \ i \neq s \\ f_s(\mathbf{x}): \text{ single most important objective function} \\ l_i \leq f_i(\mathbf{x}) \leq \varepsilon_i \rightarrow f_i(\mathbf{x}) \leq \varepsilon_i \ [\varepsilon\text{-constaint appoach}] \\ \text{guideline for selecting } \varepsilon_i: f_i(\mathbf{x}_i^*) \leq \varepsilon_i \leq f_s(\mathbf{x}_i^*) \end{cases}$

- Advantages
 - focuses on a single objective with limits on others
 - always provides a weakly Pareto optimal point, assuming that the formulation gives a solution
 - not necessary to normalize the objective functions
 - gives Pareto optimal solution if one exists and is unique
- Disadvantages
 - optimization problem may be infeasible if the bounds on the objective functions are not appropriate

Goal Programming

$$\begin{cases} \text{Minimize } \sum_{i=1}^{k} \left(d_{i}^{+} + d_{i}^{-} \right) \\ \text{subject to } \begin{cases} f_{j}\left(\mathbf{x}\right) + d_{j}^{+} + d_{j}^{-} = b_{i} \\ d_{j}^{+}, \ d_{j}^{-} \ge 0, \ d_{j}^{+} d_{j}^{-} = 0 \end{cases}; \quad i = 1, \dots, k \end{cases}$$

 d_{j} : deviation from the goal b_{j} for the *j*-th objective function

 $b_j = f_j^{\circ} \rightarrow$ global criterion method

- Advantages
 - easy to assess whether the predetermined goals have been reached
 - easy to tailor the method to a variety of problems not necessary to normalize the objective functions
- Disadvantages
 - no guarantee that the solution is even weakly Pareto optimal
 - increase in the number of variables
- increase in the number of constraints

Selection of Methods

Method	Always yields Pareto optimal point?	Can yield all Pareto optimal points?	Involves weights?	Depends on function continuity?	Uses utopia point?
Genetic	Yes	Yes	No	No	No
Weighted sum	Yes	No	Yes	Problem type and optimization engine determines this	Utopia point or its approximation is needed for function normalization or in the formulation of the method
Weighted min-max	Yes ^a	Yes	Yes	Same as above	Same as above
Weighted global criterion	Yes	No	Yes	Same as above	Same as above
Lexicographic	Yes ^b	No	No	Same as above	No
Bounded objective function	Yes ^c	No	No	Same as above	No
Goal programming	No	No	No ^d	Same as above	No

^a Sometimes solution is only weakly Pareto optimal.

^b Lexicographic method always provides Pareto optimal solution only if global optimization engine is used or if solution point is unique.

^c Always weak Pareto optimal if it exists; Pareto optimal if solution is unique.

^d Weights may be incorporated into objective function to represent relative significance of deviation from particular goal.