### Problem Formulation Process (1)

### Step 1: Project/Problem Statement

- Is the project goal clear?
- descriptive statement for the project/ problem
- overall objectives of the project and the requirements to be met
- Step 2: Data and Information Collection
  - Is all the information available to solve the problem?
  - Performance requirements, resource limits, cost of raw materials
  - Identification of analysis procedures and tools
  - project statement is vague, and assumptions about modeling of the problem need to be made in order to formulate and solve it

### Problem Formulation Process (2)

### Step 3: Identification/Definition of Design Variables

- What are these variables? How do I identify them?
- identify a set of variables that describe the system, called the design variables
- should be independent of each other, minimum number
- As many independent parameters as possible should be designated as design variables at the problem formulation phase

### • Step 4: Optimization Criterion

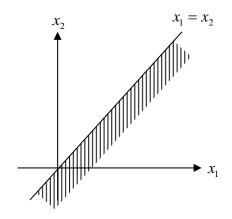
- How do I know that my design is the best?
- must be a scalar function whose numerical value can be obtained once a design is specified (function of the design variable vector)
- maximized or minimized depending on problem requirements
- criterion that is to be minimized is usually called a cost function in engineering literature

### Problem Formulation Process (3)

- Step 5: Formulation of Constraints
  - What restrictions do I have on my design?
  - All restrictions placed on the design
  - identify all constraints and develop expressions for them
  - must be designed and fabricated with the given resources and must meet performance requirements

### **Problem Formulation Steps**

- Identification of design variables
  - Parameters chosen to describe the design
  - Independent of each other, minimum number
- Identification of an objective (cost) functions
  - Criterion to compare various designs
  - As a function of the design variables
  - Single/Multi-objective
- Identification of all design constraints
  - All restrictions placed on a design
  - Feasible/Infeasible
  - Explicit/Implicit, Linear/Nonlinear, Equality/Inequality



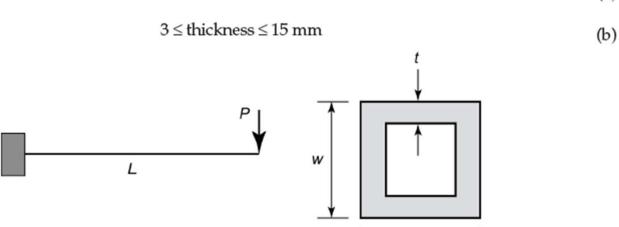
Optimization Techniques

### DESIGN OF A CANTILEVER BEAM

### Step 1: Problem Statement

Cantilever beams are used in many practical applications in civil, mechanical, and aerospace engineering. To illustrate the step of problem description, we consider the design of a hollow square-cross-section *cantilever beam* to support a load of 20 kN at its end. The beam, made of steel, is 2 m long, as shown in Fig. 2.1. The failure conditions for the beam are as follows: (1) the material should not fail under the action of the load, and (2) the deflection of the free end should be no more than 1 cm. The width-to-thickness ratio for the beam should be no more than 8 to avoid local buckling of the walls. A *minimum-mass* beam is desired. The width and thickness of the beam must be within the following limits:

$$60 \le \text{width} \le 300 \,\text{mm} \tag{a}$$



### DESIGN OF A CANTILEVER BEAM

### • Step 2: Data and Information Collection

| Notation   | Data                                                             | $A = w^2 - (w - 2t)^2 = 4t(w - t)$ , mm <sup>2</sup>                                                                                             |
|------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| A          | Cross-sectional area, mm <sup>2</sup>                            | $I = \frac{1}{12}w \times w^3 - \frac{1}{12}(w - 2t) \times (w - 2t)^3 = \frac{1}{12}w^4 - \frac{1}{12}(w - 2t)^4, \text{ mm}^4$                 |
| E          | Modulus of elasticity of steel, $21 \times 10^4 \ \text{N/mm}^2$ | $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$                                         |
| G          | Shear modulus of steel, $8 \times 10^4  \mathrm{N/mm^2}$         | 0  1  2  w  1, $202  (w-2t)  1  3  1$ , $203  3$                                                                                                 |
| I          | Moment of inertia of the cross-section, mm4                      | $Q = \frac{1}{2}w^2 \times \frac{w}{4} - \frac{1}{2}(w - 2t)^2 \times \frac{(w - 2t)}{4} = \frac{1}{8}w^3 - \frac{1}{8}(w - 2t)^3, \text{ mm}^3$ |
| L          | Length of the member, 2000 mm                                    | M - DL NI/                                                                                                                                       |
| M          | Bending moment, N/mm                                             | M = PL, N/mm                                                                                                                                     |
| P          | Load at the free end, 20,000 N                                   | V = P, N                                                                                                                                         |
| Q          | Moment about the neutral axis of the area above the ne           | utral axis, mm³                                                                                                                                  |
| 9          | Vertical deflection of the free end, mm                          | $\sigma = \frac{Mw}{2l}, N/mm^2$                                                                                                                 |
| $q_a$      | Allowable vertical deflection of the free end, 10 mm             |                                                                                                                                                  |
| V          | Shear force, N                                                   | $\tau = \frac{VQ}{2It}$ , N/mm <sup>2</sup>                                                                                                      |
| w          | Width (depth) of the section, mm                                 | 21#                                                                                                                                              |
| t          | Wall thickness, mm                                               | $q = \frac{PL^3}{3EI}$ , mm                                                                                                                      |
| $\sigma$   | Bending stress, N/mm <sup>2</sup>                                | $q = \frac{1}{3EI}$ , mm                                                                                                                         |
| $\sigma_a$ | Allowable bending stress, 165 N/mm <sup>2</sup>                  | V(x)Q(y)                                                                                                                                         |
| τ          | Shear stress, N/mm <sup>2</sup>                                  | $Q = \int_A y dA$ : first moment of area $\to \tau = \frac{V(x)Q(y)}{Ib(y)}$                                                                     |
| $\tau_a$   | Allowable shear stress, 90 N/mm²                                 | Ib(y)                                                                                                                                            |
|            |                                                                  |                                                                                                                                                  |

**Optimization Techniques** 

### DESIGN OF A CANTILEVER BEAM

- Step 3: Definition of Design Variables
  - w = outside width (depth) of the section, mm
  - -t = wall thickness, mm
- Step 4: Optimization Criterion
  - Design a minimum-mass cantilever beam
  - cross-sectional area of the beam:
- Step 5: Formulation of Constraints
  - Bending stress constraint
  - Shear stress constraint
  - Deflection constraint
  - Width-thickness restriction
  - Dimension restrictions

# Design of a Can (1)

- Step 1: Problem Statement
  - Design a can to hold at least 400ml of liquid
  - Production in billions → Minimize the manufacturing cost
  - Cost directly related to the surface area of the sheet metal
  - Minimize the sheet metal required to fabricate the can
  - Diameter of the can should be no more than 8 cm. Also, it should not be less than 3.5 cm.
  - Height of the can should be no more than 18 cm and no less than 8 cm.

Step 2: Data and Information Collection

# Design of a Can (2)

- Step 3: Design variables
  - Diameter of the can (cm) / Height of the can (cm)
- Step 4: Cost function
  - Total surface area of the sheet metal

$$f(D,H) = \pi DH + 2\left(\frac{\pi D^2}{4}\right)$$

- Step 5: Constraints
  - Volume:  $\left(\frac{\pi D^2}{4}\right)H \ge 400$
  - Size of the can: side/technological/sizing constraints, simple bounds, upper and lower limits

$$3.5 \le D \le 8$$
;  $8 \le H \le 18$ 

# Insulated Spherical Tank Design (1)

### Step 1: Problem Statement

- Choose insulation thickness to minimize the life-cycle cooling cost for a spherical tank
- Cooling cost: installing and running the refrigeration equipment + installing the insulation
- 10-yr life, 10% annual interest rate, no salvage value, tank radius: r

### Step 2: Data and Information Collection

Capacity of the refrigeration equipment (annual heat gain)

$$G = \frac{(365)(24)(\Delta T)A}{c_1 t} \text{ W} \cdot \text{hr}$$

 $A = 4\pi r^2$ : surface area of the spherical tank

 $\Delta T$ : average difference between the internal and external temperatures (K)

 $c_1$ : thermal resistivity per unit thickness (K·m/W)

t:insulation thickness (m)

# Insulated Spherical Tank Design (2)

- Step 3: Design variable
  - Insulation thickness: t (m)
- Step 4: Cost function
  - Insulation, refrigeration equipment, operations for 10 yrs

$$f = c_2 At + c_3 G + c_4 G \underbrace{uspwf(0.1,10)}_{=6.14457}$$
 (assuming  $t << r$ )

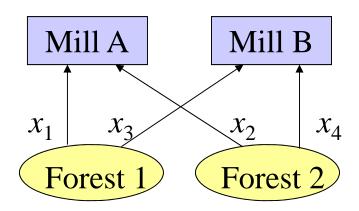
- c<sub>2</sub>: insulation cost per cubic meter (\$/m<sup>3</sup>)
- $c_3$ : cost of the refrigeration equipment per Wh of capacity (\$/Wh)
- $c_4$ : annual cost of running the refrigeration equipment per Wh (\$/Wh)
- Step 5: Constraints

$$t > 0 \rightarrow t \ge 0 \rightarrow t \ge t_{\min}$$

### Saw Mill Operation (1)

- Step 1: Problem Statement
  - Each forest can yield up to 200 logs/day
  - Cost to transport the logs is estimated at 15 cents/km/log
  - At least 300 logs are needed each day
  - Minimize the cost of transportation of logs each day
- Step 2: Data and Information Collection

|      | Distance (km) |          | Capacity |
|------|---------------|----------|----------|
| Mill | Forest 1      | Forest 2 | /day     |
| А    | 24.0          | 20.5     | 240 logs |
| В    | 17.2          | 18.0     | 300 logs |



# Saw Mill Operation (2)

- Step 3: Design variables :  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$
- Step 4: Cost function
  - Cost of transportation of logs each day

- Step 5: Constraints
  - Mill capacities:
  - Yield of forests:

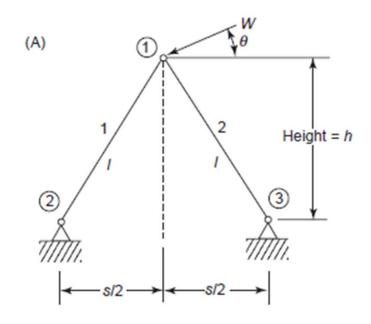
Linear Programming problem

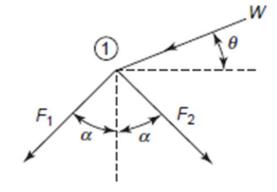
→Integer Programming problem

# Two-Bar Structure (1)

### Step 1: Problem Statement

- Design a two-bar bracket to support a force W without failure
- Cost directly related to the size of the two bars
- To minimize the total mass of the bracket while satisfying performance, fabrication, and space limitations





$$\begin{cases} \sum F_x = -F_1 \sin \alpha + F_2 \sin \alpha - W \cos \theta = 0 \\ \sum F_y = -F_1 \cos \alpha - F_2 \cos \alpha - W \sin \theta = 0 \end{cases}$$

$$\sin \alpha = \frac{s}{2l}, \quad \cos \alpha = \frac{h}{l}, \quad l = \sqrt{h^2 + \left(\frac{s}{2}\right)^2}$$

# Two-Bar Structure (2)

- Step 3: Design variables (hollow circular tubes)
  - $-x_1$ : height of the truss,  $x_2$ : span of the truss
  - x<sub>3</sub>, x<sub>4</sub>: outer/inner diameters of member 1
  - x<sub>5</sub>, x<sub>6</sub>: outer/inner diameters of member 2

$$A_1 = \frac{\pi}{4} (x_3^2 - x_4^2), A_2 = \frac{\pi}{4} (x_5^2 - x_6^2)$$

$$(d_0, r) \text{ where } r = \frac{d_i}{d_0}$$

$$(d_0, d_i)$$

$$(d_0, d_i, r)$$
?

- Step 4: Cost function
  - Minimize the mass:  $m = \rho[l(A_1 + A_2)] = \rho\sqrt{x_1^2 + (0.5x_2)^2} \frac{\pi}{4} (x_3^2 x_4^2 + x_5^2 x_6^2)$
- Step 5: Constraints
  - stress in each member ≤ material allowable stress
  - Side constraints

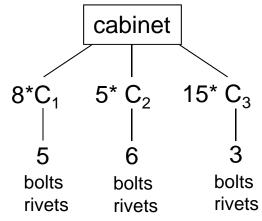
$$\left|\sigma_{i} = \frac{F_{i}}{A_{i}}\right| \leq \sigma_{a} \quad (i = 1, 2)$$

$$x_{il} \leq x_{i} \leq x_{iu} \quad (i = 1, ..., 6)$$

### Design of a Cabinet

- Determine the number of components to be bolted and riveted to minimize the cost
  - Each cabinet requires 8\*C<sub>1</sub>, 5\* C<sub>2</sub>, 15\* C<sub>3</sub> components
  - Assembly of C<sub>1</sub> needs either 5 bolts or 5 rivets; C<sub>2</sub> 6 bolts or 6 rivets; C<sub>3</sub> 3 bolts or 3 rivets
  - A total of 100 cabinets must be assembly daily
  - Bolting and riveting capacities per day are 6000 and 8000, respectively

| Cost (\$) | C <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> |
|-----------|----------------|----------------|----------------|
| bolt      | 0.7            | 1.0            | 0.6            |
| rivet     | 0.6            | 0.8            | 1.0            |



# Formulation 1 (component level)

- Design variables (for 100 cabinets)
  - $-x_1/x_3/x_5$  = number of  $C_1/C_2/C_3$  to be bolted
  - $x_2/x_4/x_6 =$  number of  $C_1/C_2/C_3$  to be riveted
- Cost function
- Constraints

### Formulation 2 (bolt/rivet level)

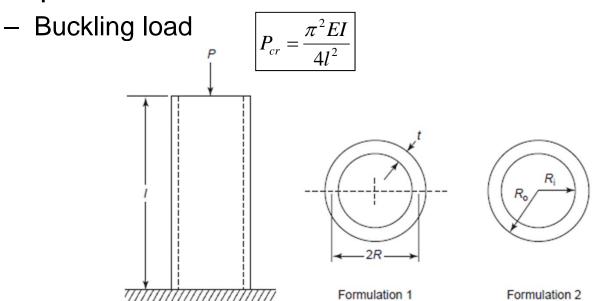
- Design variables
  - $-x_1/x_2/x_3$  = total number of bolts required for all  $C_1/C_2/C_3$
  - $x_4/x_5/x_6 = \text{total number of rivets required for all } C_1/C_2/C_3$
- Cost function
- Constraints

### Formulation 3 (←Formulation 1)

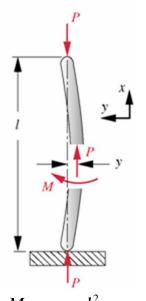
- Design variables (for one cabinet)
  - $-x_1/x_3/x_5$  = number of  $C_1/C_3/C_5$  to be bolted on one cabinet
  - $-x_2/x_4/x_6$  = number of  $C_2/C_4/C_6$  to be riveted on one cabinet
- Cost function
- Constraints

# Minimum Weight Tubular Column Design

- Step 1: Problem Statement
  - Straight columns: structural elements (street light pole, traffic light post, water tower support)
  - Design a minimum mass tubular column of length / supporting a load P w/o buckling or overstressing
- Step 2: Data and Information Collection



### Buckling of an Euler Column



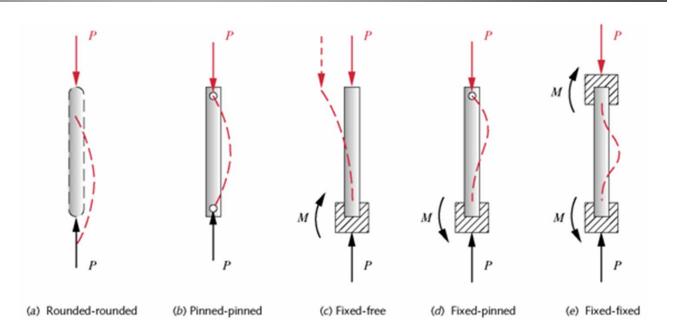
$$\frac{d^2y}{dx^2} = \frac{M}{EI} \to EI \frac{d^2y}{dx^2} = M = -Py$$

$$\frac{d^2y}{dx^2} + \left(\frac{P}{EI}\right)y = 0$$

$$y = c_1 \sin\left(\sqrt{\frac{P}{EI}}x\right) + c_2 \cos\left(\sqrt{\frac{P}{EI}}x\right)$$

+ boundary conditions

$$\to P_{cr} = \frac{\pi^2 EI}{l_{eff}^2}$$



| End Conditions  | Theoretical Value  | AISC*<br>Recommends | Conservative<br>Value |
|-----------------|--------------------|---------------------|-----------------------|
| Rounded-Rounded | $l_{eff} = l$      | $l_{eff} = l$       | $l_{eff} = l$         |
| Pinned-Pinned   | $l_{eff} = l$      | $l_{eff} = l$       | $I_{eff} = I$         |
| Fixed-Free      | $l_{eff} = 2l$     | $l_{eff} = 2.1l$    | $l_{eff} = 2.4l$      |
| Fixed-Pinned    | $I_{eff} = 0.7071$ | $l_{eff} = 0.80l$   | $l_{eff} = l$         |
| Fixed-Fixed     | $I_{eff} = 0.51$   | $l_{eff} = 0.651$   | $l_{eff} = l$         |

### Formulation 1

- Step 3: Design variables
  - R (mean radius of column) / t (wall thickness)
- Step 4: Cost function

mass = 
$$\rho(lA) = 2\rho l \pi Rt$$
  
[assuming thin wall  $(R >> t) \rightarrow A = 2\pi Rt$ ;  $I = \pi R^3 t$ ]

Step 5: Constraints

$$\begin{cases} \sigma = \frac{P}{A} = \frac{P}{2\pi Rt} \le \sigma_a \\ P \le \frac{\pi^2 EI}{4l^2} = \frac{\pi^3 ER^3 t}{4l^2} \\ R_{\min} \le R \le R_{\max}; \quad t_{\min} \le t \le t_{\max} \end{cases}$$

### Formulation 2

- Step 3: Design variables
  - $-R_o$  (outer radius of column) /  $R_i$  (inner radius of column)
- Step 4: Cost function

mass = 
$$\rho(lA) = \pi \rho l(R_0^2 - R_i^2)$$
  $A = \pi(R_0^2 - R_i^2)$ ,  $I = \frac{\pi}{4}(R_0^4 - R_i^4)$ 

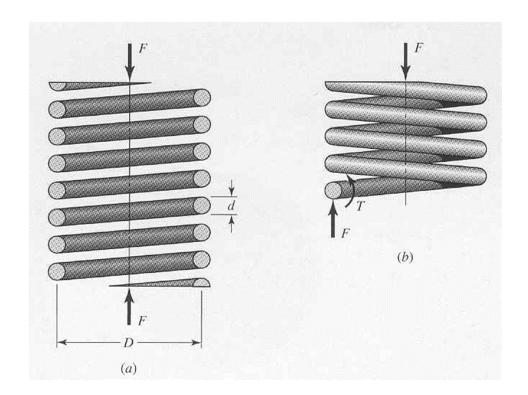
Step 5: Constraints

$$\begin{cases} \sigma = \frac{P}{A} = \frac{P}{\pi \left(R_0^2 - R_i^2\right)} \le \sigma_a \\ P \le \frac{\pi^2 EI}{4l^2} = \frac{\pi^3 E}{16l^2} \left(R_0^4 - R_i^4\right) \\ \left(R_0\right)_{\min} \le R_0 \le \left(R_0\right)_{\max}; \quad \left(R_i\right)_{\min} \le R_i \le \left(R_i\right)_{\max} \\ R_0 > R_i; \quad \frac{R}{t} = \frac{R_0 + R_i}{2\left(R_0 - R_i\right)} \le k \quad \text{(thin-walled: } R >> t, k \ge 20\text{)} \\ \text{to avoid local buckling} \end{cases}$$

### Design of Coil Spring

### Step 1: Problem Statement

– To design a minimum mass spring to carry a given axial load without material failure and while satisfying two performance requirement: the spring must deflect by at least  $\Delta$  (in), and the frequency of surge waves must not be less than  $\omega_0$  (Hz)



### Step 2: Data and Information Collection (1)

- Deflection along the axis of the spring:  $\delta$  (in)
- Mean coil diameter: D (in)
- Wire diameter: d (in)
- Number of active coils: N
- Gravitational constant: g = 386 (in/s<sup>2</sup>)
- Frequency of surge waves: ω (Hz)

### Step 2: Data and Information Collection (2)

### Material property

- Weight density:  $\gamma = 0.285$  (lb/in<sup>3</sup>)
- Shear modulus: G = 1.15E7 (lb/in<sup>2</sup>)
- Mass density:  $\rho = 7.38342E-4$  (lb-s<sup>2</sup>/in<sup>4</sup>)
- Allowable shear stress:  $\tau_a = 80000$  (lb/in<sup>2</sup>)

#### Other data

- Number of inactive coils: Q = 2
- Applied load: P = 10 (lbs)
- Minimum spring deflection:  $\Delta = 0.5$  (in)
- Lower limit on surge wave frequency:  $\omega_0 = 100$  (Hz)
- Limit on outer diameter of the coil:  $D_0 = 1.5$  (in)

# Design equations for the spring (1)

#### Load-deflection

$$U = \frac{T^{2}L}{\underbrace{2GJ}} + \underbrace{\frac{F^{2}L}{2GA}}_{shear} = \frac{F^{2}\left(D/2\right)^{2}\pi D\left(N+Q\right)}{2G\left(\pi d^{4}/32\right)} + \frac{F^{2}\pi D\left(N+Q\right)}{2G\left(\pi d^{2}/4\right)} = \frac{4F^{2}D^{3}\left(N+Q\right)}{d^{4}G} + \frac{2F^{2}D\left(N+Q\right)}{d^{2}G}$$

$$\xrightarrow{\text{by Castigliago's theorm}} \delta = \frac{\partial U}{\partial F} = \frac{8FD^{3}\left(N+Q\right)}{d^{4}G} + \frac{4FD\left(N+Q\right)}{d^{2}G}$$

$$\xrightarrow{C = \frac{D}{d}} \delta = \frac{8FD^{3}\left(N+Q\right)}{d^{4}G} \left(1 + \frac{1}{2C^{2}}\right) \approx \frac{8FD^{3}\left(N+Q\right)}{d^{4}G}$$

#### Shear stress

$$\tau_{\text{max}} = \frac{Tr}{J} + \frac{F}{A} = \frac{F(D/2)(d/2)}{(\pi d^4/32)} + \frac{F}{\pi d^2/4} = \frac{8FD}{\pi d^3} + \frac{4F}{\pi d^2}$$

$$= \frac{8FD + 4Fd}{\pi d^3} = \left(1 + \frac{d}{2D}\right) \frac{8FD}{\pi d^3} = K_s \frac{8FD}{\pi d^3}$$

$$\begin{cases} K_s = 1 + 0.5 \frac{d}{D} \\ K_w = \frac{4D - 1}{4(D - d)} + \frac{0.615d}{D} \end{cases}$$

### Design equations for the spring (2)

### Frequency of surge waves

$$\frac{\partial^2 u}{\partial y^2} = \frac{W}{kgl^2} \frac{\partial^2 u}{\partial t^2}, \quad B.C. \quad u(0,t) = 0 \quad and \quad u(l,t) = 0$$

$$W = AL\gamma = \left(\frac{\pi d^2}{4}\right) (\pi DN) \gamma = \frac{\pi^2 d^2 DN\gamma}{4}$$

$$\omega_m = m\pi \sqrt{\frac{kg}{W}}, \quad \text{fundamental frequency } (m=1)$$

$$f_1 = \frac{\omega_1}{2\pi} = \frac{1}{2} \sqrt{\frac{kg}{W}} = \frac{2}{\pi N} \frac{d}{D^2} \sqrt{\frac{Gg}{32\gamma}} = \frac{d}{2\pi ND^2} \sqrt{\frac{G}{2\rho}}$$

### **Problem Formulation**

- Step 3: Identification of design variables
  - Wire diameter: d
  - Mean coil diameter: D
  - Number of active coils: N
- Step 4: Identification of an objective function
  - Mass  $m = \rho AL = \rho \left(\frac{\pi d^2}{4}\right) \pi D(N+Q) = \frac{\pi^2 \rho d^2 D(N+Q)}{4}$
- Step 5: Identification of constraints
  - Deflection:  $\delta \geq \Delta$
  - Shear stress:  $\tau \leq \tau_a$
  - Frequency of surge waves:  $\omega \ge \omega_0$
  - Diameter: D + d ≤  $D_0$
  - Side constraints:  $d_{min} \le d \le d_{max}$ ,  $D_{min} \le D \le D_{max}$ ,  $N_{min} \le N \le N_{max}$

### **Mathematical Formulation**

$$\begin{aligned} & \text{Minimize } m = \frac{\pi^2 \rho d^2 D (N+Q)}{4} \\ & \text{subject to } \frac{8FD^3 (N+Q)}{d^4 G} \geq \Delta \rightarrow 1 - \frac{8FD^3 (N+Q)}{d^4 G \Delta} \leq 0 \\ & \left[ \frac{4D-d}{4(D-d)} + \frac{0.615d}{D} \right] \frac{8FD}{\pi d^3} \leq \tau_a \rightarrow \left[ \frac{4D-d}{4(D-d)} + \frac{0.615d}{D} \right] \frac{8FD}{\pi d^3 \tau_a} - 1 \leq 0 \\ & \frac{d}{2\pi ND^2} \sqrt{\frac{G}{2\rho}} \geq \omega_0 \rightarrow 1 - \frac{d}{2\pi ND^2 \omega_0} \sqrt{\frac{G}{2\rho}} \leq 0 \\ & D+d \leq D_0 \rightarrow \frac{D+d}{D_0} - 1 \leq 0 \\ & d_{\min} \leq d \leq d_{\max} \\ & D_{\min} \leq D \leq D_{\max} \\ & N_{\min} \leq N \leq N_{\max} \end{aligned}$$

# Symmetric Three-Bar Truss (1)

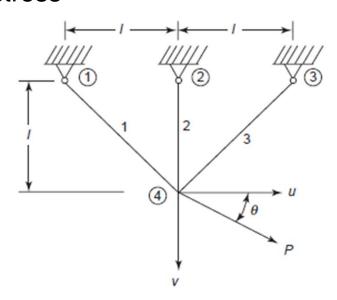
- Step 1: Problem Statement
  - Design for minimum volume to support a force P
  - Consideration of member crushing, member buckling, failure by excessive deflection of node 4, failure by resonance
- Step 2: Data and Information Collection
  - Equilibrium equations → displacements → forces carried by the members of the truss → stress

$$\sigma_{1} = \frac{1}{\sqrt{2}} \left[ \frac{P_{u}}{A_{1}} + \frac{P_{v}}{\left(A_{1} + \sqrt{2}A_{2}\right)} \right]$$

$$\sigma_{2} = \frac{\sqrt{2}P_{v}}{\left(A_{1} + \sqrt{2}A_{2}\right)}$$

$$\sigma_{3} = \frac{1}{\sqrt{2}} \left[ -\frac{P_{u}}{A_{1}} + \frac{P_{v}}{\left(A_{1} + \sqrt{2}A_{2}\right)} \right]$$

$$\omega = \frac{3EA_{1}}{\rho l\left(4A_{1} + \sqrt{2}A_{2}\right)}$$



# Symmetric Three-Bar Truss (2)

- Step 3: Design variables
  - A<sub>1</sub>: cross-sectional area of material for members 1 and 3
  - A<sub>2</sub>: cross-sectional area of material for members 2
- Step 4: Cost function
  - Material volume:  $V = l(2\sqrt{2}A_1 + A_2)$
- Step 5: Constraints

stress:  $\sigma_1 \le \sigma_a$ ,  $\sigma_2 \le \sigma_a \leftarrow \sigma_1 > \sigma_3$ 

displacement:  $u \leq \Delta_u, v \leq \Delta_v$ 

natural frequency:  $f_0 \ge (2\pi\omega_0)^2$ 

buckling:  $-F_i \le \frac{\pi^2 EI}{l_i^2}$ ,  $I = \beta A^2$ 

side:  $A_1, A_2 \ge A_{\min}$ 

### Standard Design Optimization Model

Find an *n*-vector  $\mathbf{x} = (x_1, ..., x_n)$  of design variables to minimize a cost function

$$f\left(\mathbf{x}\right) = f\left(x_1, \dots, x_n\right)$$

subject to

the p equality constraints

$$h_{j}(\mathbf{x}) = h_{j}(x_{1},...,x_{n}) = 0; \quad j = 1,...,p$$

and the m inequality constraints

$$g_{j}(\mathbf{x}) = g_{j}(x_{1},...,x_{n}) \le 0; \quad i = 1,...,m$$

bounds on design variables:

$$x_i \ge 0$$
 or  $x_{il} \le x_i \le x_{iu}$ ;  $i = 1, ..., n$ 

# Observations (1)

- Functions must depend on design variables.
- Number of independent equality constraints:  $p \le n$ 
  - -p > n: overdetermined system of equations
    - redundant equality constraints
    - Inconsistent formulation
  - -p=n: no optimization is necessary
- Inequality constraints written as "≤0"
  - No restriction on the number of inequality constraints
- Scaling effect
  - optimum design does not change. optimum cost function value, however, changes.
    - cost function by a positive constant
    - Inequality constraints by a positive constant
    - equality constraints by any constants

# Observations (2)

Maximization problem treatment

$$f(\mathbf{x}) = -F(\mathbf{x})$$

• "≥ type" constraints

$$G_{j}(\mathbf{x}) \ge 0 \rightarrow g_{j}(\mathbf{x}) = -G_{j}(\mathbf{x}) \le 0$$

- Discrete and Integer design variables
  - Approach 1
    - Solve the problem assuming continuous DVs
    - Assign nearest discrete/integer values
    - Check feasibility ← numerous combinations
  - Approach 2 (adaptive numerical optimization)
    - Obtain optimum solution with continuous DVs
    - Assign only DVs close to their discrete/integer values
    - Optimize the problem until all DVs have proper values

# Observations (3)

Feasible set: collection of all feasible designs

$$S = \{ \mathbf{x} | h_j(\mathbf{x}) = 0; j = 1,..., p; g_i(\mathbf{x}) \le 0; i = 1,..., m \}$$

• Inequality constraint:

$$g_{i}(\mathbf{x}) \leq 0 \rightarrow \begin{cases} \text{active/tight/binding} : g_{i}(\mathbf{x}^{*}) = 0 \\ \text{inactive} : g_{i}(\mathbf{x}^{*}) < 0 \\ \text{violated} : g_{i}(\mathbf{x}^{*}) > 0 \end{cases}$$

# Supplements

# Interest Formula (1)



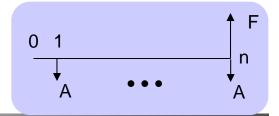
- Three components of cash flow
  - Present(P), Future(F), Annuity(A)
  - 6 relationships
    - *n*: number of interest periods, e.g., months, years
    - i: return per dollar per period, e.g., annual interest rate
- F/P, P/F
  - Given P, Find F
    - Single payment compound amount factor (일회 지불 복리계수)
  - Given F, Find P
    - Single payment present worth factor (일회 지불 현가계수)

$$P \xrightarrow{iP} (1+i)P \xrightarrow{i(1+i)P} (1+i)^{2}P \longrightarrow \cdots$$

$$F = (1+i)^{n}P = spcaf(i,n)P$$

$$P = (1+i)^{-n}F = sppwf(i,n)F$$

# Interest Formula (2)



- F/A, A/F
  - Given A, Find F
    - Uniform series compound amount factor (연금 복리 계수)
  - Given F, Find A
    - Sinking fund deposit factor (감채 기금 계수)

$$\frac{(1+i)^{n-1} A + (1+i)^{n-2} A + \dots + A = F}{(1+i)^{n-1} \left[1 - (1+i)^{-n}\right]} = \frac{(1+i)^{n-1} \left[1 - (1+i)^{-n}\right]}{\frac{i}{1+i}} = \frac{1}{i} \left[(1+i)^{n} - 1\right]$$

$$F = \frac{1}{i} \left[(1+i)^{n} - 1\right] A = uscaf(i,n) A$$

$$A = \frac{i}{\left[(1+i)^{n} - 1\right]} F = sfdf(i,n) F$$

# Interest Formula (3)



- P/A, A/P
  - Given A, Find P
    - Uniform series present worth factor (연금 현가 계수)
  - Given P, Find A
    - Capital recovery factor (자본 회수 계수)

$$F = \frac{1}{i} [(1+i)^n - 1] A = (1+i)^n P \to P = \frac{1}{i} [1 - (1+i)^{-n}] A = uspwf(i,n) A$$

$$A = \frac{i}{[1 - (1+i)^{-n}]} P = crf(i,n) P$$

# Summary: Interest Formula

| To find | Given | Multiply by                                                     | Description                           |
|---------|-------|-----------------------------------------------------------------|---------------------------------------|
| $S_n$   | P     | $spcaf(i,n) = (1+i)^n$                                          | Single payment compound amount factor |
| Р       | $S_n$ | $sppwf(i,n) = (1+i)^{-n}$                                       | Single payment present worth factor   |
| $S_n$   | R     | $uscaf(i,n) = \frac{1}{i}[(1+i)^n - 1]$                         | Uniform series compound amount factor |
| R       | $S_n$ | $sfdf(i,n) = \frac{i}{[(1+i)^n - 1]}$                           | Sinking fund deposit factor           |
| Р       | R     | $spwf(i,n) = \frac{1}{i} \left[ 1 - (1+i)^{-n} \right]$         | Uniform series present worth factor   |
| R       | Р     | $crf(i,n) = \frac{i}{\left[1 - \left(1 + i\right)^{-n}\right]}$ | Capital recovery factor               |