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Duality in Nonlinear Programming

• Given a nonlinear programming problem, there is 
another nonlinear programming problem closely 
associated with it 
– primal problem / dual problem
– the same optimum objective function values under certain 

convexity assumptions: local convexity, local duality theory 
– solve the primal problem indirectly by solving the dual problem 
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Local Duality: Equality Constraints
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Lemmas and Theorem
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The gradient of the dual function is given as 

The Hessian of the dual function is given as 
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Example 5.7

• Consider the following problem in two variables; 
derive the dual of the problem and solve it: 
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Local Duality: Inequality Constraints
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Duality Theorem (1)
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Duality Theorem (2)
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Saddle Point Theorem
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