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Optimum Design: Numerical Solution Process

• Introduction to  numerical search methods
• Optimum design: aspects of problem formulation
• Numerical solution process for optimum design
• EXCEL: Solver
• MATLAB: Optimization Toolbox
• Mathematica: Optimization Toolbox
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Numerical Search Methods (1)

• Graphical method
– Two-variable problems only

• Approach to solve optimality conditions
– difficult to use when the number of variables and/or the 

number of constraints is greater than three
– leads to a set of nonlinear equations that needs to be solved 

using a numerical method anyway

• Numerical methods
– can handle many variables and constraints, as well as 

directly search for optimum points
– start with an initial design estimate
– search the feasible set for optimum designs
– Derivative-Based Methods / Direct Search Methods / 

Derivative-Free Methods / Nature-Inspired Search Methods 
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Numerical Search Methods (2)

• Derivative-Based Methods: gradient-based search methods 
(Ch.10~13)
– all functions: continuous and at least twice continuously differentiable
– Accurate first-order derivatives of all the functions are available
– design variables: assumed to be continuous within their allowable range
– extensively developed since the 1950s, and many good ones are 

available to solve smooth nonlinear optimization problems
– always converge to a local minimum point only, global solutions?

     

 

   
 

     

1

0

two separate subproblems

1

;  0,1,2,

:  starting design point
 where 0 :  step size

:  search direction

;  0,1,2, ;  1, ,

k k k

kk k
k k

k k k
i i i

k

x x x k i n








    





     


     

x x x

x

x d
d



 



Optimization Techniques Ch. 6+7-4

Numerical Search Methods (3)

• Direct Search Methods (Ch.11.9)
– do not calculate/use/approximate derivatives of the problem functions
– Functions are assumed to be continuous and differentiable; however, 

their derivatives are either unavailable or not trustworthy
– Only functions’ values are calculated and used in the search process
– Hooke–Jeeves and Nelder–Mead in 1960s and 1970s
– simplicity and ease of use 

• Derivative-Free Methods
– do not require explicit calculation of analytical derivatives of the functions
– approximation of derivatives is used to construct a local model: finite 

difference approach 
– response surface methods that generate approximation for complex 

optimization functions
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Numerical Search Methods (4)

• Nature-Inspired Search Methods
– use only the values of the problem functions
– classified as direct search methods 
– use statistical concepts and random numbers to advance the 

search toward a solution point 
• simulated annealing (Ch.15.5)
• genetic algorithms (Ch.17.1)

– quite general: solve all kinds of optimization problems 
– quite time-consuming: require a large number of function 

evaluations to reach an acceptable solution
– do not have a good stopping criterion (no optimality conditions)
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Selection of a Method 

• Are the design variables continuous (can have any value 
in their range), discrete (must be selected from a 
specified list) or integer? 

• Are the problem functions continuous and differentiable? 
• Are derivatives of all the problem functions available 

(can be calculated efficiently)? 
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General Guidelines 

• formulation of a design task as an optimization problem
– Define a realistic model for the engineering system
– Use designer’s engineering knowledge, intuition, and experience

• generate a mathematical optimization model 
– In an initial formulation of the problem, all of the possible 

parameters should be viewed as potential design variables
– The existence of an optimum solution to a design optimization 

model depends on its formulation
– The problem of optimizing more than one objective functions 

simultaneously (multi-objective problems) can be transformed 
into the standard problem 

– In general, it is desirable to normalize all of the constraints with 
respect to their limit values 
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Scaling of Constraints 

• In numerical calculations, it is impossible to require
– an equality constraint to be precisely equal to zero 
– an active inequality constraint to be precisely equal to zero 

• different constraints can involve different orders of 
magnitude  constraint normalization 

• some constraints that cannot be normalized: 0 ≤ x
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Constraint Normalization
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Scaling of Design Variables 
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Iterative Process for Development of 
Problem Formulation 

• Many practical applications are complex requiring 
repeated updating of the initial formulation of the 
problem 
– some of the practical constraints may have been missed
– the limits for some of the constraints may not be realistic 
– there may be conflicting constraints in the formulation
– the constraint limits may be too severe such that there is no 

feasible solution for the problem 
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Numerical Solution Process

• optimization algorithm for smooth problems 
– Calculation of cost and constraint functions and their 

gradients at the current point 
– Definition of a subproblem

• determine the search direction 
• Step size determination in the search direction

– Update the current design point 

• General purpose software: integration of 
– problem functions
– gradient evaluation software
– optimization software 
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A Feasible Point Cannot Be Obtained 

– Check the formulation to ensure that the constraints are 
formulated properly and that there are no inconsistencies in them

– Scale the constraints if they have different orders of magnitude
– Check the feasibility of individual constraints or a subset of 

constraints while ignoring the remaining ones 
– Ensure that the formulation and data are properly transferred to 

the optimization software 
– The constraint limits may be too severe 
– Check the constraint feasibility tolerance 
– Check derivation and implementation of the gradients of the 

constraint functions 
– Increase precision of all calculations, if possible 
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Algorithm Does Not Converge (1)

– Check the formulation to ensure that the constraints and the 
cost function are formulated properly, Ensure that all of the 
functions are continuous and differentiable for a smooth 
optimization algorithm 

– Scale the constraints and the cost function if they have 
different orders of magnitude 

– Check implementation of the cost function and the constraint 
functions evaluations 

– Check the derivation and implementation of the gradients of all 
of the functions, If the gradients are evaluated using finite 
differences, then their accuracy needs to be verified 

– Examine the final point reported by the program 
– If an overflow of calculations is reported, the problem may be 

unbounded 
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Algorithm Does Not Converge (2)

– Try different starting points 
– Ignore some of the constraints and solve the resulting problem 
– Use a smaller limit on the number of iterations and restart the 

algorithm with the final point of the previous run of the program 
as the starting point 

– If two design variables are of differing orders of magnitude, 
scale them so that the scaled variables have the same order of 
magnitude 

– Ensure that the optimization algorithm has been proven to 
converge to a local minimum point starting from any initial 
point 

– Increase the precision of the calculations, if possible
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EXCEL Solver(해찾기)

• Introduction
• Roots of a nonlinear equation
• Roots of a set of nonlinear equation
• Unconstrained optimization problems
• Linear programming problems
• Nonlinear programming

– Optimum design of spring
– Optimum design of plate girders
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Example 4.22

• Numerical solution for the first-order necessary 
conditions
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Example 4.31

• Solution of the KKT necessary conditions
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