Linear Programming (LP) Problem

- Constrained optimization
- "Liner": the objective and the constraints
- "Programming": scheduling or setting an agenda
- History
 - Optimal allocation of resources in the 1930s by economists
 - George B. Dantzig (1947): simplex method
 - Air Force Group during World War II
 - Revolutionary development to make optimal decisions in complex situations
 - Four Nobel Prizes related to LP
 - Karmarkar (1984)
 - Interior approach

Applications of LP

- Diet decisions, transportation, production and manufacturing, product mix, engineering limit analysis in design, airline scheduling, NLP(SLP)
 - Petroleum refineries
 - A mix of the purchased crude oil and the manufactured products that gives the maximum profit
 - Production plan in a manufacturing firm
 - Various cost and loss factors
 - Food processing industry
 - Optimal shipping plan for the distribution of a particular product from different manufacturing plants to various warehouses
 - Iron and steel industry
 - Decide the types of products to be made in their rolling mills
 - Routing
 - Optimal routing of messages in a communication network / aircraft and ships

Standard LP Definition (1)

• Minimization of a function with equality constraints and nonnegativity of design variables

Minimize
$$f = \sum_{i=1}^{n} c_i x_i$$

subject to $\sum_{j=1}^{n} a_{ij} x_j = b_i$; $i = 1, ..., m$
 $x_j \ge 0$; $j = 1, ..., n$
 $(b_i \ge 0 : \text{resource limits}, c_i \text{ and } a_{ij} : \text{known constants})$

Minimize	$f = \mathbf{c}^T \mathbf{x}$
subject to	Ax = b
	$\mathbf{x} \ge 0$

Standard LP Definition (2)

- Linear constraints
 - Inequality: nonnegative slack variable $s_i (s_i \ge 0)$
 - Why not s_i^2 ? (nonlinear)

$$\begin{cases} 2x_1 - x_2 \le 4 \to 2x_1 - x_2 + s_1 = 4 \quad (s_1 \ge 0) \\ -x_1 + 2x_2 \ge 2 \to -x_1 + 2x_2 - s_1 = 2 \quad (s_1 \ge 0) \end{cases}$$

- Unrestricted variables in sign
 - All design variables to be nonnegative

$$x_{j} = x_{j}^{+} - x_{j}^{-} = \begin{cases} \text{nonnegative} : x_{j}^{+} \ge x_{j}^{-} \\ \text{nonpositive} : x_{j}^{+} \le x_{j}^{-} \end{cases}$$
$$x_{j}^{+} \ge 0 \text{ and } x_{j}^{-} \ge 0$$

Example 8.1

Maximize
$$z = \sum_{i=1}^{n} d_i x_i \Leftrightarrow \text{Minimize } f = -\sum_{i=1}^{n} d_i x_i$$

Maximize
$$z = 2y_1 + 5y_2$$

subject to $3y_1 + 2y_2 \le 12$
 $-2y_1 - 3y_2 \le -6$
 $y_1 \ge 0, y_2$: unrestricted $\Rightarrow \begin{cases} \text{Minimize } f = \begin{bmatrix} -2 & -5 & 5 & 0 & 0 \end{bmatrix} \mathbf{x}^T$
subject to $\begin{bmatrix} 3 & 2 & -2 & 1 & 0 \\ 2 & 3 & -3 & 0 & -1 \end{bmatrix} \mathbf{x}^T \le \begin{bmatrix} 12 \\ 6 \end{bmatrix}$

Basic Concepts

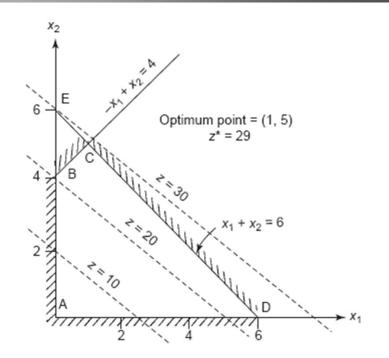
- LP problem is convex. If an optimum solution exists, it is global.
 - Feasible region (constraint set) is convex
 - Cost function is linear, so it is convex
- Solution always lies on the boundary of the feasible region if it exists.
 - For an unconstrained optimum, contradiction: $\frac{\partial f}{\partial x_i} = 0 \rightarrow c_i = 0$
- Optimum solution must satisfy equality constraints \rightarrow more than one solution (*m* < *n*)
 - Infinite solutions \rightarrow feasible solution that minimizes the cost function

LP Terminology

- Vertex (extreme) point
 - A point of the set that does not lie on a line segment
- Feasible solution
 - Any solution of the constraint equations satisfying the nonnegative conditions
- Basic (feasible) solution
 - By setting "redundant number" (*n*-*m*) of variables (nonbasic) to zero
- Degenerate basic (feasible) solution
 - If a basic (feasible) variable has zero value
- Optimum (basic) solution
 - Feasible solution minimizing the cost function
- Convex polyhedron: bounded feasible region
- Basis
 - Columns of coefficient matrix of constraint equations corresponding to basic variables (m-dimensional vector space)

Example 8.3

Maximize $z = 4x_1 + 5x_2$ subject to $-x_1 + x_2 \le 4$ $x_1 + x_2 \le 6$ $x_1, x_2 \ge 0$



No.	<i>X</i> 1	<i>x</i> ₂	X3	<i>X</i> 4	f	Location in Fig. 6-2
1	0	0	4	6	0	А
2	0	4	0	2	-20	В
3	0	6	-2	0	_	infeasible
4	-4	0	0	10	_	infeasible
5	6	0	10	0	-24	D
6	1	5	0	0	-29	С

Optimum Solution for LP Problems

- The collection of feasible solutions for an LP problem constitutes a convex set whose extreme points correspond to basic feasible solution
- Let rank(A) = m (m×n coefficient matrix A),
 - If there is a feasible solution, there is a basic feasible solution.
 - There must be at least one extreme point or vertex of convex feasible set
 - If there is an optimum feasible solution, there is an optimum basic feasible solution.
 - at least at one of the vertices of the *convex polyhedron* representing all of the feasible solutions
 - Optimum solution must be one of the basic feasible solutions
 - Search for optimum only among the basic feasible solutions _nC_(n-m)

Simplex Method (1)

- Proceed from one basic feasible solution to another in a way to continuously decrease the cost function until the minimum is reached
 - Gauss-Jordan elimination process
 - Simplex
 - Geometric figure formed by a set of (*n*+1) points in an *n*-dimensional space
 - A convex hull of any (*n*+1) points which do not lie on one hyperplane
 - the smallest convex set containing all the points, convex set
 - 2D: triangular, 3D: tetrahedron
 - Canonical form
 - Each equation has a variable (w/ unit coefficient) that does not appear in any other equation

Simplex Method (2)

$$x_{1} + \dots + a_{1,m+1} x_{m+1} + \dots + a_{1,n} x_{n} = b_{1}$$

$$x_{2} + \dots + a_{2,m+1} x_{m+1} + \dots + a_{2,n} x_{n} = b_{2}$$

$$\vdots$$

$$x_{m} + a_{m,m+1} x_{m+1} + \dots + a_{m,n} x_{n} = b_{m}$$

$$\Rightarrow \begin{cases} I_{(m)} x_{(m)} + Q x_{(n-m)} = b \\ x_{(n-m)} = 0 \to x_{(m)} = b \\ (\text{nonbasic}) \end{cases}$$

$$(\text{basic})$$

- Tableau: representation of a scene or a picture
 - Identify nonbasic / basic variables \rightarrow basic solutions
- Pivot step
 - Starting from a basic feasible solution, find another one to reduce the cost
 - Interchanging a current basic variable w/ a nonbasic variable

Basic Steps

- (1) initial basic feasible solution (vertex)
 - Slack variables as basic and original variables as nonbasic
 - Cost function expressed in terms of only the nonbasic variables
- (2) check if it is the optimum point?
 - all coefficients in the cost row become nonnegative
- (3) interchange a current basic variable w/ a nonbasic variable
 - Find a new basic feasible solution
 - Unbounded: all entries in the pivot column are negative
 - Select a nonbasic variable \rightarrow pivot column ? (negative reduced cost coeff.)
 - Select a basic variable \rightarrow pivot row ? (smallest ratio)
 - Complete the pivot step using the Gauss-Jordan elimination procedure
- (4) repeat until it satisfies (2)
 - Multiple optimum solutions: if a reduced cost coeff. corresponding to a nonbasic variable is zero in the final tableau

Selection of a nonbasic variable

- Main idea \rightarrow to improve the design
 - reduce the current value of the cost function

$$x_{i} = b_{i} - \sum_{j=m+1}^{n} a_{ij} x_{j}; \quad i = 1, ..., m$$

$$f = \sum_{i=1}^{n} c_{i} x_{i} = \sum_{i=1}^{m} c_{i} \left(b_{i} - \sum_{j=m+1}^{n} a_{ij} x_{j} \right) + \sum_{j=m+1}^{n} c_{j} x_{j} = \sum_{i=1}^{m} c_{i} b_{i} + \sum_{j=m+1}^{n} \left(c_{j} - \sum_{i=1}^{m} a_{ij} c_{i} \right) x_{j}$$
nonbasic variables
$$c'_{j} < 0 \rightarrow f \downarrow$$
more than one negative $c'_{j} \rightarrow$ choose the nonbasic variable with the smallest c'_{j}

$$c'_{j} = 0 \rightarrow$$
 no change in f

 $c'_{j} > 0 \rightarrow$ not possible to reduce the cost function $\int_{0}^{0} c_{j} dt'$

Selection of a basic variable

- Determine the pivot row for the elimination process
- x_r : nonbasic variable \rightarrow basic
 - If all *a_{i,r}* are nonpositive in the *r*-th column, it is unbounded problem

(r-th nonbasic column)

 $\begin{aligned} x_1 + \cdots + a_{1,m+1} x_{m+1} + \cdots + a_{1,n} x_n &= b_1 - a_{1,r} x_r \\ x_2 + \cdots + a_{2,m+1} x_{m+1} + \cdots + a_{2,n} x_n &= b_2 - a_{2,r} x_r \\ &\vdots \end{aligned}$

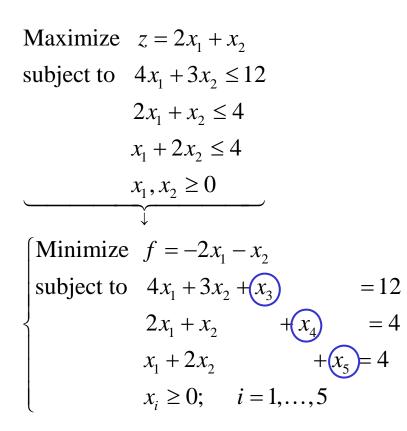
 $x_m + a_{m,m+1} x_{m+1} + \dots + a_{m,n} x_n = b_m - a_{m,r} x_r$

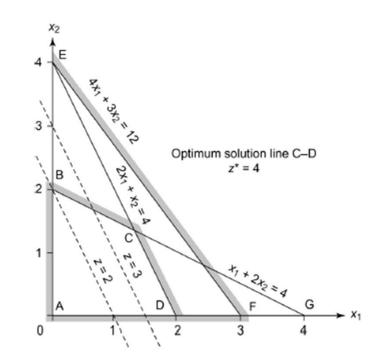
* new solution should be feasible $\rightarrow b_i - a_{i,r} x_r \ge 0$

 $\min_{i} \left\{ \frac{b_i}{a_{i,r}}, \ a_{i,r} > 0; \ i = 1, \dots, m \right\} : \text{row with the smallest ratio}$

always $b_i - a_{i,r} x_r \ge 0$ \rightarrow no limit on x_r

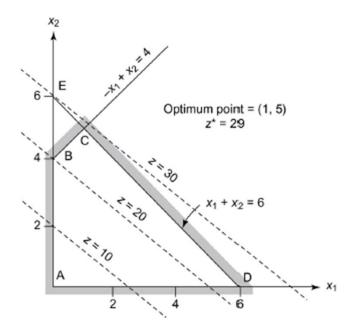
Example 8.7



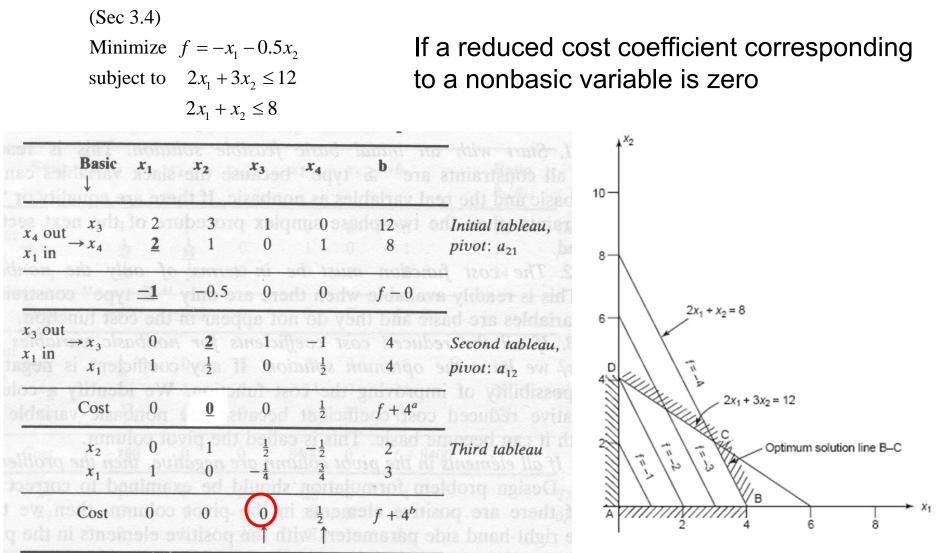


Example 8.8 \leftarrow 8.3

$$\begin{array}{ll} Maximize & z = 4x_1 + 5x_2 \\ subject to & -x_1 + x_2 \le 4 \\ & x_1 + x_2 \le 6 \\ & x_1, x_2 \ge 0 \end{array} \end{array} \rightarrow \begin{cases} Minimize & f = -4x_1 - 5x_2 \\ subject to & -x_1 + x_2 + x_3 \\ & x_1 + x_2 + x_3 \\ & x_1 + x_2 \\ & x_1 + x_2 \\ & x_i \ge 0; \quad i = 1, \dots, 4 \end{cases}$$

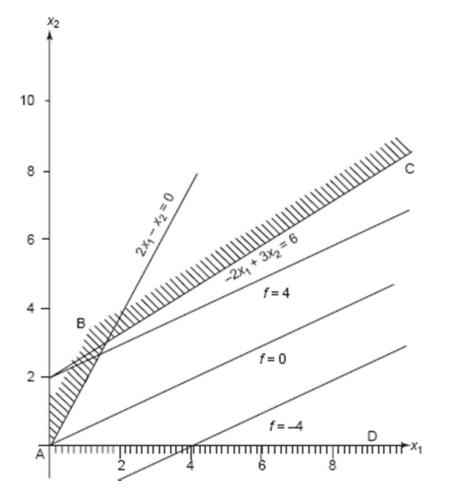


Multiple Solutions (Example 8.10)



Optimization Techniques

Unbounded Problem (Example 8.11)



(Sec 3.5)

Maximize
$$z = x_1 - 2x_2$$

subject to $2x_1 - x_2 \ge 0$
 $-2x_1 + 3x_2 \le 6$
 $x_1, x_2 \ge 0$
Minimize $f = -x_1 + 2x_2$
subject to $-2x_1 + x_2 \le 0$
 $-2x_1 + 3x_2 \le 6$
 $x_1, x_2 \ge 0$

Basic ↓	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	b
1. x ₃	-2	1	1	0	0
2. x ₄	-2	3	0	1	6
3. Cost	-1	2	0	0	f - 0