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Linear Programming (LP) Problem

• Constrained optimization
• “Liner”: the objective and the constraints
• “Programming”: scheduling or setting an agenda
• History

– Optimal allocation of resources in the 1930s by economists
– George B. Dantzig (1947): simplex method

• Air Force Group during World War II
– Revolutionary development to make optimal decisions in 

complex situations
• Four Nobel Prizes related to LP

– Karmarkar (1984)
• Interior approach
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Applications of LP

• Diet decisions, transportation, production and manufacturing, 
product mix, engineering limit analysis in design, airline 
scheduling, NLP(SLP)
– Petroleum refineries

• A mix of the purchased crude oil and the manufactured products that gives 
the maximum profit

– Production plan in a manufacturing firm
• Various cost and loss factors

– Food processing industry
• Optimal shipping plan for the distribution of a particular product from different 

manufacturing plants to various warehouses
– Iron and steel industry

• Decide the types of products to be made in their rolling mills
– Routing

• Optimal routing of messages in a communication network / aircraft and ships
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Standard LP Definition (1)

• Minimization of a function with equality constraints 
and nonnegativity of design variables
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Standard LP Definition (2)

• Linear constraints
– Inequality: nonnegative slack variable si (si  0)

• Why not si
2 ? (nonlinear)

– Treatment of “ type” / “ type” constraints

• Unrestricted variables in sign
– All design variables to be nonnegative
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Example 8.1
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Basic Concepts

• LP problem is convex. If an optimum solution exists, 
it is global.
– Feasible region (constraint set) is convex
– Cost function is linear, so it is convex

• Solution always lies on the boundary of the feasible 
region if it exists.
– For an unconstrained optimum, contradiction:

• Optimum solution must satisfy equality constraints 
more than one solution (m < n)
– Infinite solutions  feasible solution that minimizes the cost 

function
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LP Terminology

– Vertex (extreme) point
• A point of the set that does not lie on a line segment

– Feasible solution
• Any solution of the constraint equations satisfying the nonnegative conditions

– Basic (feasible) solution
• By setting “redundant number” (n-m) of variables (nonbasic) to zero

– Degenerate basic (feasible) solution
• If a basic (feasible) variable has zero value

– Optimum (basic) solution
• Feasible solution minimizing the cost function

– Convex polyhedron: bounded feasible region
– Basis

• Columns of coefficient matrix of constraint equations corresponding to basic 
variables (m-dimensional vector space)
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Example 8.3
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Optimum Solution for LP Problems

• The collection of feasible solutions for an LP problem 
constitutes a convex set whose extreme points 
correspond to basic feasible solution

• Let rank(A) = m (mn coefficient matrix A),
– If there is a feasible solution, there is a basic feasible solution.

• There must be at least one extreme point or vertex of convex 
feasible set

– If there is an optimum feasible solution, there is an optimum 
basic feasible solution.

• at least at one of the vertices of the convex polyhedron 
representing all of the feasible solutions 

• Optimum solution must be one of the basic feasible solutions
• Search for optimum only among the basic feasible solutions nC(n-m)
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Simplex Method (1)

• Proceed from one basic feasible solution to another in a way 
to continuously decrease the cost function until the minimum 
is reached
– Gauss-Jordan elimination process
– Simplex

• Geometric figure formed by a set of (n+1) points in an n-dimensional space
• A convex hull of any (n+1) points which do not lie on one hyperplane
• the smallest convex set containing all the points, convex set
• 2D: triangular, 3D: tetrahedron

– Canonical form
• Each equation has a variable (w/ unit coefficient) that does not appear in 

any other equation
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Simplex Method (2)

• Tableau: representation of a scene or a picture
– Identify nonbasic / basic variables  basic solutions

• Pivot step
– Starting from a basic feasible solution, find another one to 

reduce the cost
– Interchanging a current basic variable w/ a nonbasic variable
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Basic Steps

– (1) initial basic feasible solution (vertex)
• Slack variables as basic and original variables as nonbasic
• Cost function expressed in terms of only the nonbasic variables

– (2) check if it is the optimum point ?
• all coefficients in the cost row become nonnegative

– (3) interchange a current basic variable w/ a nonbasic variable
• Find a new basic feasible solution
• Unbounded: all entries in the pivot column are negative
• Select a nonbasic variable  pivot column ? (negative reduced cost coeff. )
• Select a basic variable  pivot row ? (smallest ratio)
• Complete the pivot step using the Gauss-Jordan elimination procedure

– (4) repeat until it satisfies (2)
• Multiple optimum solutions: if a reduced cost coeff. corresponding to a 

nonbasic variable is zero in the final tableau
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Selection of a nonbasic variable

• Main idea  to improve the design
– reduce the current value of the cost function
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Selection of a basic variable

• Determine the pivot row for the elimination process
• xr: nonbasic variable  basic

• If all ai,r are nonpositive in the r-th column, it is unbounded problem
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Example 8.8 ← 8.3


































4,,1   ;0                  
6                            
4           

54   

0,                  
6                  

4    
54   

421

321

21

21

21

21

21

ix
xxx

xxxtosubject
xxfMinimize

xx
xx

xxtosubject
xxzMaximize

i



Optimization Techniques LP - 17

Multiple Solutions (Example 8.10)
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Unbounded Problem (Example 8.11)
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