비선형 동해석

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © Computational Design Lab. All rights reserved.

- 예제 문제
 - Crash analysis
 - Beam crush analysis
- 해석 프로세스
 - ▶ 기하형상 생성
 ▶ 재료 물성 및 특성 입력
 ▶ 요소망 생성
 ▶ 구속조건 설정
 ▶ 하중조건 설정
 ▶ 해석케이스 정의 및 해석 실행
 ▶ 후처리

INTRODUCTION (1)

Crash analysis of body structure

INTRODUCTION (2)

- 육면체, **고차사면체**, 피라미드 등 다양한 요소 지원으로 편리하고 정확한 해석 재료비선형: 탄소성 모델, 초탄성 모델 (Mooney-Rivlin, Ogden, Blatz-Ko 등)
- **기하비선형**: 대변형, 대회전, 종동력 **접촉비선형**: 면-면 접촉/**단일면 접촉**, 슬라이딩/거친/**일반접촉 (마찰지원)**
- 다양한 **질량 스케일**/감쇠와 요소별 안전 시간스텝의 자동계산 지원
- 내연적 (Implicit) 해석과 순차적 연계해석으로 성형/가공해석 등 다양한 활용

INTRODUCTION (3)

표 7.7.1 암시적(Implicit)과 외연적(Explicit) 적분 알고리즘 비교

 $f(x_{n+1}, x_n, \dots) = 0$

 $x_{n+1} = f(x_n, \dots)$

INTRODUCTION (4)

- 내연적 시간 적분법 (HHT-α 이용: Newmark 방법의 일반화된 형태)
 1. 동적 평형방정식으로부터 구한 불평형력을 최소화 하는 방향으로 진행
 동적 평형방정식: Maⁿ⁺¹ + (1 + α_H) [Cvⁿ⁺¹ + f^{int,n+1} f^{ext,n+1}] α_H [Cvⁿ + f^{int,n} f^{ext,n}] = 0
 불평형력: g_{n+1} = Mü_{n+1} + (1 + α_H) (C_{n+1}ù_{n+1} + f_{int,n+1} f_{ext,n+1}) α_H (C_nù_n + f_{int,n} f_{ext,n})
 - 2. 변위 및 가속도 계산 $\mathbf{v}^{n+1} = \mathbf{v}^n + \Delta t \Big[\gamma \mathbf{a}^{n+1} + (1-\gamma) \mathbf{a}^n \Big]$ $\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t \mathbf{v}^n + \frac{1}{2} \Delta t^2 \Big[2\beta \mathbf{a}^{n+1} + (1-2\beta) \mathbf{a}^n \Big]$
 - 3. 평형방정식 재구성

$$\mathbf{K}^{eff} \mathbf{u}_{n+1} = \mathbf{f}^{eff}$$

$$\mathbf{K}^{eff} = \frac{1}{\beta \Delta t^2} \mathbf{M} + \frac{(1+\alpha_H)\gamma}{\beta \Delta t} \mathbf{C} + (1+\alpha_H) \mathbf{K},$$

$$\mathbf{f}^{eff} = -\mathbf{f}^{int,0} + (1+\alpha_H) \Big[\mathbf{f}^{ext,n+1} + \mathbf{f}^{nonmech,n+1} \Big] - \alpha_H \Big[\mathbf{f}^{ext,n} + \mathbf{f}^{nonmech,n} \Big] +$$

$$\mathbf{M} \Bigg[\frac{1}{\beta \Delta t^2} \mathbf{u}^n + \frac{1}{\beta \Delta t} \mathbf{v}^n + \left(\frac{1}{2\beta} - 1 \right) \mathbf{a}^n \Bigg] +$$

$$\mathbf{C} \Bigg[\frac{(1+\alpha_H)\gamma}{\beta \Delta t} \mathbf{u}^n + \left\{ \frac{(1+\alpha_H)\gamma}{\beta} - 1 \right\} \mathbf{v}^n + \Delta t (1+\alpha_H) \Big(\frac{\gamma}{2\beta} - 1 \Big) \mathbf{a}^n \Bigg] + \alpha_H \mathbf{K} \mathbf{u}^n$$

INTRODUCTION (5)

- 외연적 시간 적분법 (중앙차분법 이용) 1. 시간 스텝을 n+1/2과 n, n+1 스텝으로 구분 $\Delta t^{n+1/2} = t^{n+1} - t^n, \ t^{n+1/2} = \frac{1}{2} \left(t^{n+1} + t^n \right), \ \Delta t^n = t^{n+1/2} - t^{n-1/2}$ 2. 스텝 n+1 에서의 변위는 n+1/2 스텝에서의 속도로부터 계산 $\dot{\mathbf{u}}^{n+1/2} = \mathbf{v}^{n+1/2} = \frac{1}{\Delta t^{n+1/2}} (\mathbf{u}^{n+1} - \mathbf{u}^n), \quad \mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t^{n+1/2} \mathbf{v}^{n+1/2}$ 3. 스텝 n+1/2 에서의 속도는 n 스텝에서의 가속도로부터 계산 $\ddot{\mathbf{u}}^{n} = \mathbf{a}^{n} = \frac{1}{\Delta t^{n}} (\mathbf{v}^{n+1/2} - \mathbf{v}^{n-1/2}), \quad \mathbf{v}^{n+1/2} = \mathbf{v}^{n-1/2} + \Delta t^{n} \mathbf{a}^{n}$ 4. n 스텝의 가속도 a 는 공간상의 이산화를 통해 계산 $\mathbf{M}\mathbf{a}^{n} = \mathbf{f}^{n} = \mathbf{f}^{ext}(\mathbf{u}^{n}, t^{n}) - \mathbf{f}^{int}(\mathbf{u}^{n}, t^{n}), \ \mathbf{a}^{n} = \mathbf{M}^{-1}(\mathbf{f}^{ext}(\mathbf{u}^{n}, t^{n}) - \mathbf{f}^{int}(\mathbf{u}^{n}, t^{n}))$ 5.1~4과정 반복
- 외연적 시간 적분법의 임계 시간스텝

해석 모델에 포함된 모든 요소의 안정시간스텝 중 가장 작은 값을 기준으로 계산 $\Delta t = \alpha \Delta t_{crit}, \ \Delta t_{crit} = \frac{2}{\omega_{max}} \leq \min_{e} \left\{ \Delta t_{e} \right\} \qquad \Delta t_{e} = \frac{2}{\omega_{max}^{e}} = \min \left\{ \frac{L_{e}}{c_{d}} \right\} \qquad \overset{\omega_{max}}{\underset{c_{d}}{\mapsto}} = \frac{1}{2} \left\{ \begin{array}{c} \omega_{max} & \omega_{max}$

예제: BEAM CRASH ANALYSIS (1)

Simulate buckling of a tube using half tube mesh with symmetric boundary conditions.

The figure illustrates the structural model used for this tutorial: a half tube with a rectangular section (38.1 x 25.4 mm) and length of 203 mm.

- The tube thickness is 0.914 mm.
- $\rho = 7.85e^{-6} \text{ Kg/mm}^3$
- E = 210 GPa
- v = 0.33
- σ₀ = 0.206 GPa

- Initial density
- Young's modulus
- Poisson coefficient
- [a] Yield Stress

BEAM CRASH EXAMPLE 쉘 요소

기하형상 생성 (1)

기하형상 생성 (2)

재료 물성 및 특성 입력

요소망 생성

접촉조건 설정 (1)

Copyright © Computational Design Lab. All rights reserved.

접촉조건 설정 (2)

구속조건 및 하중조건 설정 (1)

벽 부분은 고정구속으로 구 속조건 설정 [빔의 잘린 부분은 대칭 조건 으로 경계조건 설정 (강체구 속부분 제외) 강체의 중앙 부분의 절점은 이동히는 방향의 자유도를 제외한 모든 자유도 구속 벽-빔 접촉 부분은 이동방 향(x) 제외 구속 (Ty,Tz)

구속조건 및 하중조건 설정 (2)

해석 케이스 정의 및 해석 실행

재료 물성치 변경

번호 3 이름 방법 4상 All · · · · · · · · · · · · · · · · · ·	LE CONTRACTOR	and the second s	<u> </u>	
Al	번호 3 이름	등방성 색상		
17-4PH, H1100 ATSI 1020 ATSI 1020 ATSI 1020 ATSI 304 SS Annealed ATSI 304 SS Annealed ATSI 305 SS ATSI 410 SS ATSI 410 SS ATSI 41940 Annealed ATSI Steel (0003 HR ATSI Steel (0003 HR ATSI 51840 (0003 HR ATSI 51840 (0003 HR ATSI 51840 (0003 HR ATSI 51840 (0003 HR Cast Carbon Steel Cast Carbon Steel Cast Carbon Steel Cast Steel H1 (CR60) H1-1 H1 (CR60) H1-1 H1 (CR60) H1-1 H1 (CR60) H1-1 H1 (CR60) SCACC SCACTN SSCACC SSCACTN SSCACC SSCACTN SSCACC SSCACTN SSCACC SSCACC SSCACC SSCACS SSCACC SSCACS	All	탄소성		
AIS: Atsel Maraging Aloy Steel Cast Alloy Steel Cast Carbon Steel Cast Stanless Steel FC250 Galvanized Steel H-1(CR60) Hp-1 H-4000 Hp-1 Income_T18_Aged Plain Carbon Steel SAPH-400 SE508 SGACCN SGACCN SGACCN SGACCN SGACCS SGACCN SGACCS SGACCN SSACCS SGACCN SM490A/(SS) SPC SPC SPC SPC SSCC SSCC SSCC SSCC	17-4PH, H1100 AISI 1020 AISI 1060 AISI 304 SS Annealed AISI_310_SS AISI_410_SS AISI_Steel_1005 AISI_Steel_1008-HR	구조 탄성계수 210000 N/mm ² 프와송비 0.33 질량밀도 7.86e-006 kg/mm ³	열응력 열팽창계수 0 참조온도 0 [1]	
Alloy Steel Cast Zahory Steel Cast Zahory Steel Cast Stainless Steel Crome Stainless Steel H-1(CR60) H1-4000 Hp-1 Hp-1 Hp-4 Income] 718 Aged Plain Carbon Steel S/Steel PH15-5 SS4PC Aged Plain Carbon Steel S/Steel PH15-5 SS508 SGACC AGAO-E SGCC SGACCAGO-E SGACCAGO-E SGCC SGACCAGO-E SGCC SGACCAGO-E SGCC SGACCAGO-E SGCC SGCC SGCC SGACCAGO-E SGCC SGCC SGACCAGO-E SGCC SGCC SGACCAGO-E SGCC SGCC SGCC SGCC SGCC SGCC SGCC SGCC	AISI 4340 Annealed AISI_Steel_Maraging	항복기준	Von Mises 🔻	
Chrome Stainless Steel FC250 Galvanized Steel H-1(CR60) Hp-1 Hp-4 Inconel_718_Aged Plain Carbon Steel SySteel_PH15-5 S45C SAPCH-400 SE508 SGACCH SGACCH SGACCS SGACCH SGACCS SGACCH SGCC SGCC SSCD1 SHP SPDE SPDE SPDE SPDE SPDE SPCC SPDE SPCC SPDE SPCC SPDE SPCC SPDE SPCC SPDE SPCC SPDE SPCC SPDE SPCC SPCC SPCC SPDE SPCC SPCC SPCC SPCC SPCC SPCC SPCC SPC	Alloy Steel Cast Alloy Steel Cast Carbon Steel Cast Stainless Steel Cast Stainless Steel	◎ 소성경화 곡선		
정화규칙 등방성	Chrome Stainless Steel FC250 Galvanized Steel	◎ 응력-변형률 곡선	없음 🔻	
Hp-1 Hp-4 Inconel_718_Aged Plain Carbon Steel S/Steel_PH15-5 S45C SAPH-400 SE508 SGACC SGACC SGACC SGACCS SGACCS SGCD 1 SHP SM45C SM450C SM450C SM450C SM450C SPDE SPRC340 SR-0300 Steel Steel Steel	H-1(CR60)	경화규칙	등방성 🔻	
Inconel_718_Aged Plain Carbon Steel S/Steel_PH15-5 S45C SAPH-400 SE508 SGACC SGACC SGACCN SGACCA SGAC340-E SGCC SGCD1 SHP SH45C SM490A(KS) SPCC SPDE SPRC340 SR-0300 Steel Steel_Rolled SUP12 SUS304 SUS316 T	Hp-1 Hp-4	복합경화 계수 (0.0-1.0)	0	
S45C 3APH-400 SAPH-400 SE508 SGACC SGACEN SGARC340-E SGCC SGCD 1 SHP SM45C SM490A(KS) SPCC SPDE SPCC SPDE SPC240 SR-0300 Steel Steel Rolled SUP12 SUS304 SUS316	Inconel_718_Aged Plain Carbon Steel S/Steel_PH15-5	◎ 완전 소성 재료		
SE508 SGACC SGACCAU SGAC340-E SGCC SGCD SGCD SGCD SGCD SGCC SFOC SFOC SFOC SFOC SFOC SGCC SGCC SGCC SFOC SFOC SGCC SGCC SGCC SFOC SGCC SFOC SGCC SGCC SGCC SFOC SGCC SFOC SGCC SGCC SGCC SFOC SGCC SGCC SGCC SGCC SFOC SGCC SGCC SGCC SGCC SGCC SFOC SGCC SG	S45C SAPH-400	항복 응력	206 N/mm²	
	SE508 SGACC SGACCA40-E SGCC SGCD1 SHP SM45C SM490A(KS) SPCC SPDE SPRC340 SR-0300 Steel Steel_Rolled SUP12 SUS304 SUS316 T			

재료의 비선형성을 고려하 기 위하여 탄소성 재료로 변 경 후 해석 수행

탄성 재료 해석 결과

소성 재료 해석 결과

SH	ELL STRS
10	NIMISES TOPIEOT, NJIIIIP 2
	+2.28884e+004 1.7%
	+2.11502e+004
	+1.94121e+004
	5.2% +1.76739e+004
	6.6%
	9.7%
	+1.419/6e+004
	+1.24595e+004
	+1.07213e+004
	14.5% +8.98316e+003
	15.3%
	11.5%
	+5.50686e+003 5.7%
	+3.76871e+003
	+2.03056e+003

소성 재료를 가정한 경우 최 대 응력이 206 MPa 의 값을 갖는 것을 확인

HELL STRS ON MISES TOP/BOT , N/mm^2				
	+2.06000e+002 21.7%			
	+1.97337e+002			
	+1.88673e+002			
	11.6% +1.80010e+002			
	10.0% +1.71347e+002			
	9.2%			
	7.1%			
	+1.54020e+002			
	+1.45357e+002			
	6.2% +1.36694e+002			
	4.7%			
	3.9%			
	+1.19367e+002			
	+1.10704e+002			
	3.3%			

-+1.02041e+002

Copyright © Computational Design Lab. All rights reserved.

연습문제: IMPACT OF A ROD ON RIGID WALL

Figure 12.6.1 shows a cylindrical rod model to simulate a high velocity impact event in which the cylindrical rod collides with a rigid wall. The collision is modeled by imposing zero axial displacement prescribed at one end of the rod, while imposing an initial axial velocity of 8937 in/sec to all other nodes. A von Mises elastic-perfectly plastic material model with isotropic hardening is used. The length and radius at 80 micro-seconds after the impact are obtained and compared with the reference values. Nonlinear explicit transient analysis is performed and the initial mesh and deformed shapes at 40 and 80 micro-seconds after the impact are shown in Figure 12.6.2.

	Young's modulus	E = 17 msi
	Poisson's ratio	v = 0.35
Material data	Density	$\rho = 0.3224 \ lbm/in^3$
	Hardening Modulus	$E_{\tau} = 14.5 \text{ ksi}$
	Yield Stress	$\sigma_{\rm r} = 58 \ ksi$

Table 12.6.1 The deformed length and radius at t=80 µsec after impact

	Length [in]	Radius [in]
Reference	0.84	0.28
midas-NFX	0.84	0.26

Figure 12.6.2 Deformed shape of the rod at t=0, 40 and 80 µsec

연습문제: IMPACT OF A ROD ON RIGID WALL

BEAM CRUSH ANALYSIS 쉘 요소

예제: BEAM CRUSH ANALYSIS (1)

Figure 3.6.4-1 Average static crush force vs. section shape (All samples were the same mass and length)

예제: BEAM CRUSH ANALYSIS (2)

Force d $F_{\rm MAX}$ h F_{AVG} а С e Geometry information deflection Length: 305 mm 70 mm square thickness 1.4 mm Average strength 247 MPa b

С

d

e

$$P_{M} = 386t^{1.86}b^{0.14}\sigma_{Y}^{0.57}$$
$$P_{MAX} = 2.87P_{M}$$
$$P_{1} = 1.42P_{M}$$
$$P_{2} = 0.57P_{M}$$

а

예제: 재료 특성

Some of the material properties required to predict the crush characteristics are:

- 1. Stress-strain properties representative of the material for large plastic deformation
- 2. Change in properties under dynamic loading conditions
- 3. Strain hardening
- 4. Ductility properties
- 5. The variability that can be expected for production steels

Stress-strain curves

기하형상 생성 (1)

기하형상 생성

기하형상 생성 (2)

재료 물성 및 특성 입력

요소망 생성

구속조건 및 하중조건 설정 (1)

빔의 끝부분에 경계조건 설 정 (핀구속)
빔의 잘린 부분은 대칭 조건 으로 경계조건 설정
강체의 중앙 부분의 절점은 부딪히는 방향의 자유도를 제외한 모든 자유도 구속

구속조건 및 하중조건 설정 (2)

접촉조건 설정 (2)

해석 케이스 정의 및 해석 실행

Copyright © Computational Design Lab. All rights reserved.

후처리 (1)

해석 및 결과 탭 메뉴의 일 반 메뉴에서 변형 스케일을 실제스케일로 변경

멀티-스텝 애니메이션 녹화 클릭 후 재생을 통하여 동영 상으로 확인

후처리 (2)

Analytic solution

 $P_M = 386t^{1.86}b^{0.14}\sigma_Y^{0.57} = 30237 \text{ N}$ $P_{MAX} = 2.87P_M = 86780 \text{ N}$ $P_1 = 1.42P_M = 42936 \text{ N}$ $P_2 = 0.57P_M = 17235 \text{ N}$

Ideal graph

Crush Distance (in)

FEM solution $P_{MAX} = 52886 \text{ N}$

예제에서 수행한 정 사각형의 정적 충돌 하중을 100%로 놓고, 나머지 형상 중 하나를 결정하여 평균 정적 충돌 하중을 구하시오.

AVERAGE STATIC CRUSH FORCE

Figure 3.6.4-1 Average static crush force vs. section shape (All samples were the same mass and length)