Frequency Response 해석

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © Computational Design Lab. All rights reserved.

• 예제 문제

Frequency response analysis of cantilever

- 해석 프로세스
 - ▶ 기하형상 생성
 ▶ 재료 물성 및 특성 입력
 ▶ 요소망 생성
 ▶ 구속조건 설정
 ▶ 하중조건 설정
 ▶ 해석케이스 정의 및 해석 실행
 ▶ 후처리

주파수 응답 해석 [1]

Figure 7.12 Single-degree-of-freedom system behavior.

$$\sum (\text{forces acting on m}) = m \frac{d^2 x(t)}{dt^2}$$
$$f(t) - kx(t) = m \frac{d^2 x(t)}{dt^2}$$
$$\frac{d^2 x(t)}{dt^2} = -X \omega^2 \sin(\omega t)$$
$$F \sin(\omega t) = kX \sin(\omega t) - mX \omega^2 \sin(\omega t)$$
$$F = kX - mX \omega^2$$
$$\frac{X}{F} = \frac{1}{k - m\omega^2}$$

지진하중을 받는 구조물

주파수 응답 해석 [2]

운동 방정식 주파수 응답 해석의 운동 방정식 $[\mathbf{M}]\{\ddot{\mathbf{x}}(t)\} + [\mathbf{C}]\{\dot{\mathbf{x}}(t)\} + [\mathbf{K}]\{\mathbf{x}(t)\} = \{\mathbf{F}(t)\} \qquad (-\omega^{2}[\mathbf{M}] + \omega[\mathbf{C}] + [\mathbf{K}])\{\mathbf{x}(\omega)\} = \{F(\omega)\}$ 단순조화운동 가정 $\{\mathbf{x}(t)\} = \{\mathbf{x}(\omega)\}e^{i\omega t} \qquad \{\mathbf{F}(t)\} = \{\mathbf{F}(\omega)\}e^{i\omega t}$

주파수 응답 해석 [3]

직접법과 모드법

구분	직접적분법 (Direct Integration Method)	모드중첩법 (Mode Superposition Method)		
이론	운동방정식을 직접 적분	모드형상을 조합		
해석 시간	직접적분방식으로 해석 시간의 소모가 많음	모드형상의 조합으로 해석 시간이 짧음		
주요 <mark>사</mark> 항	시간스텝 선정이 중요	모드수 선정이 중요		
모델 규모	소규모 모델에 적합	대규모 모델에 적합		
해석 정확도	해석 시간이 오래 걸리는 편이나 정확도는 높음	직접적분법에 비해 다소 낮은 편이나 전체 모드 수를 적용할 경우 정확한 결과 산출이 가능		
적용 가능한 해석 범위	선형 및 비선형 해석 가능	선형 해석만 가능		
적용 가능한 해석 타입 주파수응답해석 (Transient Response) 주파수응답해석 (Frequency Response)		주파수응답해석 (Transient Response) 주파수응답해석 (Frequency Response) 응답스펙트럼해석 (Shock and Spectrum)		

FREQUENCY RESPONSE ANALYSIS

연습예제: HANGER

기하형상 불러오기

재료 물성 및 특성 입력

재료			×	Steel' 재료 실	뱅성
번호 2 이름	Steel 색상	\sim			
All ~	선형			번호	2
17-4PH, H1100	· 구소 탄성계수 <mark>↓</mark> 210000 N/mm²	열응력		이름	Steel
AISI 304 SS Annealed AISI_310_SS AISI_410_SS	프와송비 0.3	열팽창계수		탄성계수	2.1e5 (N/mm ²)
AISI_105_50 AISI_Steel_1005 AISI_Steel_1008-HR	질량밀도 7.9e-006 kg/mm³			프와송비	0.3
AISI 4340 Annealed AISI_Steel_Maraging Alloy Steel	열전도			질량밀도	7.9e-6(kg/mm²)
Cast Alloy Steel Cast Carbon Steel Cast Stainless Steel	전도율 0 W/(mm·[T])	잠열		0	
Chrome Stainless Steel FC250	방열계수 1			<mark>2</mark> 3차원 특성 상	성
H-1(CR60) HL-4000	전위				
Hp-1 Hp-4 Inconel 718 Aged	전도율 0 A	A/mm∙V			
Plain Carbon Steel S/Steel_PH15-5	에너지 환산 계수 1				
SAPH-400 SE508	안전률계산방법				
SGACC SGACEN SGARC340-E	파손이론 Von Mises 응력(Ductile)	~			
SGCC SGCD1 SHP	인장 0 N/mm²	압축 0	3차원 특성 생성/변경		×
SM45C SM490A(KS)	- 감쇠 지수 	0 1/cos	솔리드		
SPCC SPDE SPRC340	강성 비례 감쇠 계수	0 sec		-++0 = ++	
SR-0300 Steel Steel Rolled	구조 감쇠 계수	0	민호 1 이	늄 <u>3사권득정</u>	색상 🛄 🗹
SUP 12 SUS 304 SUS 316	코리프		재료	2 2: Steel	✓ I€
SUS316L Wrought Stainless Steel			재료좌표계	전체직교좌표계	~
Ductile Iron Gray Cast Iron Iron_40					
Iron_60 Iron_Cast_G25			L		
				확인 취소	적용
불러오기 편집		확인 취소	적용	 	

구속조건 및 하중조건 설정

요소망 생성

해석 케이스 정의 및 해석 실행

					midas NF)	- [hanger]			× 🌮	결과 테이	블로 결고	ት 확인
 한 영상 한 전투어 ● 다이어그램 ○ 백터 ▼ 	표소성 정직/ 글 애직 전투여유형 · · · · · · · · · · · · · · · · · · ·	종역/과도를 6 [1] 결고 [4] 연양 [2] 후 [2] [] [] [] [] [] [] [] [] []	개역 7 바태그 j. 비선추출 📱	유동애직 애직 · 사용자정의 수식 · 응력 선형화 · 임의방향 부재력합계 고급	열과분석 도구 호수 반력함계 ∰ 스텝등위면 및 기타기능 ▼ 최적설계3	11월상 11년성 * <mark>는</mark> 복합재 * 12년 부합재 * 12년 부합재 * 12년 부합재 *	사용보드 ☑ 레전드 ☑ 절점평균 □ 최대/최소 모든 요소 고컨투어선 □ 요소중앙 보이기/감추기	· 스타일 · 태성 · 언어 · · · · · · · · · · · · · · · · · · ·	11×71\$			
- 🗟 🔂 -	Q Q Q Q C C +	• 🖽 🖽 🎽	🗊 🖪 (* 🕲 * 🏈 😘 🗐 🚬 🛤	()□••!#+/₩	🗳 📲 🗣 🛊 📦 🗸 🗄	🔀 🔩 🎼 🖣 🖬	🎝 🖓 🚰 💐			
해석 및 결과		▼ ₽ ×				•	- 66 6 = X 5		K.			
항목 	석 : 모드해석 :해석결과 테이블 :해석 (필수) MODE 1 (FREQ=2.3773e+002 전체 변위 MODE 2 (FREQ=1.1687e+002 한 전체 변위 MODE 3 (FREQ=1.6607e+002 한 전체 변위 MODE 4 (FREQ=1.6877e+002 한 전체 변위 MODE 5 (FREQ=3.2937e+002 한 전체 변위 MODE 5 (FREQ=3.2937e+002 한 전체 변위 MODE 5 (FREQ=3.2937e+002 한 전체 변위 MODE 5 (FREQ=3.2937e+002) 한 전체 변위 해석 및 결과	번호 색 22) 3) 3) 3) 3) 3)		26.6 33.2			3	NOCAL DISP TOTAL , mm 2.3% 1.48716 2.3% 1.48716 2.3% 1.48716 2.9% 1.13537 2.9% 1.11537 2.9% 1.11537 2.9% 1.11537 2.9% 1.1537 2.9% 1.1537 2.9% 1.1537 2.9% 1.1537 2.9% 1.1537 2.9% 1.15572 6.6% 1.23932 1.25572 5.5% 1.27755 5.5% 1.12755 5.5% 1.127555 5.5% 1.127555 5.5% 1.127555 5.5% 1.127555 5.5% 1.127555 5.5% 1.127555 5.5% 1.127555 5.5% 1.1275555 5.5% 1.127555 5.5% 1.127555 5.5% 1.1275555 5.5% 1.1275555 5.5% 1.1275555 5.5% 1.127555555 5.5% 1.12755555555555555555555555555555555555	E I e+002 I ie+002 I e+002 I e+001 I			
속성창		▼ ₽ ×	[L DAT	A] 포드애역, 포드애역	(월宁), MODE 1 (FREQ=2.377	3e+002), [UNIT] N, mm		55.3%				
			n 🕨 🕇		레벨 3 (부토) 이		0.5.4		115.0			
컨투어		~					REA	L EIGENVAI	.UES			
전투어 ⊿ 컨투어 컨투어유형 채우기	연속 면그리기	~	 출력창	MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	PERIOD	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERRO MEASU
전투어 ┛ 컨투어 전투어유형 채우기 색상 ┛ 컨투어선	연속 면그리기 컨투어	~	 ↓ 출력창 > C > C 	MODE NUMBER	EIGENVALUE 1 2.231053e+006	RADIANS 1.493671e+003	CYCLES	PERIOD 4.206539e-003	GENERALIZED MASS 1.000000e+000	GENERALIZED STIFFNESS 2.231053e+006	ORTHOGONALITY LOSS 0.000000e+000	ERRO MEASU 9.692477
전투어 최 컨투어 컨투어유형 채우기 색상 최 컨투어선 고 보이기	연속 연그리기 컨투어 False		☆ 출력창 > C > C > ANA > ANA	MODE NUMBER	EIGENVALUE 2.231053e+006 5.392250e+007	RADIANS 1.493671e+003 7.343194e+003	CYCLES 2.377251e+002 1.168706e+003	PERIOD 4.206539e-003 8.556472e-004	GENERALIZED MASS 1.000000e+000 1.000000e+000	GENERALIZED STIFFNESS 2.231053e+006 5.392250e+007	ORTHOGONALITY LOSS 0.000000e+000 0.000000e+000	ERRO MEASU 9.692477 3.789623
전투어 최 컨투어 컨투어유형 채우기 색상 최 컨투어선 실 보이기 선색 선두께	연속 연그리기 컨투어 False FFFFFF 1			MODE NUMBER	EIGENVALUE 2.231053e+006 5.392250e+007 1.088803e+008	RADIANS 1.493671e+003 7.343194e+003 1.043457e+004	CYCLES 2.377251e+002 1.168706e+003 1.660714e+003	PERIOD 4.206539e-003 8.556472e-004 6.021506e-004	GENERALIZED MASS 1.000000e+000 1.000000e+000 1.000000e+000	GENERALIZED STIFFNESS 2.231053e+006 5.392250e+007 1.088803e+008	ORTHOGONALITY LOSS 0.0000000e+000 0.000000e+000 0.000000e+000	ERRO MEASU 9.692477 3.789623 2.006892
전투어 최 컨투어유형 채우기 색상 최 컨투어선 보이기 선석 선두께	연속 면그리기 컨투어 False FfFFF 1		☆ 출력장 > C > C > ANA > ANA > [SY! > NUM	MODE NUMBER	EIGENVALUE 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008	RADIANS 1.493671e+003 7.343194e+003 1.043457e+004 1.060417e+004	CYCLES 2.377251e+002 1.168706e+003 1.660714e+003 1.687706e+003	PERIOD 4.206539e-003 8.556472e-004 6.021506e-004 5.925203e-004	GENERALIZED MASS 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000	GENERALIZED STIFFNESS 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008	ORTHOGONALITY LOSS 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000	ERRO MEASU 9.692477 3.789623 2.006892 2.204416
전투어 ▲ 컨투어유형 채우기 색상 ▲ 컨투어선 전투어선 선택 선두께	연속 면그리기 컨루어 False D FFFFFF 1		☆ 출력창 > C > ANA > ANA > [SY! > NUM > MAX > AVA	MODE NUMBER	EIGENVALUE 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008 4.282741e+008	RADIANS 1.493671e+003 7.343194e+003 1.043457e+004 1.060417e+004 2.069478e+004	CYCLES 2.377251e+002 1.168706e+003 1.660714e+003 1.687706e+003 3.293677e+003	PERIOD 4.206539e-003 8.556472e-004 6.021506e-004 5.925203e-004 3.036120e-004	GENERALIZED MASS 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000	GENERALIZED STIFFNESS 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008 4.282741e+008	ORTHOGONALITY LOSS 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000	ERRO MEASU 9.692477 3.789623 2.006892 2.204416 4.519400
전투어 ▲ 컨투어유형 채우기 색상 ▲ 컨투어선 □ 보이기 선색 선두께	연속 면그리기 컨투어 False D FFFFFF 1		출력장 > C > ANA > ANA > [SYS- > NUM > MAX > AVA > TOT	MODE NUMBER	EIGENVALUE 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008 5.4282741e+008 5.567826e+008	RADIANS 1.493671e+003 7.343194e+003 1.043457e+004 1.060417e+004 2.069478e+004 2.562777e+004	R E P CYCLES 2.377251e+002 1.168706e+003 1.660714e+003 1.687706e+003 3.293677e+003 4.078786e+003	PERIOD 4.206539e-003 8.556472e-004 6.021506e-004 5.925203e-004 3.036120e-004 2.451710e-004	GENERALIZED MASS 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000	GENERALIZED STIFFNESS 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008 4.282741e+008 6.567826e+008	ORTHOGONALITY LOSS 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000	ERRO MEASU 9.692477 3.789623 2.006892 2.204416 4.519400 3.191153
전투어 ▲ 컨투어유형 채우기 색상 ▲ 컨투어선 □ 보이기 선색 선두께	연속 면그리기 컨투어 False False 1		출력장 > C > ANA > ANA > SYS > NUM > MUM > AVA > TOT > WAL > TOT	MODE NUMBER	EIGENVALUE 2.231053e+006 2.5392250e+007 3 1.088803e+008 4 1.124484e+008 5 4.282741e+008 5 6.567826e+008 7 7.900135e+008	RADIANS 1.493671e+003 7.343194e+003 1.043457e+004 1.060417e+004 2.069478e+004 2.562777e+004 2.810718e+004	CYCLES 2.377251e+002 1.168706e+003 1.660714e+003 1.687706e+003 3.293677e+003 4.078786e+003 4.473396e+003	PERIOD 4.206539e-003 8.556472e-004 6.021506e-004 5.925203e-004 3.036120e-004 2.451710e-004 2.235438e-004	GENERALIZED MASS 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000	GENERALIZED STIFFNESS 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008 4.282741e+008 6.567826e+008 7.900135e+008	ORTHOGONALITY LOSS 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000	ERRO MEASU 9.692477 3.789623 2.006892 2.204416 4.519400 3.191153 3.013535
전투어 ▲ 컨투어유형 채우기 석상 ▲ 컨투어선 <u></u> 컨투어선 <u></u> 보이기 선색 선두께	연속 면그리기 컨투어 False Ffffff 1		4 출력창 > C > ANA > ANA > [SYS- > NUM > MAX > TOT > WAL > TOT > WAL > TOT	MODE NUMBER	EIGENVALUE 2.231053e+006 2.5392250e+007 3 1.088803e+008 4 1.124484e+008 5 4.282741e+008 5 6.567826e+008 7 7.900135e+008 3 1.255360e+009	RADIANS 1.493671e+003 7.343194e+003 1.043457e+004 1.060417e+004 2.069478e+004 2.562777e+004 2.810718e+004 3.543106e+004	CYCLES 2.377251e+002 1.168706e+003 1.660714e+003 1.687706e+003 3.293677e+003 4.078786e+003 4.473396e+003 5.639028e+003	PERIOD 4.206539e-003 8.556472e-004 6.021506e-004 5.925203e-004 3.036120e-004 2.451710e-004 2.235438e-004 1.773355e-004	GENERALIZED MASS 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000	GENERALIZED STIFFNESS 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008 4.282741e+008 6.567826e+008 7.900135e+008 1.255360e+009	ORTHOGONALITY LOSS 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000	ERRO MEASU 9.692477 3.789623 2.006892 2.204416 4.519400 3.191153 3.013535 1.718075
전투어 ▲ 컨투어유형 채우기 색상 ▲ 컨투어선 □ 보이기 선색 선두께	연속 연그리기 컨투어 False Ffffff 1 적용		4 출력장 > C > ANA > ANA > ANA > SYS > MUM > MAX > TOT > TOT > TOT > X:	MODE NUMBER	EIGENVALUE 2.231053e+006 2.392250e+007 3.1.088803e+008 4.1.124484e+008 5.4.282741e+008 5.657826e+008 7.900135e+008 1.255360e+009 1.471827e+009	RADIANS 1.493671e+003 7.343194e+003 1.043457e+004 1.060417e+004 2.069478e+004 2.562777e+004 2.810718e+004 3.543106e+004 3.836440e+004	CYCLES 2.377251e+002 1.168706e+003 1.660714e+003 3.293677e+003 4.078786e+003 4.473396e+003 5.639028e+003 6.105884e+003	PERIOD 4.206539e-003 8.556472e-004 6.021506e-004 5.925203e-004 3.036120e-004 2.451710e-004 2.235438e-004 1.773355e-004 1.637764e-004	GENERALIZED MASS 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000	GENERALIZED STIFFNESS 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008 4.282741e+008 6.567826e+008 7.900135e+008 1.255360e+009 1.471827e+009	ORTHOGONALITY LOSS 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000	ERRO MEASU 9.692477 3.789623 2.006892 2.204416 4.519400 3.191153 3.013535 1.718075 1.085714
전투어 ▲ 컨투어유형 전투어유형 책우기 색상 ▲ 컨투어선 ■ 컨디 보이기 선색 선두께	연속 먼그리기 컨투어 False I FFFFFF 1		4 출력장 > C > ANA > ANA > S SYS > NUM > MAX > AVA > TOT > WAL > TOT > TOT > X:	MODE NUMBER	EIGENVALUE 2.231053e+006 2.331053e+006 2.392250e+007 3.1.088803e+008 4.1124484e+008 5.4.282741e+008 5.6567826e+008 7.900135e+008 8.1255360e+009 9.1471827e+009 1.712109e+009	RADIANS 1.493671e+003 7.343194e+003 1.043457e+004 1.060417e+004 2.069478e+004 2.562777e+004 2.810718e+004 3.543106e+004 3.836440e+004 4.137764e+004	CYCLES 2.377251e+002 1.168706e+003 1.660714e+003 1.687706e+003 3.293677e+003 4.078786e+003 4.473396e+003 5.639028e+003 6.105884e+003 6.585456e+003	PERIOD 4.206539e-003 8.556472e-004 6.021506e-004 5.925203e-004 3.036120e-004 2.451710e-004 2.235438e-004 1.773355e-004 1.637764e-004 1.518498e-004	GENERALIZED MASS 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000	GENERALIZED STIFFNESS 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008 4.282741e+008 6.567826e+008 7.900135e+008 1.255360e+009 1.471827e+009 1.712109e+009	ORTHOGONALITY LOSS 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000	ERRO MEASU 9.692477 3.789623 2.006892 2.204416 4.519400 3.191153 3.013535 1.718075 1.085714 3.195912
전투어 ▲ 컨투어유형 전투어유형 재우기 색상 ▲ 컨투어선 ▲ 컨투어선 ▲ 컨투어선 ▲ 컨투어선	연속 면그리기 컨투어 False FFFFF 1		d 출력장 > C > ANA > ANA > [SYS > NUM > MAX > TOT > AVA > TOT > TOT > XVA	MODE NUMBER	EIGENVALUE 2.231053e+006 2.231053e+006 2.5392250e+007 3.088803e+008 4.124484e+008 5.4282741e+008 6.567826e+008 7.900135e+008 1.255360e+009 1.471827e+009 1.712109e+009	RADIANS 1.493671e+003 7.343194e+003 1.043457e+004 1.060417e+004 2.069478e+004 2.562777e+004 2.810718e+004 3.543106e+004 3.836440e+004 4.137764e+004	REP CYCLES 2.377251e+002 1.168706e+003 1.667706e+003 3.293677e+003 4.078786e+003 4.473396e+003 5.639028e+003 5.639028e+003 6.105884e+003 6.585456e+003 MODA	PERIOD 4.206539e-003 8.556472e-004 6.021506e-004 5.925203e-004 3.036120e-004 2.451710e-004 2.235438e-004 1.773355e-004 1.637764e-004 1.518498e-004 EFFECTIV	GENERALIZED MASS 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 EMASS	GENERALIZED STIFFNESS 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008 4.282741e+008 6.567826e+008 7.900135e+008 1.255360e+009 1.471827e+009 1.712109e+009	ORTHOGONALITY LOSS 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000	ERRO MEASU 9.692477 3.789623 2.006892 2.204416 4.519400 3.191153 3.013535 1.718075 1.085714 3.195912
전투어 ▲ 컨투어유형 채우기 색상 ▲ 컨투어선 □ 보이기 선색 선두께	연속 연그리기 컨투어 False I FFFFFF 1		d 출력장 > C > ANA > ANA > STOT > WAL > TOT > WAL > TOT > WAL	MODE NUMBER	EIGENVALUE 2.231053e+006 2.331053e+006 2.392250e+007 3.1.088803e+008 4.124484e+008 5.4.282741e+008 5.657826e+008 7.900135e+008 1.255360e+009 1.471827e+009 1.712109e+009	RADIANS 1.493671e+003 7.343194e+003 1.043457e+004 1.060417e+004 2.069478e+004 2.562777e+004 2.810718e+004 3.543106e+004 3.836440e+004 4.137764e+004	CYCLES 2.377251e+002 1.168706e+003 1.660714e+003 1.687706e+003 3.293677e+003 4.078786e+003 4.473396e+003 5.639028e+003 6.105884e+003 6.585456e+003 M O D A T3	PERIOD 4.206539e-003 8.556472e-004 6.021506e-004 5.925203e-004 3.036120e-004 2.451710e-004 2.235438e-004 1.637764e-004 1.518498e-004 EFFECTIV R1	GENERALIZED MASS 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 EMASS R2	GENERALIZED STIFFNESS 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008 4.282741e+008 6.567826e+008 7.900135e+008 1.255360e+009 1.471827e+009 1.712109e+009 R3	ORTHOGONALITY LOSS 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000	ERRO MEASU 9.692477 3.789623 2.006892 2.204416 4.519400 3.191153 3.013535 1.718075 1.085714 3.195912
전투어 ▲ 컨투어유형 채우기 색상 ▲ 컨투어선 □ 보이기 선색 선두께	연속 연그리기 컨투어 False I FFFFFF 1		d 출력장 > C > ANA > ANA > STY > NUM > MAX > TOT > WAL > TOT > X:	MODE NUMBER	EIGENVALUE 2.231053e+006 2.5392250e+007 3.1.088803e+008 4.1124484e+008 5.4.282741e+008 5.6.567826e+008 7.900135e+008 8.1.255360e+009 9.1.471827e+009 0.1.712109e+009 0.1.712109e+009 0.1.376803e-004	RADIANS 1.493671e+003 7.343194e+003 1.043457e+004 1.060417e+004 2.069478e+004 2.562777e+004 2.810718e+004 3.543106e+004 3.836440e+004 4.137764e+004 CT2 6.427052e-009	R E P CYCLES 2.377251e+002 1.168706e+003 1.660714e+003 3.293677e+003 4.078786e+003 4.473396e+003 5.639028e+003 6.105884e+003 6.585456e+003 M O D A T3 4.293947e-009	PERIOD 4.206539e-003 8.556472e-004 6.021506e-004 5.925203e-004 3.036120e-004 2.451710e-004 2.235438e-004 1.773355e-004 1.637764e-004 1.518498e-004 EFFECTIV R1 2.615612e-005	GENERALIZED MASS 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 EMASS R2 7.574837e-002	GENERALIZED STIFFNESS 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008 4.282741e+008 6.567826e+008 7.900135e+008 1.255360e+009 1.471827e+009 1.712109e+009 R3 1.039816e+000	ORTHOGONALITY LOSS 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000	ERRO MEASU 9.692477 3.789623 2.006892 2.204416 4.519400 3.191153 3.013535 1.718075 1.085714 3.195912
전투어 ▲ 컨투어유형 채우기 색상 ▲ 컨투어선 □ 보이기 선색 선두께	연속 먼그리기 컨투어 False I I		↓ 출력장 > C > ANA > ANA > STY > NUM > MAX > TOT > TOT > X:	MODE NUMBER	EIGENVALUE 2.231053e+006 2.5392250e+007 3.1.088803e+008 4.1124484e+008 5.4.282741e+008 5.6.567826e+008 7.900135e+008 8.1.255360e+009 9.1.471827e+009 9.1.471827e+009 9.1.712109e+009 0.1.712109e+009 0.1.376803e-004 2.4.255714e-005	RADIANS 1.493671e+003 7.343194e+003 1.043457e+004 1.060417e+004 2.069478e+004 2.562777e+004 2.810718e+004 3.543106e+004 3.836440e+004 4.137764e+004 CT2 6.427052e-009 7.680110e-009	CYCLES 2.377251e+002 1.168706e+003 1.660714e+003 3.293677e+003 4.078786e+003 4.473396e+003 5.639028e+003 6.105884e+003 6.585456e+003 M O D A T3 4.293947e-009 5.772160e-007	PERIOD 4.206539e-003 8.556472e-004 6.021506e-004 5.925203e-004 3.036120e-004 2.451710e-004 2.235438e-004 1.637764e-004 1.518498e-004 EFFECTIV R1 2.615612e-005 6.966193e-003	GENERALIZED MASS 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 EMASS R2 7.574837e-002 6.538317e-003	GENERALIZED STIFFNESS 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008 4.282741e+008 6.567826e+008 7.900135e+008 1.255360e+009 1.471827e+009 1.712109e+009 R3 1.039816e+000 4.265454e-004	ORTHOGONALITY LOSS 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000	ERRO MEASU 9.692477 3.789623 2.006892 2.204416 4.519400 3.191153 3.013535 1.718075 1.085714 3.195912
전투어 ▲ 컨투어유형 채우기 색상 ▲ 컨투어선 □ 보이기 선석 선두께	연속 면그리기 컨투어 False I 1		↓ 출력창 > C > ANA > ANA > STOT > WAL > TOT > X:	MODE NUMBER	EIGENVALUE 2.231053e+006 2.5392250e+007 3.1088803e+008 4.1124484e+008 5.4.282741e+008 5.6.567826e+008 7.900135e+008 3.1255360e+009 9.1.471827e+009 9.1.471827e+009 9.1.712109e+009 9.1.712109e+009 9.1.376803e-004 1.255714e-005 3.5.606156e-007	RADIANS 1.493671e+003 7.343194e+003 1.043457e+004 1.060417e+004 2.069478e+004 2.562777e+004 2.810718e+004 3.543106e+004 3.836440e+004 4.137764e+004 6.427052e-009 7.680110e-009 4.688936e-006	CYCLES 2.377251e+002 1.168706e+003 1.660714e+003 1.687706e+003 3.293677e+003 4.078786e+003 5.639028e+003 6.105884e+003 6.585456e+003 MODA T3 4.293947e-009 5.772160e-007 1.083191e-004	PERIOD 4.206539e-003 8.556472e-004 6.021506e-004 5.925203e-004 2.451710e-004 2.235438e-004 1.773355e-004 1.637764e-004 1.518498e-004 EFFECTIV R1 2.615612e-005 6.966193e-003 9.169345e-001	GENERALIZED MASS 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000 EMASS R2 7.574837e-002 6.538317e-003 3.325584e-003	GENERALIZED STIFFNESS 2.231053e+006 5.392250e+007 1.088803e+008 1.124484e+008 4.282741e+008 6.567826e+008 7.900135e+008 1.255360e+009 1.471827e+009 1.712109e+009 1.712109e+000 4.265454e-004 2.226331e-004	ORTHOGONALITY LOSS 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000	ERRO MEASU 9.692477 3.789623 2.006892 2.204416 4.519400 3.191153 3.013535 1.718075 1.085714 3.195912

Copyright © Computational Design Lab. All rights reserved.

i

모드형상 확인

주파수 의존함수 입력

해석 케이스 설정 [1]

해석 케이스 설정 [2]

≻ 선형 (Linear)

- 대상 주파수 범위 내에서 일정 간격으로 증가
- 고유진동수 범위 내에서 값이 무시될 수 있음
- 기본적인 Base로 적용하고 다른 방법과 병행하여 사용하는 것이 좋음.

▶ 로그형 (Logarithm)

- •대상 주파수 범위 내에서 log함수 간격으로 증가
- 고유진동수 범위 내에서 값이 무시될 수 있음
- 시작주파수 부근에서 조밀하게 나타나므로 저차구역의 Base로 적용 가능

해석 케이스 설정 [2]

▶ 불연속형 (Discrete)

- 선택한 주파수만으로 분할
- 모드해석에서 확인된 주요 모드형상의 주파수를 직접 입력

▶ 클러스터 (Cluster)

- 고유진동수 사이에 선형 또는 로그 방식으로
 주파수 분할
- 시작과 끝 주파수, 고유치 영역 사이의 출력 주파수 개수와 조밀도 설정 가능
- 조밀도가 1인 경우에는 등간격
- 조밀도가 1보다 작은 경우에는 중앙부가 조밀
- 조밀도가 1보다 큰 경우에는 시작/끝이 조밀
- 모드법에서만 사용이 가능

해석 케이스 설정 [2]

해석 케이스 설정 [3]

해석 케이스 설정 [3]

<u>감쇠력</u>

- ➤ 점성 감쇠(Viscous Damping)
 - 구조물이 유체 내를 움직일 때 발생
 - 감쇠력이 속도에 비례
 - 비례상수 C를 Damping Constant라고 정의함
 - 일반적으로 감쇠비를 주로 사용함
 - 임계감쇠(Critical damping)은 주기성과 비주기성을 나누는 경계로 정의됨
 - 독립적인 감쇠요소로 정의되며 직접법, 모드법에 모두 사용
 - CDAMP1, CBUSH, CVISC 등의 감쇠 요소 제공

▶ 구조 감쇠(Structural Damping)

- 감쇠계수와 지배진동수로 정의되는 감쇠이며, 주로 직접법에 사용
- 감쇠계수는 감쇠비의 2배를 사용
- 지배진동수는 하중의 주파수와 동일
- 만약 작용하중이 주기적이지 않으면, 가장 작은 고유진동수를 지배진동수로 사용
- ➤ 모드 감쇠(Modal Damping)
 - 모드법에서 사용하는 감쇠로 구조물의 고유진동수와 해당 진동수에서의 감쇠계수를 정의

해석 제어						x
감쇠 정의	전초 파라미터	4				
_ 가시 제		-				
 	ㅋ 그림 일 구조감쇠					
균일	구조감쇠계수			0		
지배의	주파수			0	Cycle/sec	
			Ο [Cyc	le]/sec 🔘	[Rad]/sec	
- 🔽 X	질 정의 구조감쇠					
지배3	주파수			0	Cycle/sec	
			Cyd	e/sec 🔘	[Rad]/sec	
☞ 모달	말감쇠함수	2%			•	9
함수 생성/변경						_ ×
모달감쇠함수						
이름 2%	e,	번 일정		•		
상수	0.02	1				
		0.0				
		0.7				
	ក់ទ	0.5		<u> </u>		
		0.4		2010		
		0.2				-
		0.1				
		0 0.1	U.4 V.4			
1	스케일값	감솨단위	의 종류	임계강쇠비율		-
2				확민	취소]	적용

후처리 [2]

Z방향 모드형상이 나타나는 주파수응답 결과 주파수 영역 주위에서 변위 가 크게 나타나는 것을 알 1.80E+01 수 있음 1.60E+01 1.40E+01 1.20E+01 변위(z방향) 1.00E+01 8.00E+00 6.00E+00 4.00E+00 2.00E+00 0.00E+00 0.00E+00 1.00E+03 2.00E+03 3.00E+03 4.00E+03 5.00E+03 6.00E+03 7.00E+03 8.00E+03 9.00E+03 1.00E+04 주파수(Hz) 3차 모드 (1661Hz) 4차 모드 (1678Hz)

차체구조

예제 1: STEERING COLUMN

예제 2: BODY FRAME

재료: AISI 1020 2D 두께: 2.5 mm 요소크기: 30 mm 스프링 상수: 500N/mm (Tz-Tz 스프링 이용) 균일구조감쇠: 0.1

주파수 함수					
	주파수 ([Hz])	값			
	0.0000	1.0000			
	15.0000	1.0000			
+					

주파수 세트

방법	선형
최초진 <mark>동</mark> 수	0
진동수 증분	0.50
증분 개수	20
방법	클러스터
하한값	1
상한값	10
보간 <mark>유</mark> 형	선형
모드들 사이의 포인트	20
클러스터링	1

> 하중조건 (충격하중 - 주파수의존 절점하중) ▶ 구속조건 (고정구속) • 좌측 스프링 요소 상단 절점 Z 제외 주파수의존 절점하중 ★ 주파수의존 절점하중 \times 주파수의존 절점하중 모두 구속 : (Tz) 10 KN / 0° 주파수의존 점점하중 주파수의존 절점하중-1 이름 주파수의존 절점하중-3 이름 대상형성 대상형상 • 우측 스프링 요소 상단 절점 종류 절점 종류 절점 1개 대상 선택됨 1개 대상 선택됨 : (Tz) 10 KN / 180° 참조방향 참조방향 고정구속 종류 종류 좌표계 좌표계 전체직교좌표계 참조좌표계 전체직교좌표계 참조좌표계 \sim \prec $\sim \prec$ Z 제외 하중성분 하중성분 기준함수 없음 ~ 🍋 기준함수 없음 ~ 🎮 모두 구속 0 Rx 0 Τx 0 Rx 0 0 0 0 0 Ту 10000 0 10000 0 1500 mm (z방향) Τz Τz N-mm N*mm 조화하중 공식 조화하중 공식 ○실수부/허수부 ○ 실수부/허수부 스프링 ● 크기/위상각도 ● 크기/위상각도 고정구속 크기 크기 ○ 상수 ○ 상수 0 ● 사용자정의세트 주파수함= ∨ 🍋 ◉ 사용자정의세트 주파수함= 🗸 🍋 위상각도 위상각도 강체 중심에 집중 질량 생성 ④ 상수 상수 180 [deg] 0 [deg] ○ 사용자정의세트 없음(일정 🗸 📖 ○ 사용자정의세트 없음(일정 🗸 💷 (전면부터 500 / 400 / 300 순서로) 주파수하중세트 load 1 ~ 😻 주파수하중세트 load 2 ~ 🍇 취소 적용 😨 🥒 확인 취소 적용 👳 🥒 확인

예제 2: BODY FRAME

모드 해석 결과

주파수 응답 결과 (앞/뒤 하중점의 z방향 변위)

