비선형 정적 해석

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © Computational Design Lab. All rights reserved.

선형과 비선형

- ✓ 선형 문제
 - 미소변형
 - 선형의 응력-변형률 관계
 - 해석과정 중 일정한 변위 경계조건
 - 해석과정 중 일정한 작용 하중
- ✓ 비선형 문제
 - 선형문제를 제외한 모든 문제는 비선형문제!
 - 기하비선형: 비선형의 변형률-변위 관계
 - 재료비선형: 비선형의 재료 구성방정식
 - 경계비선형(접촉): 해석과정 중에 변하는 변위 경계조건, 접촉
 - 하중의 비선형성: 종동력 (follow-up loads)

비선형 문제의 종류

비선형 해석의 계산 방법

하중을 분할하여 각 증분 구간에 대해 평형 조건을 만족하는 해를 계산

평형조건식

K_τ :구조물의 접선 강성행렬

ΔU : 증분 변위

ΔP : 증분 하중

NFX의 비선형 해석 설정

해석 케이스 생성 시 해석 제어에서 기하 비선형의 적용 및 증분 개수 설정 가능

NFX의 비선형 재료 설정

빔 모델의 해석 비교 (선형/기하비선형/종동력)

빔 해석 예제

비선형 해석 케이스 설정

비선형 해석 결과

선형/비선형 해석 비교

하중-변위 그래프

Copyright © Computational Design Lab. All rights reserved.

FOLLOWER LOAD (종동력)

변형이 큰 경우, 하중의 방향이 변화하는 것도 고려가 필요함 → 종동력

NFX의 종동력 하중 적용

강체 요소 생성 방법

선형/비선형 해석 비교

변형 정도에 따라 기하비선형/종동력을 적절히 적용하는 것이 필요함

		선형	기하비선형	기하비선형 (종동력)
수직 (M	응력 Pa)	9.02e3	8.31e3	8.81e3
변위 (mm)	X방향	0	-3.96e2	-4.83e2
	Y방향	-2.06e3	-1.79e3	-1.95e3

SHELL 요소 비틀림 해석 (closed section/spot weld flange)

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © Computational Design Lab. All rights reserved.

- 예제 문제
 - Closed section beam
 - Spot weld flange
- 해석 프로세스
 - ▶ 기하형상 생성
 ▶ 재료 물성 및 특성 입력
 ▶ 요소망 생성
 ▶ 구속조건 설정
 ▶ 하중조건 설정
 ▶ 해석케이스 정의 및 해석 실행
 ▶ 후처리

예제: CLOSED SECTION BEAM

비틀림 강성을 계산하시오

CLOSED SECTION 쉘 요소

기하형상 생성 (1)

작업 평면 옮기기를 통해 전 체 좌표계에서 YZ 평면으로 작업평면 이동

기하형상 생성 (2)

연결선 생성메뉴를 통해 가 로, 세로 100 mm 인 직각삼 각형 생성

탄성계수 207 GPa 푸아송비 0.327

재료 생성

재료 물성 및 특성 입력 (1)

재료	
번호 2 이름	재료 색상
All	선형 탄소성 초탄성 온도의존
All IT-4PH, H1100 AISI 1020 AISI 1060 AISI 304 SS Annealed AISI_310_SS AISI_410_SS AISI_410_SS AISI_410_SS AISI_Steel_1008+HR AISI_4340 Annealed AISI_Steel_1008+HR AISI_4340 Annealed AISI_Steel_Maraging Alloy Steel Cast Carbon Steel Cast Carbon Steel Cast Stainless Steel FC250 Galvanized Steel H-1(CR60) HL-4000 Hp-1 Hp-4 Inconel_718_Aged Plain Carbon Steel S/Steel_PH15-5 S45C SAPH-400 SE508 SGACC SGACEN SGACC SGACEN SGACC SGCC SGCC SGCC SGCC SGCC SGCC SGC	건형 탄소성 초단성 온도의조 구조 207000 N/mm 열등력 0 프와숭비 0.327 참조온도 0 (1) 질량밀도 0 kg/mm³ 참조온도 0 (1) 일경도 0 w/(mm·(T)) 1 1 법열 0 J/(kg·(T)) 발열계수 1 안전률계산방법
SR-0300 Steel Steel_Rolled SUP12 SUS304	
SUS316 *	
 물러오기 편집	확인 취소 적용

재료 물성 및 특성 입력 (2)

요소망 생성

하중조건 및 구속조건 설정

해석 케이스 정의 및 해석 실행

해석 및 결과 창에서

-X방향 회전변위

결과 추가

-쉘요소 상단 최대 전단응력

후처리 (1)

Copyright © Computational Design Lab. All rights reserved.

흐처리 (2)

오차 0.056% 확인

2 쉘 최대 응력은 29.11 MPa 로 오차 16.44% 확인

후처리 (3)

차체구조

열린 단면인 경우: 단면 정보

Example: Torsion of beam with open section (p.59)

$$J_{EFF} = \frac{1}{3}t^{3}S = \frac{1}{3}(1mm)^{3}(100mm + 99mm + 141.4mm) = 113.46mm^{4}$$
$$\theta = \frac{TL}{GJ_{EFF}} = \frac{(25e4Nmm)(500mm)}{(78e3N / mm^{2})(113.46mm^{4})} = 14.1rad(803^{\circ})$$

열린 단면인 경우: 해석 결과

리모트/강체요소(RBE2) 대신 보간요소(RBE3) 사용

길이 방향 변형 허용을 위해 대각선 부분만 고정

강체요소(RBE2) VS. 보간요소(RBE3)

*midas NFX 모델링 교육 자료

SPOT WELD FLANGE 쉘 요소

예제: SPOT WELD FLANGE

비틀림 강성을 계산하시오

$$K = \frac{T}{\theta} = \frac{\left(\text{stiffness of closed tube w/o weld flange}\right)}{\left[1 + \frac{3}{4\pi^2(1+\nu)}\frac{p^2}{wS}\right]} \qquad \qquad \psi = \frac{1}{1 + \frac{3}{4\pi^2(1+\nu)}\frac{p^2}{wS}} = \frac{1}{1 + \frac{3}{4\pi^2(1+0.327)}\frac{80^2}{8(200+100\sqrt{2})}} = 0.882$$
$$\theta_{p=80} = \theta \times \frac{1}{\psi} = 5.471 \times 10^{-3} \times \frac{1}{0.882} = 6.205 \times 10^{-3} \text{ rad}$$

$$K_{p=80} = K \times \psi = 45.704 \times 0.882 = 40.297$$
 Nm/rad

단면형상 생성

탄성계수 207 GPa 푸아송비 0.327

재료 생성

재료 물성 및 특성 입력 (1)

재료	
번호 2 이름	재료 색상
All	선형 탄소성 초탄성 온도의존
All IT-4PH, H1100 AISI 1020 AISI 1060 AISI 304 SS Annealed AISI_310_SS AISI_410_SS AISI_410_SS AISI_410_SS AISI_Steel_1008+HR AISI_4340 Annealed AISI_Steel_1008+HR AISI_4340 Annealed AISI_Steel_Maraging Alloy Steel Cast Carbon Steel Cast Carbon Steel Cast Stainless Steel FC250 Galvanized Steel H-1(CR60) HL-4000 Hp-1 Hp-4 Inconel_718_Aged Plain Carbon Steel S/Steel_PH15-5 S45C SAPH-400 SE508 SGACC SGACEN SGACC SGACEN SGACC SGCC SGCC SGCC SGCC SGCC SGCC SGC	건형 탄소성 초단성 온도의조 구조 207000 N/mm 열등력 0 프와숭비 0.327 참조온도 0 (1) 질량밀도 0 kg/mm³ 참조온도 0 (1) 일경도 0 w/(mm·(T)) 1 1 법열 0 J/(kg·(T)) 발열계수 1 안전률계산방법
SR-0300 Steel Steel_Rolled SUP12 SUS304	
SUS316 *	
 물러오기 편집	확인 취소 적용

재료 물성 및 특성 입력 (2)

요소망 생성 (1)

· 크기 4mm로 1D 요소망 생 성 길이 500mm, 분할수 500/4 로 2D 요소 직선 추출

요소망 생성 (2)

구속조건 및 하중조건 설정

해석 케이스 정의 및 해석 실행

Copyright © Computational Design Lab. All rights reserved.

연습문제 1: 용접 거리에 따른 영향

연습문제 2

Toyota Yaris 모델의 rocker 단면 해석 (용접 거리에 따른 굽힘/비틀림 영향 확인) (빔의 길이는 800 mm, 요소 크기는 8 mm 로 적용)

해석적인 방법과 유한요소 프로그램으로 다음 문제의 비틀림 강성을 계산하시오 용접 거리에 따른 비틀림 강성을 구하고 해석적인 결과와 비교 분석하시오

재료 물성 및 하중은 예제와 동일

