Buckling 해석

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © Computational Design Lab. All rights reserved.

- 예제 문제
 - Column buckling
 - Panel buckling
- 해석 프로세스
 - ▶ 기하형상 생성
 ▶ 재료 물성 및 특성 입력
 ▶ 요소망 생성
 ▶ 구속조건 설정
 ▶ 하중조건 설정
 ▶ 해석케이스 정의 및 해석 실행
 ▶ 후처리

예제: COLUMN BUCKLING (1)

좌굴 해석

- > 좌굴해석은 압축력을 받는 구조물의 불안정성 여부를 판단하기 위한 해석이다.
- > 좌굴에 의한 구조물의 불안정성은 재료 강도에 무관하고, 구조물의 기하학적 형상 및 강성, 구속 조건과 밀접관 관련이 있다.
- 가늘고 긴 구조물 끝에 구조물 축 방향으로 압축력이 작용하는 경우, 하중의 크기가 작을 때에는 하중의 크기에 비례하여 구조물이 압축변형을 하지만, 특정 크기 이상의 하중이 작용하면 좌굴이 발생하여 하중의 크기가 증가하지 않아도 구조물이 크게 변형을 일으키게 된다.

예제: COLUMN BUCKLING (2)

하중/경계 조건

- 하중은 주로 가늘고 긴 구조물의 축방향에 대한 압축력을 가하는 경우가 일반적이며, 하중을 입력 하는 방식은 선형 정적 해석의 경우와 동일하다.
- 좌굴 해석에서의 경계조건 역시 선형 정적 해석에서의 경계조건 입력 방법과 동일하다.
- 단, 구조물의 좌굴 하중은 부재의 구속 조건에 따라 상당히 달라지므로 구속의 성분은 좌굴을 고려하여 합리적으로 설정할 필요가 있다.

<u> 차체구조</u>

예제: COLUMN BUCKLING (3)

$$M = -EI \frac{\partial^2 y}{\partial x^2} = P_{cr} y$$
$$EI \frac{\partial^2 y}{\partial x^2} + P_{cr} y = 0 \rightarrow \frac{\partial^2 y}{\partial x^2} + \frac{P_{cr}}{EI} y = \frac{\partial^2 y}{\partial x^2} + \lambda^2 y = 0$$
Homogeneous solution

Slender Pinned Column

$$: y = A\sin(\lambda x) + B\cos(\lambda x) \qquad y(0) = y(L) = 0$$
$$: y = A\sin(\frac{n\pi}{L}x) \quad n = 1, 2, 3... \quad \rightarrow \quad \lambda^2 = (\frac{n\pi}{L})^2 = \frac{P_{cr}}{EI} \quad \rightarrow P_{cr} = \frac{n^2\pi^2}{L^2}EI$$

$$M = -EI \frac{\partial^2 y}{\partial x^2} = P_{cr} y - R(L-x)$$

$$EI \frac{\partial^2 y}{\partial x^2} + P_{cr} y = R(L-x) \rightarrow \frac{\partial^2 y}{\partial x^2} + \frac{P_{cr}}{EI} y = \frac{\partial^2 y}{\partial x^2} + \lambda^2 y = \frac{R}{EI} (L-x)$$

$$\rightarrow \text{ Non-Homogeneous solution}$$

General solution: $y_h = A \sin(\lambda x) + B \cos(\lambda x)$
Particular solution: $y_p = \frac{R}{P} (L-x)$

$$\begin{cases} y = \frac{R}{P\lambda} \sin(\lambda x) - \frac{RL}{P} \cos(\lambda x) - \frac{R}{P} (L-x) \rightarrow \lambda L = \tan \lambda L \rightarrow P_{cr} = \lambda^2 EI \end{cases}$$

예제: COLUMN BUCKLING (4)

탄성계수

프와송비

질량밀도

7e+010 N/m²

7.85 kg/m²

0.33

고정구속

Stiffness matrix: $K_I = \int [\mathbf{B}]^T [\mathbf{C}] [\mathbf{B}] dV$ where $[\mathbf{\epsilon}] = [\mathbf{B}]^T [\mathbf{U}]$

Geometric(stress) stiffness matrix: $K_s = \int [\mathbf{G}]^T \Big|^{\mathbf{s}} \mathbf{s} \quad [\mathbf{G}] dV$

where $[\delta] = [\mathbf{G}]^T [\mathbf{U}], [\delta] = [u_{x} u_{y} u_{z} v_{x} v_{y} v_{z} w_{x} w_{y} w_{z}] \mathbf{s} = |\tau_{yx0}|$

 τ_{vz0}

 σ_{z0}

 σ_{x0} τ_{xy0} τ_{xz0}

 σ_{y0}

 τ_{zx0} τ_{zv0}

예제: COLUMN BUCKLING (5)

임계하중의 계산

$P_1 = 28$	383 kN
------------	--------

 $P_2 = 8533 \text{ kN}$

단면:150mm×150mm 두께(t):10mm 길이(L):3000mm $P_3 = 17003 \text{ kN}$

 $P_4 = 28295 \text{ kN}$

 $P = 160 \ kN$ $E = 70 \ GPa$

$$P_5 = 42409 \text{ kN}$$

$$v = 0.33$$

COLUMN BUCKLING 빔 요소

기하형상 생성 (1)

기하형상 생성 (2)

ў 3000 mm 선 생성

재료 물성 및 특성 입력 (1)

재료	×	🎬 탄성계수 70 GPa
번호 2 이름	재료 색상 🔽	▶ 푸아송비 0.33
All	선형 탄소성 초탄성 온도의존	새됴 생성
17-4PH, H1100 AISI 1020 AISI 1060 AISI 304 SS Annealed AISI_310_SS AISI_410_SS AISI_5teel_1008-HR AISI 4340 Annealed AISI_Steel_Maraging Alloy Steel Cast Alloy Steel Cast Carbon Steel Cast Carbon Steel Cast Stainless Steel FC250 Galvanized Steel H-1(CR60) HL-4000 Hp-1 Hp-4 Inconel_718_Aged Plain Carbon Steel S/Steel_PH15-5 S45C SAPH-400 SE508 SGACCA SGACA	구조 열등력 0 포와송비 0.33 열팽창계수 0 질량필도 0 kg/mm³ 참조온도 0 ГГ 질량필도 0 kg/mm³ 참조온도 0 ГГ 열전도 0 W/(mm·(TI)) 비열 0 J/(kg·(TI)) 반열계수 1 0 J/(kg·(TI)) 반열계수 0 안전률계산반법 Th 0 N/mm² 압축 0 N/mm² 안전 이 N/mm² 압축 0 N/mm² 압축 0 N/mm² 감상 지수 0 1/sec 2/3 / л/4 0 sec - - 가조 감상 계수 0 0 sec - - - -	
물다포기 편입	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

재료 물성 및 특성 입력 (2)

1차원 특성 생성/변경
H
번호 1 이름 1차원특성 색상 🗔 💌
재료 2:재료 🗸
단면적 5600 mm ²
단면2차모멘트 I1 18386666.7 I2 18386666.7 I12 0 단위: mm ⁴
비틀림상수 28423862 mm ⁴
비틀림응력계수 0 mm
길이당 비구조질량 0 kg/mm
전단면적계수
K1 0.432676605 K2 0.43269702
전단중심에서 중립축까지의 거리
Y 0 mm Z 0 mm
응력계산위치
🔲 재료 정보 고려하여 단면 속성을 계산
☑ 단면형상 Box
확인 취소 적용

예제에서 주어진 기하 형상 을 갖는 1차원 바 특성 생성

구속조건 및 하중조건 설정

해석 케이스 정의 및 해석 실행

<u>차체구조</u>

COLUMN BUCKLING 솔리드 요소

기하형상 생성

두 개의 사각 단면 생성 (길이 150mm/130mm)

면 나누기 기능을 이용하여 외부 사각형에서 내부 사각 형 제거

재료 물성 및 특성 입력

재료 번호 2 All	이름 재료 색상 🔽		탄성계수 70 GPa 푸아송비 0.33 대료 생성
17-4PH, H1100 AISI 1020 AISI 1060 AISI 304 SS Annealed AISI_310_SS AISI_410_SS AISI_Steel_1005 AISI_Steel_1008-HR AISI 3400 Annealed AISI_Steel_Maraging Alloy Steel Cast Alloy Steel Cast Carbon Steel Cast Carbon Steel Cast Stainless Steel FC250 Galvanized Steel H-1(CR60) HL-4000 Hp-1 Hp-4 Inconel_718_Aged Plain Carbon Steel S/Steel_PH15-5 S45C SAPH-400 SE508 SGACC SGACEN SGARC340-E SGCC SGCD 1 SHP SM45C SM490A(KS) SPCC SPDE SPRC340 SR-0300 Steel Steel_Rolled SUP12 SUS304 SUS316 1	구조 288력 환성계수 0.33 프와송비 0.33 질량밀도 0 열정도 0 전도율 0 연조도 0 전도율 0 양관일지수 1 안전률계산방법 1 파손이론 Von Mises 응력(Ductile) 인장 0 이것 0 강성 비례 감쇠 계수 0 각소 감쇠 계수 0	0 [T]	3차원 특성 생성
불러오기 편집	확인 취소	적용	

Copyright © Computational Design Lab, All rights reserved.

요소망 생성 (1)

요소망 생성 (2)

Copyright © Computational Design Lab. All rights reserved.

하중조건 및 구속조건 설정

해석 케이스 정의 및 해석 실행

좌굴 해석 결과

차체구조

unit : kN	17	ት	27	4	3大	ł	4大	ł	5大	ŀ
이론	288	83	853	33	170	03	2829	95	424()9
빔 (10)	2909	0.9	8801	3.1	18142	6.7	31532	11.4	49638	17.0
빔 (20)	2885	0.1	8587	0.6	17285	1.7	29136	3.0	44251	4.3
솔리드	3082	6.9	8509	0.3	15347	9.7	22765	19.5	29997	29.3

양단 핀지지일 때 3가지 요소의 좌굴하중(5차까지)을 구하고 해석적인 해와 비교, 고찰하시오

$$P_{cr} = EI\alpha^2, \alpha = \frac{\pi}{L}k, k = 1, 2, 3, ...$$

PANEL BUCKLING 쉘 요소

차체구조

예제: PANEL BUCKLING (1)

$$\sigma_{cr} = \frac{D\pi^2}{tb^2} k = \frac{E\pi^2}{12(1-v^2)(b/t)^2} k$$

예제: PANEL BUCKLING (2)

$$\sigma_{cr} = \frac{D\pi^2}{tb^2} k = \frac{E\pi^2}{12(1-v^2)(b/t)^2} k$$

E = 210 GPa, v = 0.28, b = 20 mm, t = 1 mm

Case	Boundary Condition	Loading	k
(a)	SS 55 55 55	Compression	4.0
(b)	ss fixed ss fixed	Compression	6.97
(C)	ss ss ss free	Compression	0.425
(d)	ss fixed ss	Compression	1.277
(e)	ss fixed ss	Compression	5.42
(f)	SS SS SS	Shear	5.34
(g)	ss fixed ss free	Shear	8.98
(h)	SS 55 55	Bending	23.9
(i)	fix fixed fix	Bending	41.8

$$\sigma_{cr} = 1874 \text{ MPa}, P_{cr} = \sigma_{cr}A = \sigma_{cr}bt = 37482N$$

기하형상 생성 및 재료/특성 설정

요소망 생성

구속조건 및 하중조건 설정

해석 케이스 정의 및 해석 실행

첫 번째 고유값은 3.6050e4 임계 하중은 고유값 곱하기 가해준 하중이므로 3.6050e4이 임계하중

예제: PANEL BUCKLING (2)

$$\sigma_{cr} = \frac{D\pi^2}{tb^2} k = \frac{E\pi^2}{12(1-v^2)(b/t)^2} k$$

E = 210 GPa, v = 0.28, b = 20 mm, t = 1 mm

Case
ConditionLoadingk(a)
$$\overline{ss}$$
 \overline{ss} $\overline{$

구속조건 및 하중조건 설정

····································	midas NFX - [plate_buckling_ss.nfx] SPUP	▲ 1.06667+001 ▲ 2.5% ▲ 2.5%
이름 전체 변위 (V)		
해석 및 결과	д	
항목	번호	
····[] 전체 변위 (V) ····[] 옐요소 상/하단 von-Mises 응력 ····[] 옐요소 안전율 曰·[] 길 고유치 (필수)		
MODE 1 (EIGENVALUE=7.7676e+004)	1214~2 G:(2) N:(861) E:(800)	N-mm-kg-sec-J -
전체 변위 (V) ► 전체 변위 (V)		

	SS SS SS	ss fixed ss
Analytic P _{cr} [N]	37482	65313
FEM P _{cr} [N]	36050	77676
Error [%]	3.8	18.93

3가지 경계 조건 및 하중 조건이 주어질 때 임계하중을 구하 고 해석적인 해와 비교 고찰하시오

Case	Boundary Condition	Loading	k
(a) E	ss ss ss	Compression	4.0
(b)	ss fixed ss	Compression	6.97
(c)	ss ss ss free	Compression	0.425
(d) E	ss fixed ss	Compression	1.277
(e) [ss fixed ss	Compression	5.42
(f)	SS SS SS	Shear	5.34
(g)	ss fixed ss	Shear	8.98
(h) 🏅	SS SS 55	Bending	23.9
(i) 4	fix fixed fix	Bending	41.8

접촉 해석

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © Computational Design Lab. All rights reserved.

접촉 해석 (CONTACT ANALYSIS)

접촉의 이해 및 종류

> 접촉이란?

- 한 파트의 여러 절점을 다른 파트의 절점에 연결하는 것
- 주접촉면(Master)과 종속접촉면(Slave)의 절점 사이에서 Penalty Stiffness Method를 이용하여 접촉해석을 수행
- 발생 가능한 모든 자유도에서 접촉해석 수행 가능
- 접촉면 사이에서 절점이 일치하지 않는 경우에도 해석이 가능
- 선형 해석 및 비선형 해석 수행 가능, 선형 해석 수행 시에는 연속된 강성으로 형성하여 해석을 수행

▶ 접촉의 종류

벌칙 기법 (PENALTY METHOD)

- 약간의 침투(Δδ)를 허용하고, 스프링(K) 개념을 도입하여 침투에 대한 힘(F)을 계산
- 이때 발생한 힘(F)을 접촉력(Contact force)이라고 하며, 접촉 물체를 밀어냄

- 침투를 허용하기 때문에 정확도는 떨어지나 수치적인 처리가 간단하고 해석시간
 을 증가시키지 않아 복잡한 구조 해석에도 많이 사용
- 정확한 방법에는 Lagrange Multiplier 기법이 있음

NFX의 접촉 해석

예제: HITCH ASSEMBLY

기하 형상 불러오기

	해석조건 설정 프로젝트명 답당자 설명 모델 종류 ④ 3차원/일반모델 ○ 2차원모델 ○ 축대정 단위계 N M J Sec 중력가속도(g)9806.65 mm/sec ² 확인 취소	* 3차원 모델/기본 단위계로 실정 CAD 불러오기를 통해 Hitch_Assembly.x_t파일 불 러오기
🦚 CAD파일 불러오기		×
찾는 위치(l): 📙 Hitch Ass	embly 🗸 🧹 😨 😥 🖽 🗸	
이름 바로 가기 바탕 화면 라이브러리 나 PC	^ 수정한 날짜 유 embly.x_t 2010-09-06 오후 4: X_T	명 크기 파일 174KB
파일 이름(<u>N</u>): 네트워크 파일 형식(<u>T</u>):	Hitch Assembly Parasolid (9 to 28) Files (+,x_t+,xmt_txt+,x_b)+,xmt_bin) □ 읽기 전용으로 열기(<u>B</u>)	✓ 열기(<u>0</u>) ✓ 취소
형상수정 / 형상정리 / 형상정규화 회사소정 소주	□ 접촉면찾기 현재모델의 해석정! ✓ 오차자동계산 0.0001 ✓ 기본재료	본 유지하기 하중 ☑ 접촉 ☑ 해석조건
영상수정 수준 네벨 1 (보통)	➤ 대상모델의 길이단위 mm ∨	불러오기옵션 모두초기화

재료 및 특성 설정

하중 및 구속조건 설정

요소망 설정

3D 요소망 생성 기능을 이 용하여 각 파트에 요소 생성

접촉 설정 [1]

접촉 설정 [2]

Х

 \sim

해석 케이스 정의 및 해석 실행

해석 결과: 변위

해석 결과: 접촉력

다음 그림과 같이 두 개의 파트가 접촉을 할 때 요소 종류에 따른 접촉력을 계산하 시오(3차원 모델로 구성). 1) 삼각형 요소, 2) 사각형 요소

