Final Exam

1. Suppose to use linear finite elements (hat functions $\phi(x) = \text{trial functions } V(x)$). The equation has c(x) = 1 + x and a point load:

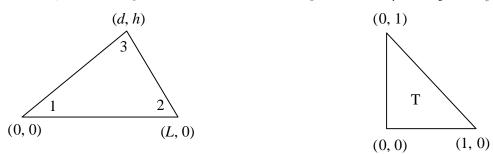
$$-\frac{d}{dx}\left((1+x)\frac{du}{dx}\right) = \delta\left(x-\frac{1}{2}\right) \text{ with } u(0) = u'(1) = 0 \text{ [fixed-free]}$$

Take h = 1/3 with two hats and a half-hat as in the notes.

(1) On the middle interval from 1/3 to 2/3, U(x) goes linearly from U_1 to U_2 .

Compute
$$\int_{1/3}^{2/3} c(x) (U'(x))^2 dx = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$$
 and $\int_{1/3}^{2/3} \delta \left(x - \frac{1}{2} \right) U(x) dx = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. (5 pts)
(2) On the first and third intervals, compute similar integrations

- $[U_1][?][U_1]$ and $[U_1][?]; [U_2 \quad U_3]\begin{bmatrix}? & ?\\ ? & ?\end{bmatrix}\begin{bmatrix}U_2\\U_3\end{bmatrix}$ and $[U_2 \quad U_3]\begin{bmatrix}?\\ ?\end{bmatrix}$ (10 pts)
- (3) What would be the overall finite equation KU = F? (not to solve) (5 pts)
- 2. If U = a + bx + cy on the triangle below, find b and c from the equations $U = U_1$, $U = U_2$, $U = U_3$ at the nodes.



- (1) Show that the gradient matrix G is $\begin{bmatrix} b \\ c \end{bmatrix} = GU = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} & 0 \\ \frac{d}{Lh} \frac{1}{h} & -\frac{d}{Lh} & \frac{1}{h} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix}$. (10 pts)
- (2) For the previous matrix multiply $G^T G$ by the area Lh/2 to find the element stiffness matrix K_e . For the standard triangle T show that $K_e = KT = \frac{1}{2} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$. (10 pts)

06/16/2010

Final Exam

06/16/2010

- (1) div $\begin{bmatrix} \partial u/\partial x \\ \partial u/\partial y \end{bmatrix} = 1$ (2) div $\begin{bmatrix} \partial s/\partial y \\ -\partial s/\partial x \end{bmatrix} = 1$
- (3) $u_{xx} + u_{yy} = 0$ in the unit circle and $u(1,\theta) = \sin 4\theta$ around the boundary
- (4) Find a family of curves u(x, y) = C that is everywhere perpendicular to the family of curves $x + x^2 y^2 = C$
- (5) $d^4u/dx^4 = \delta(x)$ [point load at x = 0, not requiring boundary conditions, any solution u(x) is OK]
- 4. Minimize $||Au b||^2$ with Bu = d, in three ways: $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 3 \end{bmatrix}$, d = 20
 - (1) (Large penalty) Minimize $||Au b||^2 + \alpha ||Bu d||^2$ (6 pts)
 - (2) (Lagrange multiplier) $L = \frac{1}{2} ||Au b||^2 + w(Bu d)$ (6 pts)
 - (3) (Nullspace method) Find the complete solution $u = u_r + u_n$ to Bu d. Choose z to minimize $||Au b||^2$. (8 pts)
- 5. [Isoperimetric Problem] Find that curve *C* having given length 1 which encloses a maximum area. The area bounded by *C* is $A = \frac{1}{2} \int_{C} (xdy - ydx)$ while the arc length is $l = \frac{1}{2} \int_{C} \sqrt{1 + {y'}^2} dx$. (20 pts)