1. Solve the following set of differential equations assuming that at x = 0, $y_1 = 4$ and $y_2 = 6$. Integrate to x = 0.5 with a step size of 0.5 (20 pts)

$$\frac{dy_1}{dx} = -0.5y_1 \qquad \frac{dy_2}{dx} = 4 - 0.3y_2 - 0.1y_1$$

- (1) Euler's explicit method
- (2) Classical 4th order Runge-Kutta method

[Hint: $\phi = \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$ where $k_3 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h)$ and $k_4 = f(x_i + h, y_i + k_3h)$]

2. Solve the following boundary value problem: (20 pts)

$$\frac{d^2u}{dx^2} = 1$$
, $u(0) = 0$ and $u(1) = 0$

- (1) Obtain the analytic solution.
- (2) Write the matrix equation to obtain a numerical solution. Discretize the equation with $\Delta x = 0.2$ ($0 \le x \le 1$) using 3-point central difference scheme to represent for $\frac{d^2u}{dx^2}$. [Do NOT solve the equation.]
- (3) Solve the matrix equation by hand and compare with the analytic solution using graph.
- (4) Write the matrix equation to obtain a numerical solution for u'(0) = 0.5 and u(1) = 2 using the forward difference scheme for u'. [Do NOT solve the equation.]
- 3. Consider Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ defined on $x \in [0,1]$ and $y \in [0,1]$ with the boundary conditions u(x,0) = 1, u(x,1) = 2, u(0,y) = 1 and u(1,y) = 2. Derive the matrix equation to solve the unknown u at interior points for $\Delta x = \Delta y = 1/3$. [Do NOT solve the equation.] (20 pts)
- 4. For u(x,t) defined on $x \in [0,1]$ and $t \in [0,\infty)$, solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions u(0,t) = 0, u(1,t) = 0 and $u(x,0) = \sin(4\pi x)$. (20 pts)

- 5. Describe the following questions. (10 pts)
- (1) difference between round-off errors and truncation errors including examples.
- (2) stability between explicit and implicit schemes of $\frac{\partial y}{\partial t} = -ay$ and $y(0) = y_0$.

6. Consider the following parallel hybrid electric vehicle system. Be sure to check the units of parameter values.

erigine/motor: $T_{eng} = 50$ km, $T_{mot} = 80$ km, $\eta_{mot} = 0.9$ driveline: $Z_{ring(TM)} = 80$, $Z_{sim(TM)} = 40$, $GR_{final} = 4$, $R_{tire} = 0.3$ m battery: $V_{OCV} = 350$ V, $R_{in} = 0.1 \Omega$, $C_{nom} = 50,000$ As resistance: $A = 2 m^2$, $C_d = 0.3$, $\rho = 1.2$ kg/m³, $\mu_{roll} = 0.01$, g = 9.81 m/s²

(1) A transmission consists of the planetary gear set. Calculate the total equivalent inertia at wheel. (drive: sun gear, driven: carrier, fixed: ring gear) (5 pts)

(2) When a vehicle speed is 36 km/h, calculate a vehicle acceleration speed. (8 pts)

(3) Assume the vehicle speed and motor torque are constant. After 5 minutes under this condition, calculate final SOC. (initial SOC is 50%.) (7 pts)

(4) After driving as (3), calculate the fuel efficiency (km/L). Here, ignore the motor, and consider only the engine operation. (8 pts)

(5) Convert the fuel efficiency of (4) to MPG unit. (1 mile = 1.609 km, 1 gallon = 3.785 L) (2 pts)