Submit the compressed file as (ID)_(name).zip to [ftp://cdl.hanyang.ac.kr \rightarrow Undergraduate_CAE \rightarrow lab \rightarrow final] folder. It should contain the final results of each problem (equations and graphs) using PowerPoint (ID.ppt), COMSOL files (problem#_#.mph)

[PDE solving] Consider the following beam deflection problem. (Use Normal discretization level.)
 (20 pts total)

- (1) Using 2D Beam module, compute deflection at point B and slope at point A. (10 pts)
- (2) Using 2D Solids Mechanics module and symmetric condition, compute deflection at point B. (10 pts)

2. [Linear Buckling] For the column and boundary condition shown, compute critical loads for the column. (Use **Normal** discretization level.) (15 pts total)

- (1) Use 2D Solid Mechanics module and show 3 mode shapes and each critical loads. (7 pts)
- (2) Use 3D Solid Mechanics module and show 3 mode shapes and each critical loads. (8 pts)

	R_{out} - Material properties $R_{agar} = 0.56 W/(m \cdot K)$ $R_{agar} = 0.22 W/(m \cdot K)$ $R_{agar} = 0.22 W/(m \cdot K)$ - Dimensions $W = 50 mm$ $H = 80 mm$ $R_{in} = 4 mm$ $R_{out} = 13.5 mm$ $\theta = 45^{\circ}$ thickness = 1 mm center of each circles = (W/s)	- BCs Dirichlet BC $T_{Hot} = 314 K$ $T_{Cold} = 273 K$ Neumann BC $-\mathbf{n} \cdot \mathbf{q} = 0$ where $\mathbf{n} = \text{normal vector}$ $\mathbf{q} = -k\nabla T$ (heat flux) 2, H/2
(1) Solve the Poisson equation	n using Heat Transfer in Solids (ht) . 7	Then draw a x component total heat flux
distribution along the	Cut Line 2D $(0, H/2 \rightarrow W, H/2)$ by	\sim 1D Plot Group \sim Line Graph (15 pts)
(2) Solve the Poisson equatio	n using de Weak Form PDE (w) (w). Ther	n draw a x-component total heat flux
distribution and relative e	rror with solution (1) along the \Box Cut L	ine 2D $(0, H/2 \rightarrow W, H/2)$ by
▲ ~ 1D Plot Group Line Graph (2)) nts)	
Hint)	, p,	
,	Poisson equation	
	$k\nabla^2 \mathbf{T} - \mathbf{Q} = 0$	
	$\int_{\Omega} \left(k \nabla^2 \mathbf{T} - \mathbf{Q} \right) \mathbf{v} d\Omega = 0$	
	Integrate by part $\int \nabla \cdot (k\mathbf{v}\nabla \mathbf{T}) d\Omega + \int (k\nabla \mathbf{v} \cdot \nabla \mathbf{T}) d\Omega - \int \nabla \cdot (k\mathbf{v}\nabla \mathbf{T}) d\Omega = \int \nabla \cdot (k\nabla \mathbf{v} \cdot \nabla \mathbf{T}) d\Omega$	$\mathbf{O}\mathbf{v}d\Omega = 0$
	$\int_{\Omega} \frac{1}{\Omega} \frac{1}{\Omega} \frac{1}{\Omega} \frac{1}{\Omega}$	
	$\int (k\mathbf{v}\nabla\mathbf{T}) \cdot \mathbf{n} d\partial\Omega + \int (k\nabla\mathbf{v}\cdot\nabla\mathbf{T}) d\Omega - $	$\int Q \mathbf{v} d\Omega = 0$
	$\hat{\partial}\Omega \qquad \Omega \\ \text{Boundary Condition}(-k\nabla \mathbf{T}=0)$	Ω
	$\int_{\Omega} (k \nabla \mathbf{v} \cdot \nabla \mathbf{T}) d\Omega - \int_{\Omega} Q \mathbf{v} d\Omega = 0 (\text{Weak})$	form)
	relative error = $\frac{abs(sol - ref)}{abs(ref)}$ *100%	

3. [Heat Transfer]. Consider the following heat transfer problem. (Use Fine discretization level.) (35 pts total)

4. [Magnetic Actuator] For the actuator and boundary conditions shown, solve the Poisson equation by Magnetic Fields (*mf*). (Use **Fine** discretization level.) (30 pts total)

- Evaluate the magnetic force using Maxwell stress tensor method by (15 pts total) Analytic solution : 1.4289 N

Boundary Probe 1 (bnd1)
 Boundary Probe 2 (bnd2)
 Global Variable Probe 2 (var2)

Hint:

Magnetic force (Maxwell Stress Tensor Method)

$$f_x = \frac{d}{\mu_0} \left[\int \frac{B_x B_x}{2} dy + \int B_x B_y dx \right]$$

d: thickness

- μ_0 : vaccum permeability
- B: flux density

f: force