Midterm Exam

- 1. (25 pts) f(x) is the 2π -periodic function that equals $e^{ix/2}$ from x = 0 to $x = 2\pi$.
- (1) What is the value of f(x) at $x = 3\pi$? Is that the same as $e^{3\pi i/2}$?
- (2) Find the Fourier coefficients c_k in $f(x) = \sum_{k=1}^{\infty} c_k e^{ikx}$.
- (3) What is the decay rate of those coefficients c_k ? How is that decay rate explained using the smoothness properties of f(x)?

2. (25 pts)

(1) Set up 4 equations for the numbers a_0, a_1, a_2, a_3 so that the cubic p(x) has the values b_0, b_1, b_2, b_3 at the 4 points x = 1, i, -1, -i:

(1

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 = \begin{cases} b_0 \\ b_1 \\ b_2 \\ b_3 \end{cases} \text{ at } x = \begin{cases} 1 \\ i \\ -1 \\ -i \\ -i \end{cases}$$

- (2) Those 4 equations could be written in matrix-vector form as Ma = b. What is the inverse of that matrix **M**?
- (3) Conclusion: Matching these values b_0 , b_1 , b_2 , b_3 at these points is the same as
- 3. (25 pts)
- (1) Find the discrete Fourier coefficients c_0, c_1, c_2 of the discrete values $f_0 = 2, f_1 = -1, f_2 = -1$.
- (2) What is the cyclic convolution $c \otimes c$ of $c = (c_0, c_1, c_2)$ with itself?
- (3) Check the convolution rule by multiplying component by component to get $f^* = (f_0^2, f_1^2, f_2^2)$ and finding the discrete coefficients of this vector. The result should be (and is) the same as
- 4. (25 pts) A Helmholtz equation (with c = real constant) looks like

$$-\frac{d^2u}{dx^2} + u(x) - c^2u(x) = f(x) \text{ for } -\infty < x < \infty$$

- (1) With Fourier Integrals, transform this into an equation for $\hat{u}(k)$. Find $\hat{u}(k)$ in terms of $\hat{f}(k)$ and u(x).
- (2) Which values of c lead to difficulty in working with your formula for $\hat{u}(k)$? What is the problem?
- (3) With c=1 and $f(x) = \delta(x)$, show directly that $-u''(x) = \delta(x)$ has no solution with $u(x) \to 0$ as $x \to \infty$.