1. (25 pts) Consider the following boundary-value problem:

Differential equation: $-(\alpha u')' + \gamma u = f \text{ in } \Omega = (a,b)$ Neumann boundary condition: $\alpha u'n_x = \hat{q} \text{ in } \Gamma_q = \{a\}$ Dirichlet boundary condition: $u = \hat{u} \text{ on } \Gamma_u = \{b\}$

 $\Omega = (a,b)$ be an open set (an open interval in 1D problems)

 Γ be the boundary of Ω , that is, $\Gamma = \{a, b\}$

 $\Gamma = \Gamma_q \cup \Gamma_u$ where $\Gamma_q = \{a\}$ and $\Gamma_u = \{b\}$ are disjoint parts of the boundary $(\Gamma_q \cap \Gamma_u = \emptyset)$

- (1) Write the weighted-residual statement for the domain equation.
- (2) Trade differentiation from u to the weighting function using integration by parts.
- (3) Derive weak form using the Neumann boundary condition. Explain why the Neumann boundary condition is also called the natural boundary condition.
- 2. (25 pts)
- (1) The 2π -periodic function F(x) equals 1 for $0 \le x < \pi$ and equals 0 for $\pi \le x < 2\pi$. Find its Fourier coefficients c_k using complex exponentials: $F(x) = \sum_{-\infty}^{\infty} c_k e^{ikx}$

Write out the terms for k = -1, 0, 1. What is the decay rate of the c_k as $k \to \infty$? How do you see this from the function F(x)?

- (2) The energy equality connects $\int |F(x)|^2 dx$ with $\sum |c_k|^2$. What is this equation for our particular F(x)? Find a formula for π .
- (3) What is the derivative of this F(x)? Draw the graph of dF/dx. What is the complex Fourier series for dF/dx? What is the decay rate of the coefficients? WHY?

- 3. (25 pts)
- (1) These matrix-vector multiplications Cx and Cy are the cyclic convolution of which vectors?

$$Cx = \begin{bmatrix} 5 & -1 & -1 & -1 \\ -1 & 5 & -1 & -1 \\ -1 & -1 & 5 & -1 \\ -1 & -1 & -1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \text{ and } Cy = \begin{bmatrix} 5 & -1 & -1 & -1 \\ -1 & 5 & -1 & -1 \\ -1 & -1 & 5 & -1 \\ -1 & -1 & -1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \\ 6 \\ -6 \end{bmatrix}$$

Take the Discrete Fourier Transform of all three vectors c, x, y. Call those transforms $\hat{c}, \hat{x}, \hat{y}$.

- (2) Convert those two cyclic convolutions Cx and Cy into component-by-component multiplications of the transforms. The answer uses numbers.
- (3) Apparently this y = (1, -1, 1, -1) is an eigenvector with $\lambda = 6$. Multiply any circulant matrix C times y to find the eigenvalue:

$$Cy = \begin{bmatrix} c_0 & c_3 & c_2 & c_1 \\ c_1 & c_0 & c_3 & c_2 \\ c_2 & c_1 & c_0 & c_3 \\ c_3 & c_2 & c_1 & c_0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} = \lambda y$$

How is λ connected to the transform \hat{c} of $c = (c_0, c_1, c_2, c_3)$?

4. (25 pts) Suppose I want to use the Fourier Integral transform to solve this fourth-order differential equation:

$$\frac{d^4u}{dx^4} = \delta(x) - 4\delta(x-1) + 6\delta(x-2) - 4\delta(x-3) + \delta(x-4)$$

- (1) Take the transform of all terms to find $\hat{u}(k)$.
- (2) The solution u(x) will have jumps in which derivative (?) at which points x(?).
- (3) What is u(x) between x = 0 and x = 1? Do you recognize u(x)?