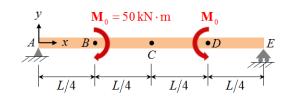
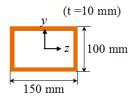

[File upload] ftp://cdl.hanyang.ac.kr → cdl/cdl → 차제구조 → 실습_midterm_exam [analysis_result_file] (학번)_(문제번호)_(요소종류) ex) 2000100100_1_beam [report_file] (학번) upload only one file for all problems.

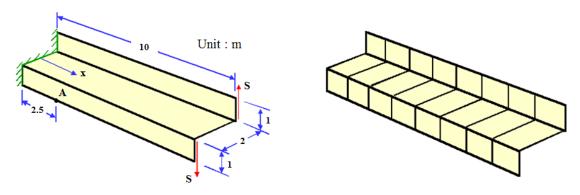
[1-2] For the alloy steel beam and boundary condition shown, verify the following equations. Use 1-D beam element.


1. Cantilever beam (15 pts)

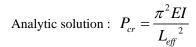


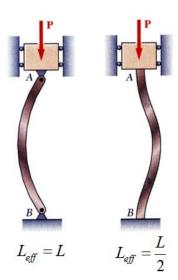
- (a) the slope at the free end : $\phi_B = \frac{PL^2}{2EI}$
- (b) the deflection at the free end: $d_B = \frac{PL^3}{3EI}$

2. Simply supported beam (15 pts)



- (a) the slope at end A: $\phi_A = \frac{M_0 L}{4EI}$
- (b) the deflection at the center C : $d_C = \frac{3M_0L^2}{32FI}$


Vehicle Structure


3. A z-angle beam under torsional load is illustrated in the figure below. By using the presented boundary conditions and the element shape, find the axial (x-x) stress at the mid-surface of point A. (35 pts)

Material properties	$E = 210 \mathrm{GPa}, \ \nu = 0.3$
Element type	24 shell element (thickness: 0.1 m)
Loading condition	Torque of 1.2 MNm applied at end x=10 by uniformly distributed edge shears, S=0.6 MN at each flange
Support conditions	Fixed conditions at edge x=0
Target value	-108 MPa (compression)

4. Each of the two struts consists of an alloy steel tube that has a 150-mm outer diameter and a 10-mm wall thickness. Determine the critical buckling load (P_{cr}) for each support condition shown (L=1m), and compare the results between 1-D and 3-D (solid) element. (35 pts)

Vehicle Structure 2