C A D _ 3 D 프 린 팅 과 제 발 표

허니콤 구조의 그릴을 동반한

텍사스 바비큐 머신

CONTENTS

■ 제작품 선정 배경

02 모델링 과정

03 제작품 이미지

04 사용 재료량과 제작시간 확인

- 01. 텍사스 바비큐 머신이란
- 02. 허니컴 구조
- 03. 3D 프린팅 방법으로 제작하는

장점, 기존 제작공정과 차별되는 점.

01. 텍사스 바비큐 머신이란

02. 허니컴 구조란

03. 3D 프 린 팅 방 법 으 로 제 작 하 는 장 점 , 기 존 제작공정과 차별되는 점.

텍사스 바비큐 머신이란?

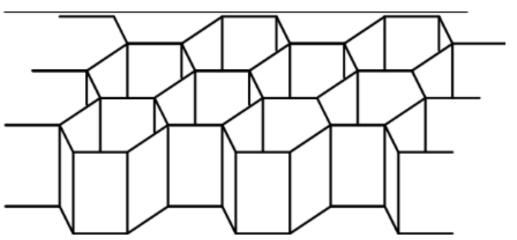
01. 텍사스 바비큐 머신이란

02. 허니컴 구조란

03. 3D 프린팅 방법으로 제작하는 장점, 기존 제작공정과 차별되는점.

텍사스 바비큐 머신이란?

택사스바베큐머신의구조는


- 1 윗부분의기둥
- 2 윗부분의손잡이
- 3 이랫부분의열기환기구
- 4 윗부분과이랫부분의연결조인트
- 5 그릴

01. 텍사스 바비큐 머신이란

02. 허니컴 구조란

03. 3D 프린팅 방법으로 제작하는 장점, 기존 제작공정과 차별되는점.

허니컴 구조란

허니컴 구조 (벌집 구조)라 함은 공학에서 적은 재료를 가지고 효율적으로 지탱하기 위한 육각형 기둥 모양의 빈 공간으로 이루어진 격자 구조를 말한다.

얇은 수직 벽 사이 에 형성된 속 이 빈 셀의 배열이다.

이 구조는 최소 밀도와 상대적으로 높은 면 외 압축특성 및 면 외 전단 특성을 가진 재료이다.

01. 텍사스 바비큐 머신이란

02. 허니컴 구조란

03. 3D 프 린 팅 방법으로 제작하는 장점, 기존 제작공정과 차별되는 점. 3D 프린팅 방법으로 제작하는 장점, 기존 제작공정과 차별되는점.

1. 맞춤제작:

3D 프린팅은 디자인의 자유도가 높아 맞춤 제작에 적합하다.

이로 인해 고기를 익히는데 필요한 열기를 가둘 공간을 각 고기와 사이즈에 적합하게 조절이 가능하다.

또한 바베큐조리에 있어서 지속적인 열가함보다, 통안의 내부에서 열의교환이 제일 중요한 작용을 하는데 이에 맞게 통의 크기를 제작할 수 있다. 또한 사용자의 신체조건에 맞춰 높낮이 제작이 용이하다.

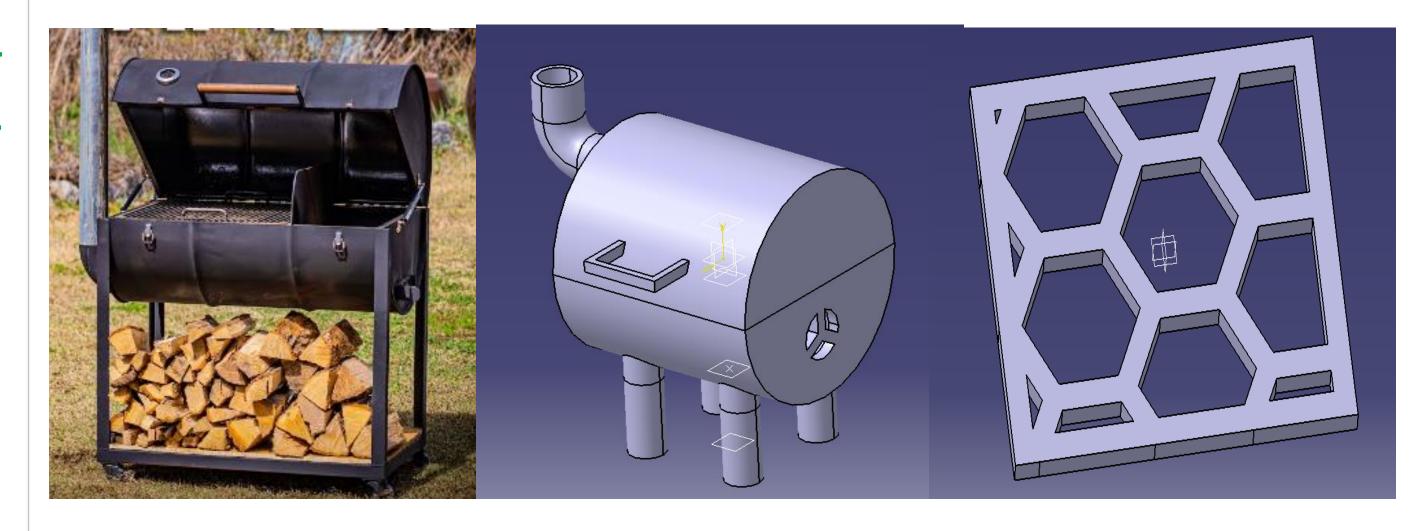
2. 제조과정 단순화를 통한 경제적 생산:

큰 금속을 가공하는 과정에서 필요한 절단, 용접의 비용과 시간, 금속재료의 낭비를 절약할 수 있다. 또한 그릴의 허니컴 구조를 만드는 과정에 있어서 정확한 정육각형 형상을 제작할 때 오차를 줄일 수 있다.

3. 빠른 제작 속도:

여러 부품이 합쳐진 형상으로 여러 부품을 조립하는 과정을 줄일 수 있고 이에 따른 오차를 줄일 수 있다.

01. 아웃소싱한 부분과 직접 모델링한


부분

02. 제작시 예상되는 문제점

1. 아웃소싱한 부분과직접 모델링한부분

02. 제작시 예상되는 문제점

아웃 소싱한 부분과 직접 모델링한 부분

<사진예시> < Isometric View> < Grill> 사진으로 외형과 필요 부품이 무엇인지만 서칭했고 모두 직접 설계하였다.

아웃소싱한 부분과
직접 모델링한 부분

02. 제작시 예상되는 문제점

제작시 예상되는 문제점

- 1. 바비큐 기계의 통의 속안이 비어있는 원통형 구조라 3D 프린트 제작시 지지대가 과하게 생성되어 제작시간이 길어지는 문제가 예상된다.
- 2. 윗부분과 아랫부분의 연결부위에서 핀과 구멍의 크기에서, 3D 프린트 제작시 확연한 공차가 존재하여 핀이 구멍에 들어가지 않을 가능성이 있다. 적층구조이다 보니 작은 구조물일 수록 매끄러운 원통형이 나오지 않는다.
- 3. 높이가 높은 구조물일 수록 소요시간이 오래 걸리므로 한번에 프린팅이 필요하지 않는 부분은 따로 제작하여 이어 붙이는 것이 좋다.

제작품 이미지

- 01. 윗부분
- 02. 아랫부분
- 03. 허니컴 그릴
- 04. 연결부위 작동 시스템

01. 윗부분

02. 아랫부분

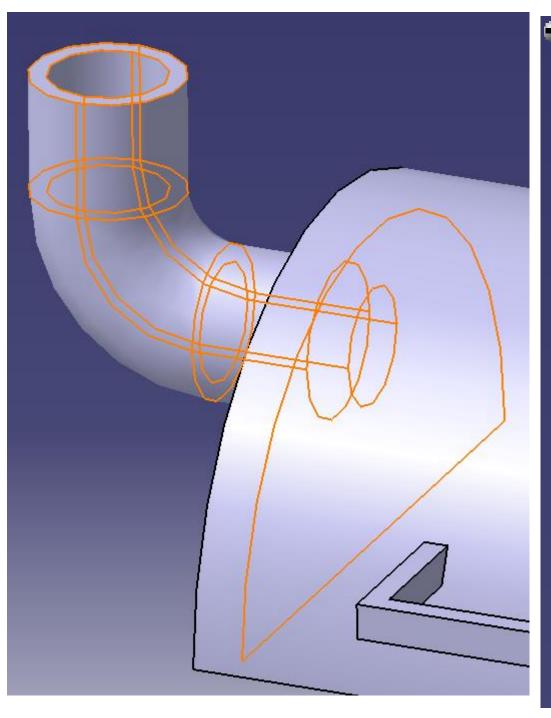
03. 허니컴 그릴

04. 연결부위 작동 시스템

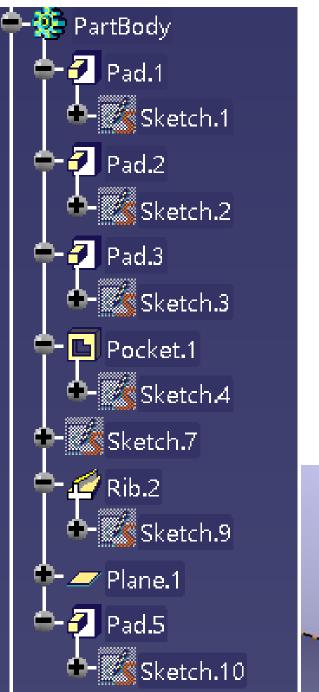
윗부분 (구조, 기둥, 손잡이)

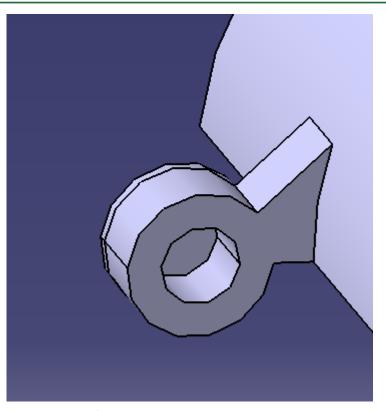
<전체트리>

<lsometric view>

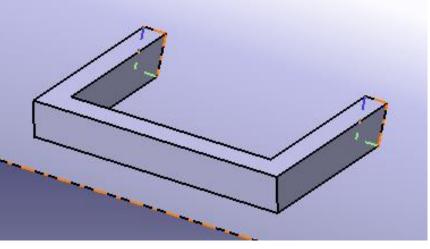

01. 윗부분

02. 아랫부분


03. 허니컴 그릴


04. 연결부위 작동 시스템

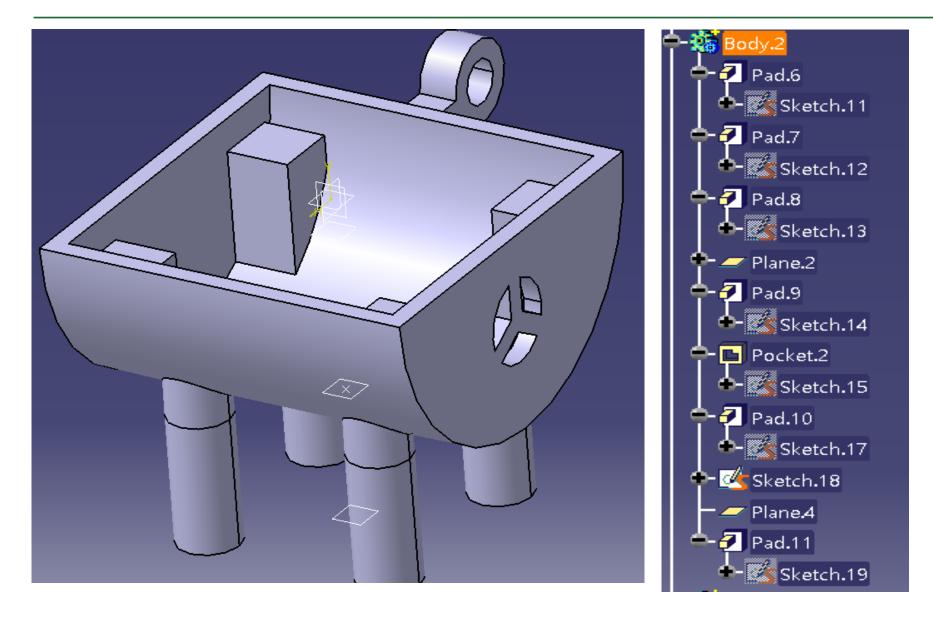
윗부분 (구조, 기둥, 손잡이)



<기둥 (Rib 기능을 이용)>

<윗부분 Pin joint>

<윗부분 트리> <Merge end를 이용하여 접촉>


01. 윗부분

02. 아랫부분

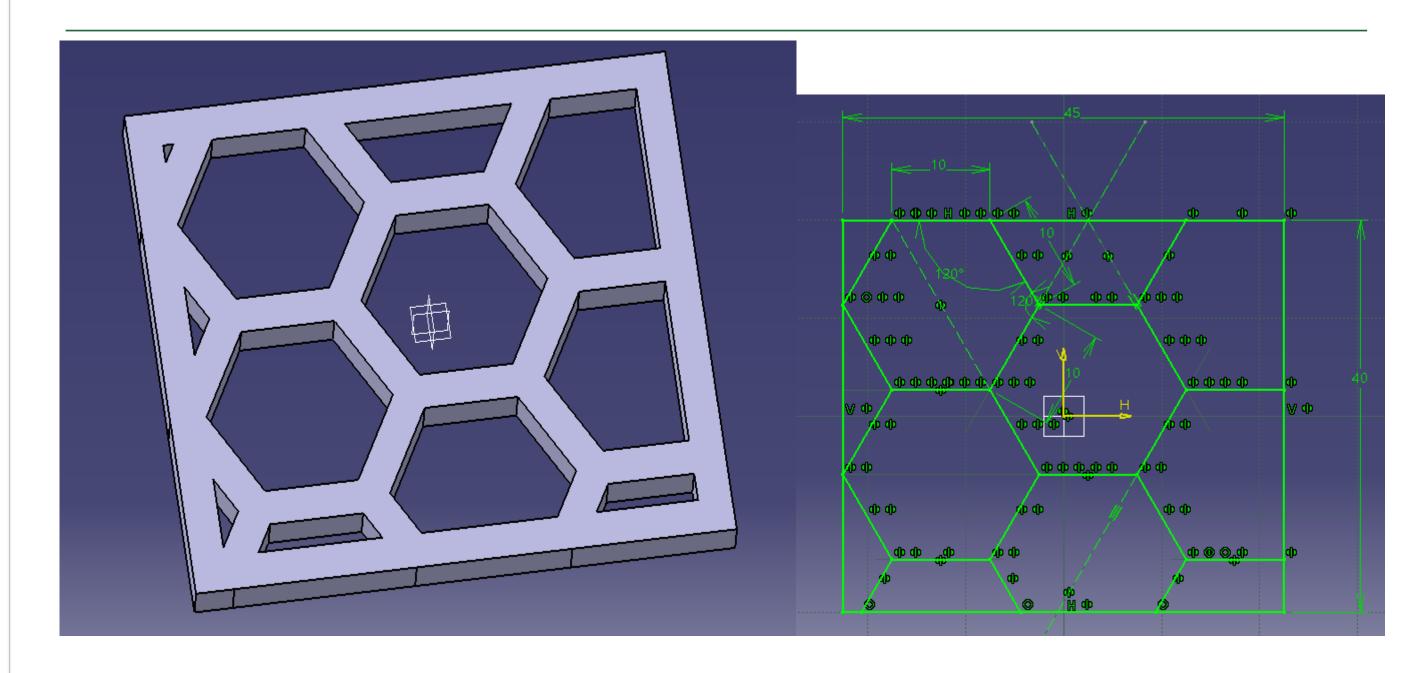
03. 허니컴 그릴

04. 연결부위 작동 시스템

아랫부분 (환기구, 다리, 그릴지지대)

< 아랫부분> (기둥, 그릴 지지대, 환기구, Pin joint)

<tree>


01. 윗부분

02. 아랫부분

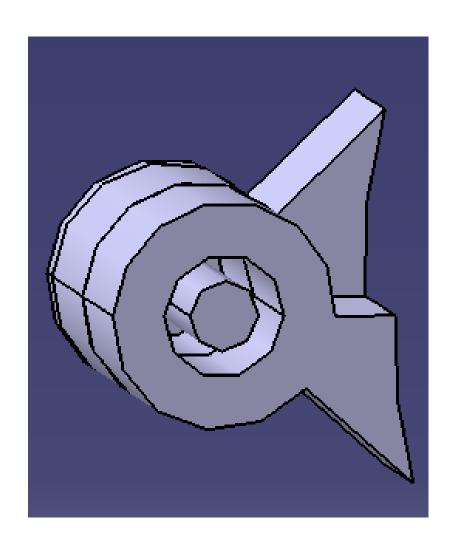
03. 허니컴 그릴

04. 연결부위 작동 시스템

허니컴 그릴

<허니컴 구조의 그릴>

<스케치>


01. 윗부분

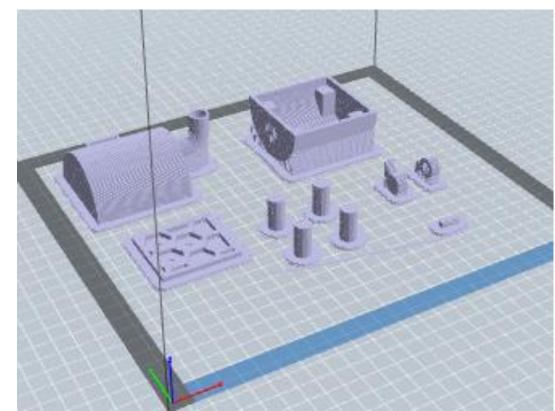
02. 아랫부분

03. 허니컴 그릴

04. 연결부위 작동시스템

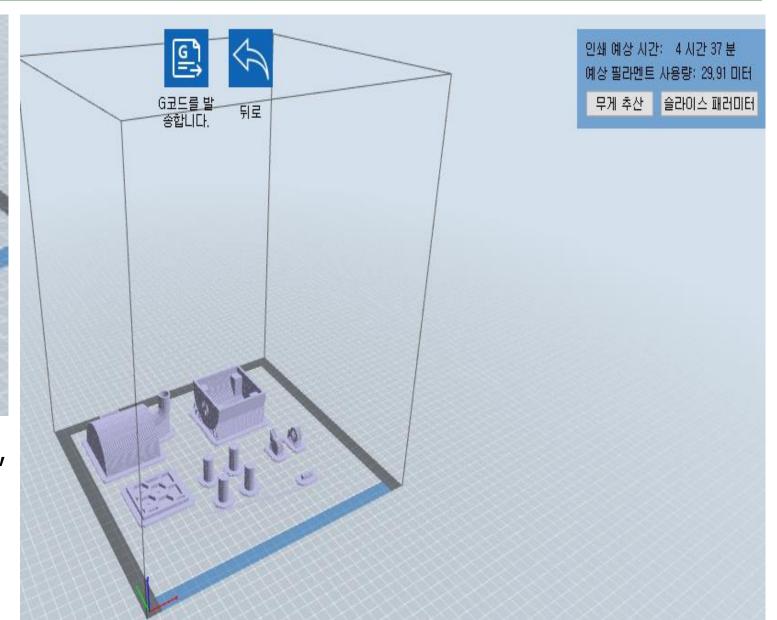
연결부위 작동 시스템

3D 프린트의 한계로 공차가 존재하여 핀과 조인트 사이의 공차가 존재하게 만들 수 밖에 없었다.


제작시간과 사용 재료량 확인

01. 제작시간과 사용 재료량확인

04사용 재료량과 제작시간확인


01.제작시간과 사용 재료량.

제작 시간과 사용 재료량

윗부분, 아랫부분, 연결부위, pin, 그릴을 따로따로 제작하였다.

인쇄 예상 시간: 4 시간 37 분 예상 필라멘트 사용량: 29,91 미터 무게 추산 슬라이스 패러미터

감사합니다

미래자동차공학과 / 2018086926 / 이준한