반도체 웨이퍼 이송로봇

(Wafer Transfer Robot)

2024 - CAD - Team Project

미래자동차공학과 Team Wafer 2020078795 박한별 2021029434 설수빈

OUR TEAM

박한별

- Assembly Design
- DMU Kinematics - PPT

설수빈

Part DesignAssembly DesignPPT

TABLE OF **CONTENTS**

01

Topic

-주제 선정 과정

03

DMU Kinematics

-DMU Kinematics
-Simulation

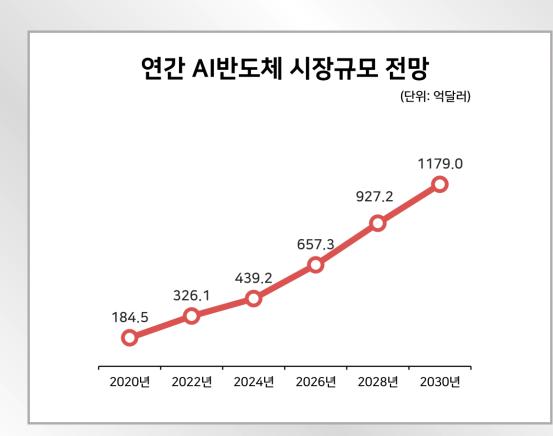
02

Modeling

-Part Design
-Assembly Design

04

Difficulties

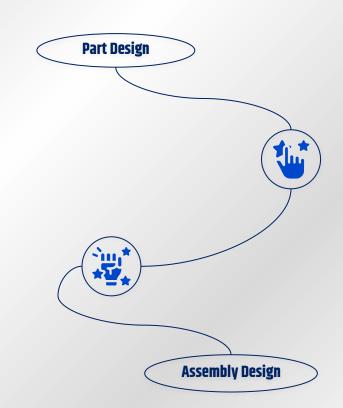

-어려웠던 점, 한계점 -Q&A

									전기차 산업이 발전하려면 어떤 산업이 중요할까
	최근에 핫한 공학 아이템을 말해줘				인공지능과 머신러닝 산업이 발전하려면 어떤 산업이 중 요할까			전기차 산업의 발전을 위해서는 여러 관련 신	t업이 함께 성장해야 합니다. 주요 산업들은 다음과 같
							습니다.		
\$	최근 공학 분야에서 주목받고 있는 핫한 아이템 몇 가지를 소개합니다: 1. 양자 컴퓨팅 (Quantum Computing):							1. 배터리 산업	
				인공지능(Al)과 머신러닝(ML) 산업이 발전하려면 여러 다른 산업의 발전과 지원이 필수적입니다. 다음은 Al와 ML 산업이 발전하는 데 중요한 관련 산업들입니다:		중요성: 전기차의 핵심 부품인 배터리의 성능 다.	a과 비용은 전기차의 성능과 가격에 큰 영향을 미칩니		
	양자 컴퓨터는 전통적인 컴퓨터가 처리할 수 없는 복잡한 문제를 해결할수 있는 잠재력을 가지고 있습니다. IBM, 구글, 그리고 여러 스타트업들이 양자 컴퓨팅 기술 개발에 앞장서고 있습니다. 2. 인공지능과 머신러닝 (Al and Machine Learning):			1. 반도체 산업			리튬 이온 배터리: 현재 가장 널리 사용되는 배터리 타입. 고체 배터리: 향후 성능 향상을 위해 연구 중. 충전 인프라 산업 중요성: 전기차의 보급을 위해서는 충전소의 수와 접근성이 중요합니다.		
				• 고성능 하드웨어: AI와 ML 알고리즘의 효율적 처리를 위해 고성능 CPU, GPU, TPU, ASIC 등 특화된 하드웨어가 필요합니다. 반도체 산업의 발전은 AI 연산					
				속도와 효율성을 크게 향상시킵니다.			• 고속 충전소· 빠른 충전을 위해 필요.		
	• 인공지능과 머신러닝 기술은 다양한 산업에서 혁신을 일으키고 있습니			 저전력 칩: 모바 	• 저전력 칩: 모바일 디바이스와 엣지 컴퓨팅에 적합한 저전력 고		성능 칩의 개	• 가정용 충전기: 편리한 충전을 위해 필요	2.
			발은 AI의 보급		과 응용을 확대합니다.			3. 재생 에너지 산업	
		분석 등 많은 분야에서 AI가 중요한 역			와 클라우드 컴퓨팅 산업			중요성: 전기차의 친환경성을 극대화하기 위	해 재생 에너지의 사용이 중요합니다.
	할을 하고 있습니다.			2. 네이더 센터와				• 태양광 발전 : 전기차 충전을 위한 친환경	형에너지 공급.
	3. 전기차 (Electric Vehicles, EVs): • 테슬라를 비롯한 여러 자동차 제조사들이 전기차 개발에 집중하고 있습			• 데이터 저장 및 처리: 대규모 데이터의 저장, 처리, 분석을 위해 클라우드 인			• 풍력 발전: 추가적인 친환경 전력 공급.		
				프라가 필요합니다. 클라우드 서비스 제공자들은 AI와 ML 작업에 필요한 컴			필요한 컴	4. 반도체 산업	
				퓨딩 사원을 세	J 자원을 제공합니다.			중요성: 전기차의 전자 제어 시스템과 자율 :	주행 기능을 위해 고성능 반도체가 필요합니다.
		인프라의 확충이 전기차의 보급을 촉진			드 인프라는 AI 모	인프라는 AI 모델의 훈련과 배포를 위한 확장성과 유연성을		• 전력 반도체: 배터리와 모터의 효율적인	관리를 위해 필요.
	하고 있습니다.			제공합니다.				• 자율 주행 시스템: 고성능 컴퓨팅 및 센	너에 필요한 반도체.

주제 선정 과정

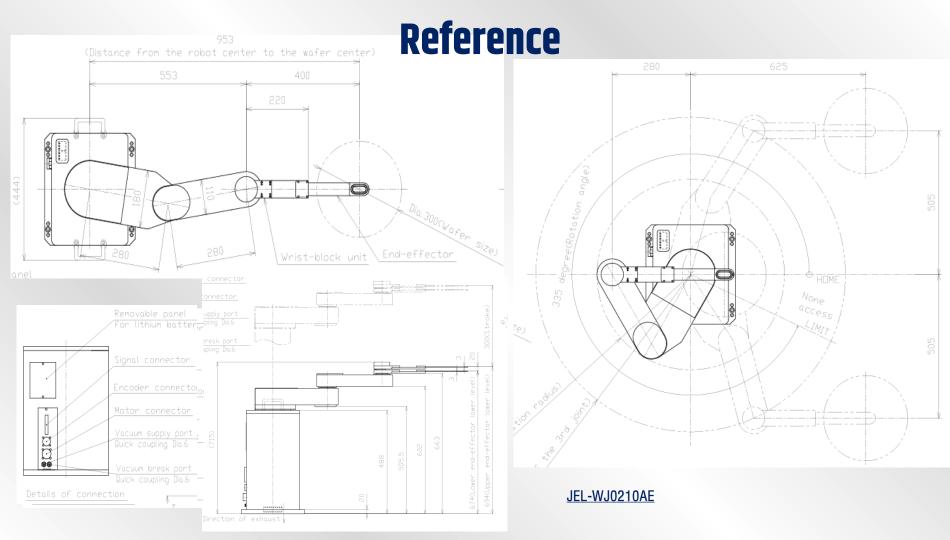
인공지능 AI 반도체 수요 증가

자동차 자동차 반도체 수요 증가


클라우드(서버) 서버 수요 증가

Main Goal

CATIA를 활용하여 반도체 공정 과정 중 Wafer Test 과정을 구현!


Part Design & Assembly Design

Reference

반도체 웨이퍼 이송로봇
(Wafer Transfer Robots, WTR) 은
반도체 원재료인 웨이퍼를 진공 상태에서 깎거나 금속 물질을 입힐 때 정확한 위치에 옮겨 놓는 역할을 수행합니다.

1 Mainbody

Mainbody

2

Robot Arms

3 Arms/Connecting Pins & Rods

3

Wafer Platform

Tester, Platfrom

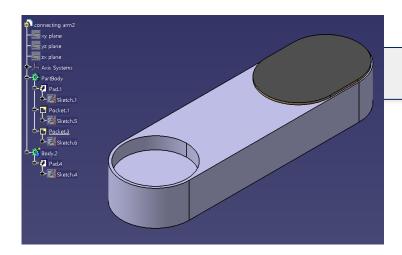
4

Cassette

Cassette, Wafer(etc)

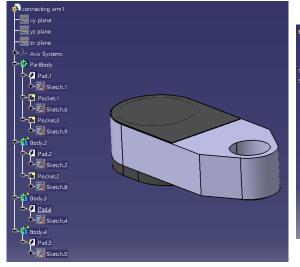
5

Assembly

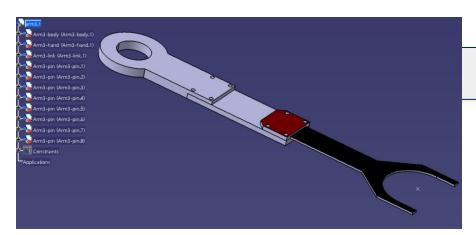

Final Product

률 mainbody 👇 💋 Pad.1 - Sketch.1 Pad.2 Sketch.3 Sketch 4 Sketch.7 Mirror.4 RectPattern.1 RectPattern.2 Pad.21 Sketch.80 Sketch.83 Geometrical Set.2 Point.4 Plane.6 Sketch.70 Plane.7 Sketch.71 Corner.1 Sweep.1 CloseSurface.1 Symmetry.2 Symmetry.3 - 🎁 Symmetry 4

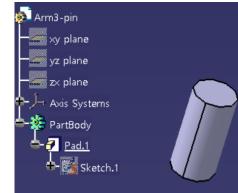
Modeling


Mainbody

Robot Arms
Wafer Platform
Cassette
Assembly


Mainbody

Robot Arms



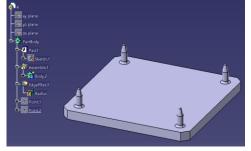
Wafer Platform Cassette Assembly

Arra joint y place y z place z z place > 1 Ariu System > Pettody

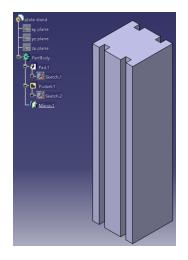
Modeling

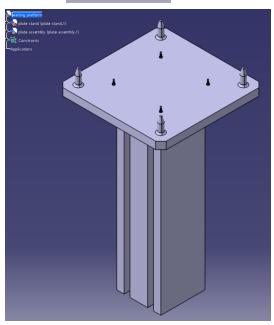
Mainbody

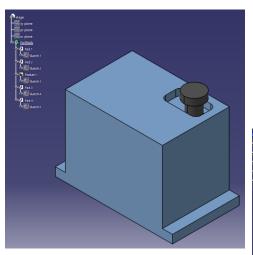
Robot Arms

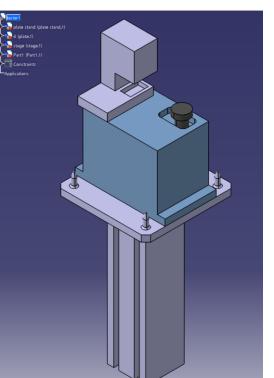

Wafer Platform Cassette Assembly

Mainbody


Robot Arms


Wafer Platform Cassette Assembly

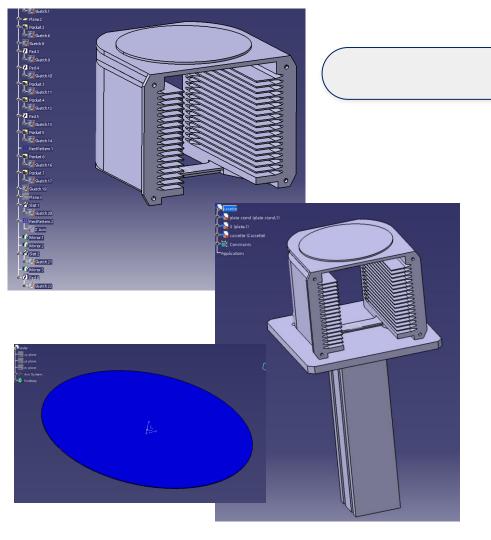

Mainbody Robot Arms



Wafer Platform

Cassette Assembly

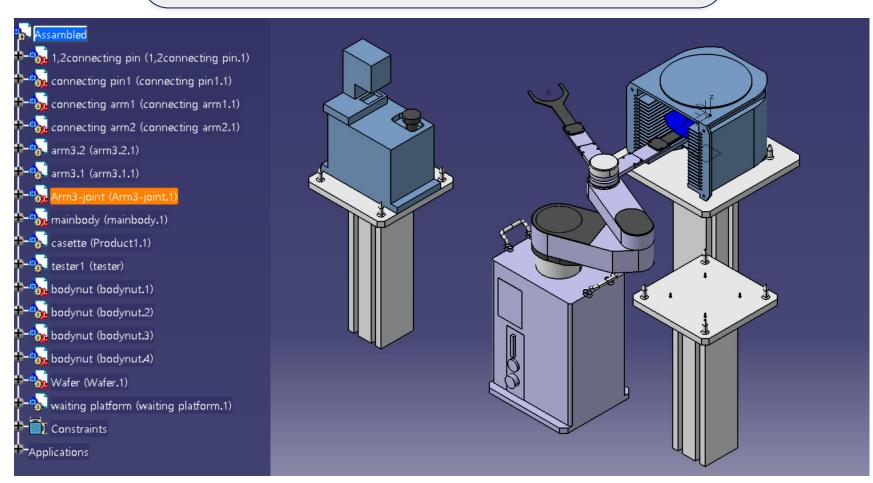




Mainbody Robot Arms

Wafer Platform

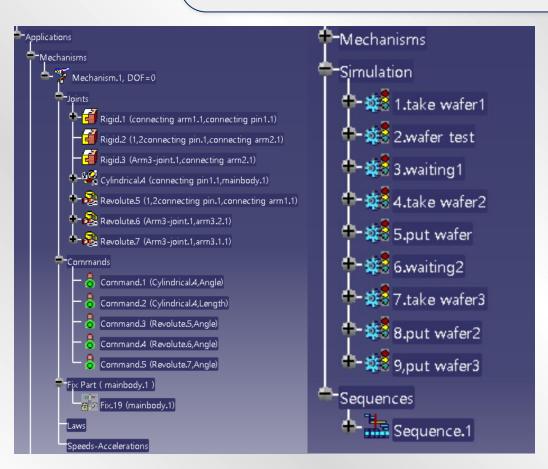
Cassette Assembly



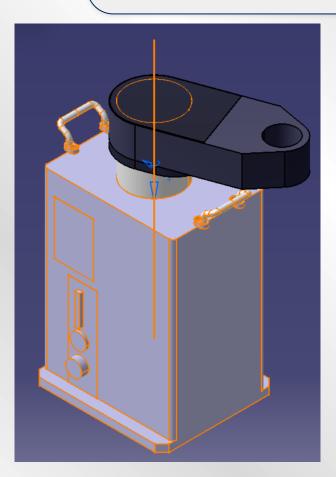
Mainbody Robot Arms Wafer Platform

Cassette

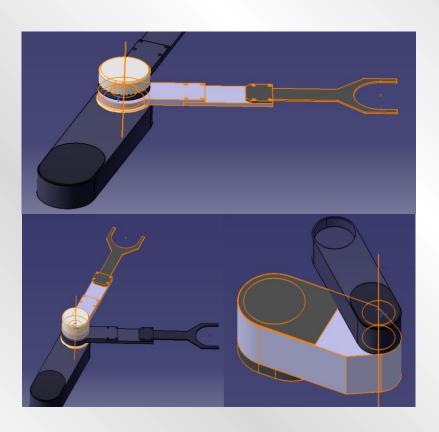
Assembly


Assembly

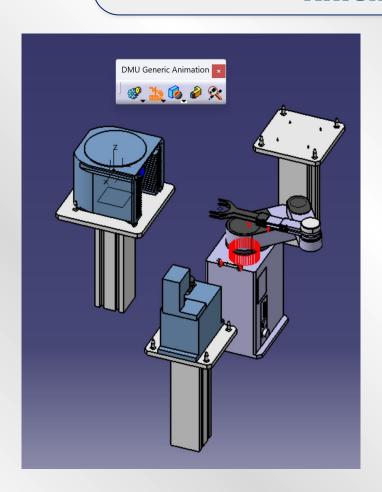
Kinematics & Simulation



Mechanism


총 4개의 Joint와 5개의 Command로 Mechanism을 구현

9개의 동작으로 구분


Arm1

1개의 Cylinderical Joint를 통해 회전운동과 병진운동을 구현

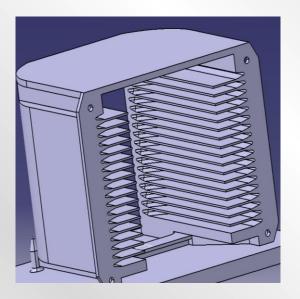
Arm2, Arm3.1, Arm3.2

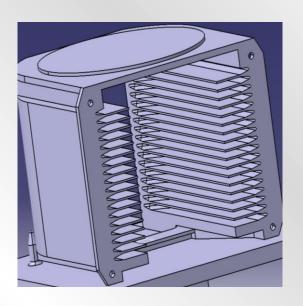
3개의 Revolute Joint를 통해 회전 운동 구현

Clash

Sequence로 하나의 동작으로 만든 뒤 Clash 기능으로 충돌 확인

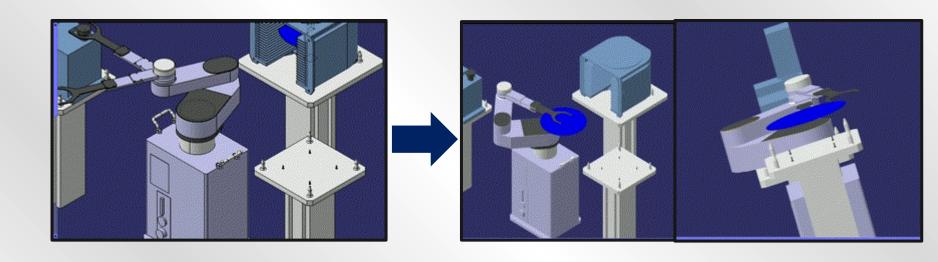
Simulation



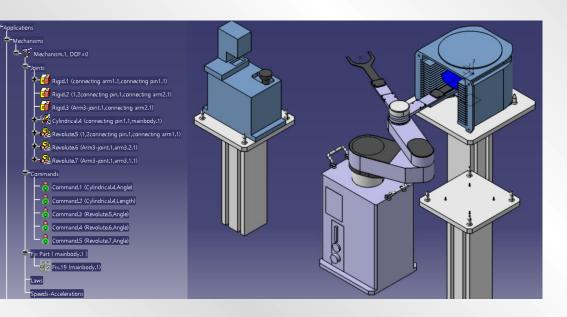

Difficulties

-어려웠던 점, 한계점 -Q&A

Coincidence



Assembly Design 부분에서 Wafer와 Arm3, Cassette의 중심을 맞추기 힘들었다.


Cassette 상단에 원통 디자인을 추가하여 Coincidence를 맞추었다.

Wafer Fix

Wafer를 들거나 놓을 때 Wafer의 고정 유무로 인해 하나의 Simulation으로 구현하기 힘듬 Wafer를 드는 과정과 놓는 과정을 각각 두 단계로 나눠서 Simulation을 만들었음

Mechanism

Original

실제 WTR은 많은 센서와 로봇 프로그래밍으로 구동 방식이 복잡하다. Arm3의 움직임은 직선 운동만을 한다.

Project Model

CATIA에서 Angle Driven으로 구현하기 위해 여러 단계로 쪼개서 Simulation을 하였다. Arm3의 움직임이 직선 운동과 유사하게 Angle Driven 값을 조정하였다.

THANKS!

Q&A

Does anyone have any questions?

CREDITS: This presentation template was created by **Slidesgo,** including icons by **Flaticon,** and infographics & images by **Freepik**

RESOURCES

PHOTOS:

GTCR5280 (For 300mm wafer)

AI 반도체 시장 그래프

<u>도면 pdf</u>

VIDEOS:

반도체 이송 로봇

Simulation