(VERTICAL MOUSE FOR ANY USER)

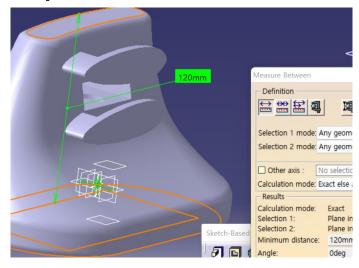
2022020564 나태우

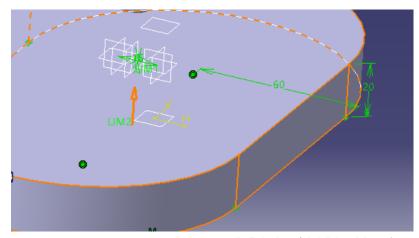
- 제작품 선정 배경
- 모델링 과정
- 제작품 이미지
- 제작품 제작 과정 중 문제점
- 참고문헌

제작품 선정 배경1

- 2학년 진학 이후 컴퓨터 및 노트북을 활용한 과제 및 수업이 많아짐
 그로 인해 마우스 사용시간 증가
- 오랜시간 사용 시 손목의 피로감과 불편함이 생김
- 이러한 손목의 피로감을 줄일 수 있는 새로운 마우스의 모델을 찾기 시작함.
- 찾아본 결과 생각보다 다양하고 신 기한 마우스의 모델이 많았음.

제작품 선정 배경2


- TRACK BALL MOUSE, TRIASLONE MOUSE, 등등 다양한 인체공학적인 마우스 모델이 있었지만 그 중 가장 목적에적합한 모델은 VERTICAL MOUSE였다.
- 마치 사람과 악수하는 듯한 모
 양의 마우스 모델링 형상이다.
- 다음 CATIA 3D MODELING과 ADDITIVE MANUFACUTRING 을 통하여 손목 피로감에 대한 VERTICAL MOUSE의 인체공학적 인 효과를 보기위해 선정하게 되었 다.



제작품 선정 배경3

- 기존 제작공정과의 차별점 및 3D프린팅 방법 제작의 장점
- Vertical Mouse의 인체공학적 곡면, 버튼 배치, 내부 공간 등을 고려해 모델링을 제작자의 의도에 맞춰 할 수 있다는 것.
- 기존 제작공정과 같이 대량생산의 경우와 다르게 3D프린팅은 개개인 손목에 맞춰 맞춤형으로 WRIST의 각도와 WHEEL의 위치를 맞출 수 있다는 것.
- 모델링 PRINTING하기 전 모델링을 구현할 수 있어서 재료, 시간의 절약할 수 있다는 것 역시 기존 제작공정과 다른 차별점.
- PLA를 사용함으로써 내구성이 좋다는점.
- 필라멘트 재료의 경우 가볍다는 장점.

- 치수를 잡기 위해 실제 Vertical Mouse를 손에 맞추어본다.
- 손날의 길이에 맞춰서 마우스 패드부분 역할 길이를 맞춘다.
 - 실제 모델의 치수는 L13.3cm X W9.5cm X H8.5cm 이다.
- 안정감 있는 사용을 위해 손날을 모두 감싸는 모델링으로 하고자 아랫 받침 길이를 약 10cm 늘려 Lenth 21cm로 잡고 모델링을 한다. 높이는 아래 패드(2cm)를 제외한 실질 높이는 비율에 맞추어 10cm로 잡아 모델링한다.

3D Printing / Additive Manufacturing - 5

u u	▮ 버티걸 마우스 실세 크기 비교							
제품	품명	길이 (L)	너비 (W)	높이 (H)	출처			
로지	티텍 MX Vertical	120 mm	79 mm	78.5 mm	Logitech 공식 PDF			
델룩	델룩스 M618 PLUS	130.6 mm	68.9 mm	42.5 mm	Delux 공식 페이지			
		166 mm	97 mm	82 mm	Delux 공식 페이지			
		120 mm	62.8 mm	74.8 mm	Anker 공식 페이지			

실제로 vertical mouse를 잡아보면서 어느 부분의 굴곡과 곡면이 더 안정감을 주는지 확인하고 모델링에 참고하였습니다.

- OUTSOURCING부분 없이 직접 모델링.
- MODELING은 CATIA V5 PART DESIGN으로 구성
- 크게 1개의 ASSEMBLY 안에 3개의 PART DESIGN 으로 구성
- PART DESGIN 1
- PART (VERTICAL MOUSE BODY)
- -상부를 ELONGATED HOLE,SPLINE과 MULTISECTION-SOLID를 이용해 손바닥부분을 만듦 +POCKET을 이용해 WHEEL이 들어갈 수 있도록 구멍을 낸다.
- -하부(손바닥 패드부분)를 PAD를 통해서 손목의 위치를 잡아준다.
- (상부와 하부를 BOOLEAN OPERATION 中 ADD로 하나의 PART로 만들어준다)
- -나머지 모서리 부분은 안전성을 위해 EDGE FILLET으로 DESIGN 한다.
- -프린팅 과정에서 프린팅 시간제한으로 인해 shell 기능으로 시간단축하였다.

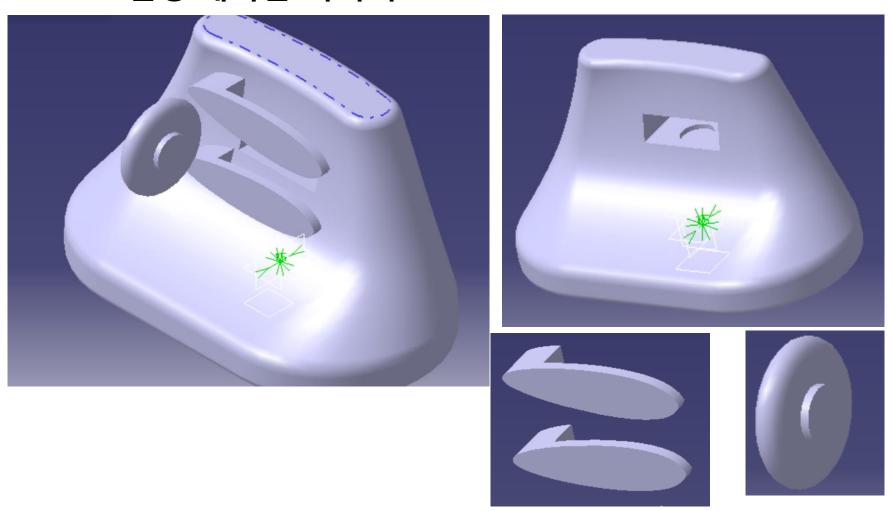
PART DESIGN 2 & ASSEMBLY

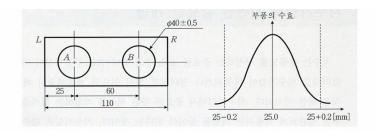
- PART DESIGN 2 (Vertical mouse Clicker)
- -spline을 이용해 검지 손가락 클릭커를 손가락 크기에 맞춰 sketch
- -mouse wheel의 위치를 고려해 (wheel을 돌리기 충분한 공간이 없으면 안됨)
- -plane offset 하여 검지손가락 클릭커에 symmytry 하게 sketch 이후 pad pocket을 이용해 mouse clicke를 modeling한다. (이때 clicker의 끝부분으로 신호를 받아서 작동할 수 있도록 모델링해준다.)
- PART DESIGN 3 (Vertical mouse wheel)
- Shaft, symmetry, pad 기능을 이용해 wheel의 형상을 만든다.
- 휠이 바디에 들어갈 수 있게 바디 구멍 크기에 맞춰 치수를 동일하게 맞춰 모델링한다.

ASSEMBLY

-모든 part design이 완료되면 assembly 중 offset constraint 와 move 기능을 통해서 clicker, wheel, mouse body를 연결해준다.

모델링 과정 (MODELING TREE)




제작품 이미지

• 3D모델링 제작품 이미지 IN CATIA PART DESIGN

모델링 제작 과정 中 문제점

- 모델링 제작 과정 중 문제점
- 1. WHEEL과 BODY를 분리해 PRINTING하여 조립하는 형식인데 PRINTER의 공차로 인한 문제점으로 WHEEL의 조립이 안되는 현상이나 잘 돌아가지 않는 문제점이 생길 수 있다.
- >한국기계교안에 의거한 MAX공차로 치수를 잡아서 MODELING (출처:CAD3주차 수업자료)
- 2.제작시간을 고려해 계획 보다 Scale을 동일 비율로 줄여서 불편함을 줄 우려
- > 제작해본 결과 더 나은 모델링 크기가 나옴.

(S규격 B0412 '보통<mark>공차</mark> – 제1부: 개별적인 <mark>공차</mark>의 지시가 없는 길이치수 및 각도치수에 대한 <mark>공치</mark>

2	공차등급	기준치수 구분[mm]							
기호	구분	0.5 이상 3 이하	200 100	6 초과 30 이하	30 초과 120 이하	120 초과 400 이하	400 초과 1,000 이하	1,000 초과 2,000 이하	2,000 초과 4,000 이하
		허용차							
f	정밀급	±0.05	±0.05	±0.1	±0.15	±0.2	±0.3	±0.5	-
m	보통급	±0.1	±0.1	±0.2	±0.3	±0.5	±0.8	±1.2	±2.0
c	거친급	±0.2	±0.3	±0.5	±0.8	±1.2	±2.0	±3.0	±4.0
v	아주거친급	legic la	±0.5	±1.0	±1.5	±2.5	±4.0	±6.0	±8.0

모델링 제작 과정 中 문제점

- 모델링 제작 과정 중 문제점
- 2.실제 mouse의 크기를 모델링 삼아 제작해 주어진 제작시간을 맞추기 힘들었다. 사용자의 편의를 위해 좀 더 크게 만들어야 하는 부분(손날 부분)이 있었지만 주어진 프린터 크기에 맞게 다시 줄여 모델링 하였다.
- Shell 기능을 이용해 제작시간을 효과적으로 줄일 수 있었다.
- Scale 기능을 통해서 원점 기준으로 모든 파트 어셈블들을 줄여서
- 3. 클리커 부분이 프린팅과정 중 서포팅이 부족해 흘러내리는 현상 발생
- 자동 서포트 제외하고 추가적인 서포팅 부여하면서 재제작.
- 클리커 아랫부분도 견고하게 만듦

모델링 제작 후 문제점 및 한계

- 모델링 제작 과정 후 문제점
- 1. 3D프린팅 이후에 아래 클리커 부분이 너무 얇아서 프린팅 과정에서 서포트가 잘 제거되지 않았다.
 - > 해결방안: 최대한 서포트를 제거하고 사포질을 통해서 매끄럽게 만든다.

2. 휠이 바디와 결합이 잘 되지 않아서 빠지는 문제점이 있었다. >해결방안 휠 결합부위를 조금 더 깊게 만든다.

사용재료량과 제작시간 확인

• 3D프린터 소프트웨어를 사용해 실제 출력 전 확인하는 과정

실제 제작품 사진

• 3D프린터를 통해서 뽑아낸 제작품 사진

참고문헌

- <u>최고의 인체공학적 마우스 2025년 봄: 마우스의 리뷰</u> RTINGS.com
- Guide to Choosing the Right Ergonomic Mouse with ComputerFood NZ
- Mouse 3D model in CATIA | 3D CAD Model Library | GrabCAD
- >> > GENERAL 형태의 마우스 모델링을 학습하기 위함

Q&A 및 발표 종료

•감사합니다.